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Abstract: The combination of a single-photon avalanche diode detector with a high-sensitivity and
photon-efficient reconstruction algorithm can realize the reconstruction of target range image from
weak light signal conditions. The limited spatial resolution of the detector and the substantial
background noise remain significant challenges in the actual detection process, hindering the accu-
racy of 3D reconstruction techniques. To address this challenge, this paper proposes a denoising
super-resolution reconstruction network based on generative adversarial network (GAN) design.
Soft thresholding is incorporated into the deep architecture as a nonlinear transformation layer to
effectively filter out noise. Moreover, the Unet-based discriminator is introduced to complete the
high-precision detail reconstruction. The experimental results show that the proposed network can
achieve high-quality super-resolution range imaging. This approach has the potential to enhance the
accuracy and quality of long-range imaging in weak light signal conditions, with broad applications
in fields such as robotics, autonomous vehicles, and biomedical imaging.

Keywords: LiDAR; GaAs; photon-efficient imaging; 3D reconstruction; deep learning

1. Introduction

Active optical imaging has lower environmental requirements and is more versatile
than passive imaging detection. However, optical detection typically requires a large num-
ber of photons to reduce background noise. This can be challenging in remote sensing [1],
non-visual imaging [2], and other applications [3], where the amount of signal photons is
limited by light flux and integration time. Traditional systems based on photomultiplier
tubes struggle to accurately reconstruct scene information under these conditions. single-
photon avalanche diode (SPAD) is an avalanche photodiode operating in a Geiger mode,
which achieves detection sensitivity at the single-photon level by utilizing the avalanche
breakdown phenomenon. SPAD-based laser radar systems are highly sensitive and can
detect very weak echo signals [4]. The SPAD detector records the photon arrival time, and
a 3D reconstruction algorithm calculates the target range information based on the photon
count histogram.

During the measurement process, dark counts can introduce additional noise and
uncertainties, impacting the accuracy of imaging. Moreover, sparse echo signal scenes
are often accompanied by strong background noise, such as sunlight, fog, rain, and snow.
To improve detection accuracy in various scenarios, it is necessary to reduce the impact
of background noise on the system using a reconstruction algorithm. Several methods
have been proposed to reconstruct high-noise SPAD detection data [5–10]. Moreover, in
recent years, deep learning-based methods have advanced photon-efficient reconstruction
imaging even further [11–15].
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For large-scale SPAD arrays, the packaging technology poses difficulties, leading to
a mutual restriction between temporal and spatial resolution. To achieve better range
accuracy and reduce noise from crosstalk between pixels, the spatial resolution of the SPAD
array is often sacrificed, resulting in a lack of detail in reconstructed images. However,
there is currently a lack of methods that utilize deep learning to improve the resolution
of photon-efficient range imaging. Single-image super-resolution (SISR) is a widely used
computer vision technique in astronomical and biomedical imaging. Neural networks,
particularly GANs, offer a wide range of uses in SISR and have expanded quickly [16–20].
The introduction of SISR technology into photon-efficient imaging can further enhance
reconstruction image resolution [21–26].

In this paper, a photon-efficient super-resolution convolutional neural network is
proposed. The network uses the Non-Local Sparse Attention (NLSA) module [15] to extract
features and addresses the high noise typically present in SPAD detector data by directly
solving 3D data and introducing adaptive soft thresholding for denoising [27]. However,
soft thresholding may filter out weak echo signals, so a more reasonable loss function is
needed to balance noise removal and signal preservation. To achieve this, the proposed
method uses a Unet-based discriminator to output both local and global discriminant
information [28]. The discriminator guides the network to generate more details using
pixel-level discrimination information, and the total hybrid loss function includes Mean
Absolute Error (MAE), Structural Similarity (SSIM), and adversarial loss from the Unet-
based discriminators. Simulation experiments conducted in different noise environments
and scenarios demonstrate the proposed method’s excellent reconstruction results through
qualitative and quantitative analysis and comparison with previously reported algorithms.
Ablation experiments explore the influence of each module on network performance. The
proposed network’s 3D super-resolution reconstruction performance is further validated
through experiments on a pulsed lidar system based on an SPAD array in the real world.

2. Related Work
2.1. Reconstruction Photon-Efficient Imaging

Recently, there has been a significant amount of work focused on improving the quality
of reconstructed images by suppressing background noise. This has been achieved through
various techniques such as leveraging the distribution characteristics of signal photons or
integrating multiple sensors. Shin et al. [5,6] suppressed Poisson noise on a pixel-by-pixel
basis by establishing a SPAD trigger probability model. Rapp et al. [7] improved the great
likelihood estimation method by incorporating an adaptive super-resolution algorithm that
leverages the signal photon distribution law. In challenging conditions, Halimi et al. [8]
utilized a layered Bayesian algorithm combined with multi-spectral single-photon lidar
to estimate range image. Chen et al. [9] proposed a deep domain adversarial adaptation
technique that addresses the domain shift issue in photon-efficient imaging by making
advantage of a potent network structure.

With the development of deep learning technique, neural network has become a
new direction to solve the problem of efficient photon imaging with its powerful feature
extraction ability [11]. Peng et al. [12] proposed an end-to-end reconfigurable network with
a denoising module as the main architecture. Non-local attention module was introduced
to extract the temporal-spatial domain long-range correlation feature of SPAD detection
data. Zang et al. [13] proposed a lightweight neural network that can be implemented
on an embedded hardware platform. Unet was used as the main body of the network to
integrate multidimensional space-time spatial characteristics. Zhao et al. [14] constrained
the network with gradient regularization function and introduced the ADAG module
into the Unet network model to recover more accurate edge details. Yang et al. [15]
designed a convolutional encoder to directly reconstruct the incoming 3D data into range
and reflectivity images. NLSA module was used to extract non-local features with low
computational cost.
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2.2. Single-Image Super-Resolution

Super-Resolution Convolutional Neural Network (SRCNN) [16] first applies deep
convolutional neural networks to SISR. Over the years, researchers have made significant
advancements in optimizing the network architecture by incorporating various techniques
such as stacking convolutional layers, adding jump connections and integrating attention
modules [17–20]. For instance, Zhang et al. [17] incorporated the channel attention module
into extremely deep residual network, which improved reconstruction accuracy signif-
icantly. Wang et al. [20] explored the use of sparsity in SISR by incorporating a sparse
mask that identifies important and unimportant regions in images, leading to further
enhancements in the reconstruction process.

GANs have been used in SISR to improve the perceived quality of the output images.
Ledig et al. [21] proposed the SRGAN network, which uses adversarial losses and content
losses to strengthen the generator. Enhanced Super-Resolution Generative Adversarial
Networks (ESRGAN) [22] refine the adversarial training process by introducing perceived
loss and a Residual-in-Residual Dense Block (RRDB). Ma et al. [23] introduced a gradient
guidance via an additional branch in the network to alleviate the problem of structural
distortion and inconsistency. Li et al. [24] addressed potentially undesired image artifacts
using a regional awareness adversarial learning strategy. Liang et al. [25] proposed an
LDL framework to regularize adversarial training by clearly distinguishing between vi-
sual artifacts and realistic details. These advancements have significantly improved the
performance of GAN-based SISR methods, making GANs a popular choice in the field.

3. Method
3.1. Forward Model

Figure 1 illustrates a typical pulsed lidar system based on photon-efficient imaging
technology. The system comprises a pulsed laser that emits a pulsed laser beam s(t) at a
fixed period T. A SPAD is used to collect the arrival time of the echo signal. In extremely
weak echo scenes, the amount of light that can enter the detector during each repetition
period is very small, typically less than one photon per pixel. Under these conditions, the
impact of pulse pile-up on the detection result is negligible. For each pixel q of the SPAD
array during a time period ∆t, the expected number Φq of photons that can be detected is

Φq =
∫ ∆t

0
[σαqs(t−

2zq

c
) + B]dt, (1)

where σ contains the quantum efficiency of SPAD and distance attenuation, c is the speed
of light, αq represents the reflectivity of the target area corresponding to the pixel cell,
zq is the distance between the target area and the detector, and the response caused by
environmental noise and dark count is denoted as B.

To avoid producing distance aliasing during detection, it is essential to ensure that
T > 2zmax/c, where zmax represents the farthest distance of the target. During each illu-
mination pulse repetition cycle, detections by the SPAD are treated as separate events.
The probability density function of the avalanche multiplication event of pixel q in a full
detection process can be written as follows:

fq
(
t, zq

)
=

σαqs(t− 2zq/c) + B

σαq
∫ T1

T0
s(t− 2zq/c)dt + B(T1 − T0)

, (2)

where T0 and T1 represent the start time and end time of detection.
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Figure 1. Pulsed LiDAR imaging system based on SPAD.

The SPAD detector generates point cloud data M in the low light flux scenario by
accumulating many detection results. M contains the response of the detector to the echo
signal photon and the background noise photon, which can be reconstructed to obtain the
range image. By employing the maximum likelihood estimation (MLE) method [29], the
range information on q can be expressed as follows:

zML
q = argmax

zq∈[0,cT)

kq

∑
i=1

log[s(t(i) − 2zq/c)], (3)

where kq is the total number of photons that the detector responds to on q. The proposed
method is detailed in the next section.

3.2. Network Architecture

This research proposes the Temporal–Spatial domain Denoise Super-Resolution (TS-
DSR) neural network architecture based on GAN which comprises a generator and a
discriminator in order to produce greater quality super-resolution range reconstruction.
To reconstruct an image using a neural network, the estimation process can be expressed
as follows: {

YHR
range

}
= G

θ=θ*
(M), (4)

where G(.) represents the generator neural network, θ is the parameters of the neural
network, θ* is the parameters after training, and YHR

range is the High Resolution (HR) range
image of the target scene.

3.2.1. Generator

The structure of the Residual Channel-wise Soft Thresholding (RCST) unit is illustrated
in Figure 2. The main body is composed of residual units, and adaptive soft thresholding
is added. Equation (2) indicates that in the presence of an echo signal, photon detection
events have a higher probability density, and there is a greater chance of obtaining a high
value in the statistical detection results. The reactions caused by background noise and
dark counts are asymmetric and randomly dispersed. In photon reconstruction imaging
tasks with low Signal-to-Background Ratio (SBR), it is essential to eliminate the impact of
background noise and dark count.
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Figure 2. (a) Generator general architecture. (b) Non-local sparse attention Residual Channel-wise
soft thresholding (NRC) module. (c) RCST unit.

To achieve denoising, the noise information is transformed into a feature close to zero
through convolution, which is then further transformed into zero through soft thresholding.
The soft thresholding function can be expressed as follows:

y =


x− τ
0
x + τ

x > τ
−τ ≤ x ≤ τ

x < τ
. (5)

The selection of threshold τ is critical to ensuring optimum denoising performance
in RCST. RCST combines soft thresholding with residual units. The feature information
is transformed into a C-dimensional vector by absolute value global mean pooling after
Rectified Linear Unit (ReLU) activation and convolution processing (AGAP). The vector
value is then scaled to the range (0,1) with a sigmoid after two layers of fully connected
(FC) processing. The output is multiplied element-wise with the vector output from AGAP
processing to obtain a vector of size 1 × 1 × C, where each value represents a separate
threshold for the corresponding channel. These thresholds are all positive and can be
learned continuously during back propagation. RCST units avoid discarding too much
useful information in a single filtering step by employing shortcut connections. By reusing
RCST units in generators, noise in features is gradually reduced.

The NRC module integrates multiple functions, including denoising, feature extraction
and data compression. With NRC as the main component of the network, the spatial
resolution of the data is expanded by the upsampling module when the data are compressed
to 64 channels. Finally, the feature data are multiplied by two 3 × 3 filters to produce an
HR range image of the target scene.
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3.2.2. Discriminator

In the GAN, the discriminator obtains discriminant information according to the
input data distribution and uses the difference between the real image and the generated
image discriminant information as the loss guidance generator. Improving the accuracy
of the information expressed by the discriminator can prompt the generator to produce
more realistic output. However, as a classification network, most discriminators cannot
extract different features from the input data simultaneously. When trying to learn global
semantics and details at the same time, these discriminators often lose their ability to express
themselves effectively. Therefore, global and local feature extraction can be regarded as
different tasks. Some studies use multiple independent discriminators to perceive the
global and local information of images separately. The network proposed in this paper
chooses U-net as the main body of the discriminator and obtains the global and local feature
information from it. As shown in Figure 3, the DU structure is divided into two parts:
the encoder performs the classification task to extract the global image features, while the
decoder performs the semantic segmentation task to output the discrimination information
pixel by pixel.
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Figure 3. U-Net-based discriminator. Brighter colors in the decoder output correspond to lower
confidence (discriminator considers fake).

The encoder consists of multiple convolutions, activation functions, and downsam-
pling operations to map a 128 × 128 × 1 input to a 4 × 4 × 1024 size feature. Global
discriminant information is obtained through global summation pooling (GSP) and FC
layers. The decoder uses a similar structure to gradually up-sample the encoder output
features to the size of the discriminator input to complete the semantic segmentation task.
During this process, the features from each layer of the encoder are merged with the de-
coder output features of the same resolution. By fusing shallow and deep information in
this way, details can be better recovered. The global discriminant information is based on
the similarity of deep image features. However, in super-resolution tasks, more attention
needs to be paid to the image details. DU fuses encoder and decoder information to better
guide the generator in narrowing the detail gap between real and fake samples.
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3.2.3. Loss Function

The super-resolution mission is essentially an ill-posed problem. The use of mixed
loss function can avoid imposing rigid constraints on Low Resolution (LR) to HR and
reduce the difficulty of network training. MAE and adversarial loss are used as hybrid loss
functions to guide generators in training. The total loss of the generator can be expressed as

LG = MAE− λ1EY

[
λ2 log DU

en(G(M)) + λ3 log DU
de(G(M))

]
, (6)

where DU
en(·) represents the encoder output of the discriminator, DU

de(·) represents the
discriminant matrix output by the decoder of the discriminator, n is the total number
of pixels, and λ is the hyperparameter. In the process of network training in this paper,
λ1 = 0.005, λ2 = 0.3 and λ3 = 0.7. This hyperparameter setting encourages the generator to
pay more attention to local details. The loss of the discriminator consists of LDU

en
calculated

from the output of the encoder and LDU
de

calculated from the output of the decoder:

LDU
en
= −ER

[
log DU

en(R)
]
−EY

[
1− log DU

en(G(M))
]
, (7)

LDU
de
= −ER

[
log DU

de(R)
]
−EY

[
1− log DU

de(G(M))
]
, (8)

where R is HR ground truth. The total discriminator loss LD is

LD = LDU
en
+ LDU

de
. (9)

4. Experiments
4.1. Dataset and Training Detail

Firstly, the histogram of photon detection probability is established by combining
ground truth images of range and reflectivity in the NYU v2 [30] dataset according to
Equation (2) Then, the histogram is sampled using a non-homogeneous Poisson process
to obtain SPAD measurements. The spatial resolution of simulation data used in training
is 64 × 64, with time divided into 1024 intervals, each interval being 80 ps apart. The
measurements included 9 different noise scenes, with an average of 2, 10 and 50 background
photons per pixel and an average of 2, 5 and 10 signal photons per pixel. A total of 38,624
and 2372 measurements were generated for training and validation, respectively. The deep
learning neural network code was implemented using PyTorch. ADAM optimizer was
used for iteration in the training process, with a learning rate of 2 × 10−4 and each epoch
decaying to 0.95 of the previous one. Network training requires approximately 20 epochs,
with a batch size of 4 and approximately 193 k iterations.

4.2. Numerical Simulation

A total of 72 sets of 128 × 128 × 1024 testing data were generated in the simula-
tion experiments, which included 8 scenarios and 9 different noise levels (SBR = 10:2;
10:10; 10:50; 5:2; 5:10; 5:50; 2:2; 2:10; 2:50) provided by the Middlebury [31] dataset. The
proposed method was compared with Peng’s [12] method, Zhao’s [14] method, and NLSA-
Encoder [15]. In the simulation experiment, the proposed method achieved end-to-end
reconstruction and super-resolution. In contrast, the compared methods first reconstructed
the test data to obtain a 128 × 128 LR range image and then performed super-resolution
using other methods.

The result of range image reconstruction in low SBR (2:50) Art scene is shown in
Figure 4. The first row shows the super-resolution using the Bicubic method, while the
second row shows the super-resolution using the ESRGAN neural network method trained
on the range reconstruction results. In the numerical simulation experiments, the super-
resolution results obtained using bicubic interpolation appear relatively blurry from a
human visual perception standpoint.
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Figure 4. Comparison of different methods for HR range image reconstruction in Art scene. The
image resolution is 256 × 256 and the noise environment is 2:50. The “Target” represents the ground
truth range image provided in the dataset.

In order to better compare the various reconstruction methods, this paper shows more
results with ESRGAN in Figure 5. The Peak Signal-to-Noise Ratio (PSNR) was calculated
using the ground truth range image and the HR range reconstruction result. Peng’s method
outperformed in lower SBR environments due to its use of total variation (TV) as part of the
loss. However, TV constraints obscure local details, resulting in less detail in the panes of
the refactoring results in the Laundry scene compared to the other methods. Zhao’s method
uses gradient regularization to penalize the neural network to obtain more accurate edges.
In the high-noise environment, more singular points appear in Zhao reconstruction results.
This situation shows that this method enhances the expression of some noise as well as the
boundary information. The NLSA-Encoder method yields more balanced reconstruction
results but lacks some details, such as the panes in the Laundry scene, the small square
in the middle of the Moebius scene, and the lower-right corner of the Dolls scene. The
proposed method provides better denoising performance and produces more detailed
reconstruction results.
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The “Target” represents the ground truth range image provided in the dataset. The content enclosed
in the square highlights significant differences observed among the methods.
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To compare the reconstruction performance of various methods, four quantitative
indicators were selected. The following is the formula for each quantitative index.

Root Mean Square Error (RMSE) is represented by the following formula:

RMSE(R, Y) =

√
1
n∑n

1 (Rq − Yq)
2
, (10)

accuracy is represented as follows:

Accuracy(C) =
1
n∑n

1 Cq, (11)

PSNR is formulated as

PSNR(R, Y) = 10 log10

[
z2

max/
1
n∑n

1 (Rq − Yq)
2
]

, (12)

and the Universal Image Quality Index (UIQI) [32] can be expressed as follows:

UIQI(R, Y) =
4σRYµRµY

(σ2
R + σ2

Y)(µ
2
R + µ2

Y)
, (13)

where σ is variance, µ is mean value, n is total number of pixels. The value at any position
of the confidence matrix C determined by the threshold δ can be represented as follows:

Cq(R, Y) =
{

0 max(Rq/Yq, Yq/Rq) > δ
1 max(Rq/Yq, Yq/Rq) < δ

, (14)

Table 1 lists the average values of the indicators for each method in each noise envi-
ronment. In terms of quantitative indexes, Peng’s method has poor overall performance.
Zhao’s method performs well in environments with high signal photon numbers but is
susceptible to noise. NLSA-Encoder is more prominent in low-SBR environments. The
average performance of the proposed network is the best. This method performs best or
second-best in all kinds of noise environments. The results show that TSDSR has the ability
to accurately super-resolution reconstruct the range image.

Table 1. Under 9 different SBRs conditions, the average performance of various reconstruction
methods was quantitatively evaluated across 8 different test scenes. A lower value of RMSE (Root
Mean Squared Error) indicates a closer resemblance of the reconstructed image to the ground truth
image. Higher values of accuracy, PSNR, and UIQI indicate a closer resemblance of the reconstructed
image to the ground truth image. Optimal performance is represented by bold characters. The
abbreviation “NSE” refers to the NLSA-Encoder method.

SBR
RMSE Accuracy (δ = 1.03)

Peng Zhao NSE Proposed Peng Zhao NSE Proposed

10:2 0.0205 0.0174 0.0211 0.0189 0.9763 0.9786 0.9798 0.9788
10:10 0.0204 0.0177 0.0211 0.0191 0.9759 0.9785 0.9796 0.9789
10:50 0.0207 0.0198 0.0213 0.0194 0.9759 0.9779 0.9791 0.9784
5:2 0.0218 0.0189 0.0214 0.0201 0.9743 0.9770 0.9781 0.9783

5:10 0.0220 0.0212 0.0217 0.0205 0.9740 0.9765 0.9770 0.9783
5:50 0.0233 0.0278 0.0229 0.0217 0.9723 0.9698 0.9747 0.9771
2:2 0.0245 0.0232 0.0234 0.0224 0.9694 0.9720 0.9739 0.9756

2:10 0.0262 0.0355 0.0248 0.0241 0.9660 0.9672 0.9700 0.9728
2:50 0.0318 0.0364 0.0308 0.0304 0.9534 0.9624 0.9538 0.9592
AVG 0.0235 0.0242 0.0232 0.0218 0.9708 0.9733 0.9740 0.9753
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Table 1. Cont.

SBR
PSNR UIQI

Peng Zhao NSE Proposed Peng Zhao NSE Proposed

10:2 60.729 62.188 61.009 61.192 0.9791 0.9825 0.9811 0.9823
10:10 60.691 62.119 60.837 61.194 0.9788 0.9835 0.9813 0.9831
10:50 60.316 58.082 60.644 60.757 0.9740 0.9803 0.9804 0.9809
5:2 59.874 60.159 60.265 60.903 0.9758 0.9799 0.9792 0.9813

5:10 59.780 57.824 59.973 60.661 0.9752 0.9781 0.9790 0.9805
5:50 59.004 57.576 59.336 59.926 0.9717 0.9705 0.9760 0.9786
2:2 58.219 58.753 58.933 59.616 0.9692 0.9727 0.9752 0.9761

2:10 57.465 55.249 58.062 58.388 0.9649 0.9563 0.9696 0.9717
2:50 55.093 54.574 55.415 55.264 0.9492 0.9508 0.9523 0.9524
AVG 59.019 58.503 59.386 59.767 0.9709 0.9727 0.9749 0.9763

4.3. Real-World Experiments

To validate the performance of the proposed method, a SPAD-based pulsed laser
system was constructed as shown in Figure 1 to collect real-world experimental data. The
fiber pulse laser emitted pulses with a pulse width of 1 ns, a peak power of 500 mW (near-
field) or 1.5 mJ (far-field), and a wavelength of 1064 nm at a repetition rate of 20 KHz.
The laser beam was diffused by an external lens, resulting in a beam divergence angle
of 25 mrad (near-field) or 15 mrad (far-field). The laser transmitter triggered the SPAD
synchronously with the pulse to detect the flight time of the echo photon. The SPAD model
used was the GD5551 InGaAs, with a trigger exposure time of 4096 ns, time resolution of
1 ns, and spatial resolution of 64 × 64.

The target scene photos and reconstruction results of the real experiment data are
illustrated in Figure 6. In the reconstruction process, MLE utilized 20,000 frames of data
to reconstruct 64 × 64 LR range images as a reference, while the other methods used only
400 frames to reconstruct HR range images. Peng’s method failed to filter out the noise,
whereas Zhao’s method restored more edge information, but the left-hand reconstruction
of the middle doll was less effective. Although the NLSA-Encoder did not have much
noise, it struggled to accurately capture details in certain weak echo regions, such as the
edges of the dolls and flagpoles. The NLSA-Encoder-reconstructed rabbit doll on the left is
smaller than the result of MLE method.

TSDSR showed the highest quality for the reconstructed data in the table part of the
image. The shape of the right side of the table and the signboard on the rooftop were
well restored. These details were difficult to observe in the LR reconstructed images of the
MLE method, indicating the importance of super-resolution. The qualitative comparison
of the reconstruction results of real-world experiments proved that the proposed method
outperformed other methods in super-resolution range reconstruction.



Photonics 2023, 10, 744 11 of 14

Photonics 2023, 10, x FOR PEER REVIEW 11 of 14 
 

 

noise, it struggled to accurately capture details in certain weak echo regions, such as the 

edges of the dolls and flagpoles. The NLSA-Encoder-reconstructed rabbit doll on the left 

is smaller than the result of MLE method. 

 

Figure 6. Real-world experiment target scenes and reconstruction results. The resolution of the 

range image by MLE method is 64×64. The resolution of the other images is 128×128. The last column 

of images was reconstructed by TSDSR. The content enclosed in the square highlights significant 

differences observed among the methods. (a) Near-field experimental target scene. (b) Far-field ex-

perimental target scene. (c) Reconstruction results of near-field experimental detection data by var-

ious methods. 

TSDSR showed the highest quality for the reconstructed data in the table part of the 

image. The shape of the right side of the table and the signboard on the rooftop were well 

restored. These details were difficult to observe in the LR reconstructed images of the MLE 

method, indicating the importance of super-resolution. The qualitative comparison of the 

reconstruction results of real-world experiments proved that the proposed method out-

performed other methods in super-resolution range reconstruction. 

5. Discussion 

Photon-efficient imaging is limited by significant noise and photon detection hard-

ware. In this paper, an end-to-end network is proposed for super-resolution range recon-

struction from photon-efficient measurements. To thoroughly examine the contribution 

of each module to the network’s performance, three network architectures were 

Figure 6. Real-world experiment target scenes and reconstruction results. The resolution of the range
image by MLE method is 64×64. The resolution of the other images is 128×128. The last column
of images was reconstructed by TSDSR. The content enclosed in the square highlights significant
differences observed among the methods. (a) Near-field experimental target scene. (b) Far-field
experimental target scene. (c) Reconstruction results of near-field experimental detection data by
various methods.

5. Discussion

Photon-efficient imaging is limited by significant noise and photon detection hardware.
In this paper, an end-to-end network is proposed for super-resolution range reconstruction
from photon-efficient measurements. To thoroughly examine the contribution of each
module to the network’s performance, three network architectures were compared: one
without adaptive soft thresholding (A w/o AST), one without DU (B w/o DU), and one
containing all components (C Proposed).

The ablation experiment used the same test data as the simulation experiment. Figure 7
shows the reconstruction results under low SBR (2:50) Art and Laundry scenes. The com-
parison highlights that the network’s reconstruction results without using adaptive soft
thresholding introduce a lot of noise. While the adaptive soft thresholding module’s denois-
ing capabilities are evident, it also leads to the problem of detail loss. Among the panes in
the Laundry scene, the A network, which does not use adaptive soft thresholding, displays
the most detailed results. During adaptive soft thresholding, some useful information may
be accidentally filtered out. Choosing an appropriate threshold can reduce the likelihood
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of signal photon filtering, resulting in a higher-quality reconstructed image. In both test
scenarios, the proposed network demonstrated outstanding performance in terms of image
reconstruction quality and PSNR. This is because the DU penalty helps the network achieve
a more reasonable threshold, which better balances the trade-off between detail recovery
and denoising performance.
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Figure 7. Art and Laundry scenes comparing different methods of HR range reconstruction image.
The image resolution is 256 × 256 and the noise environment is 2:50. The “Target” represents the
ground truth range image provided in the dataset. The content enclosed in the square highlights
significant differences observed among the methods.

Compared to existing convolutional neural network approaches, the employed tech-
nique involves learnable soft thresholding to effectively filter out the substantial amount of
background noise present in the original data captured by the SPAD detector. Furthermore,
a Unet-based discriminator is introduced to guide the network in generating high-fidelity,
high-resolution range images. This discriminator serves as both a classifier and a segmenter,
enhancing the preservation of the signal while minimizing potential information loss due to
soft thresholding. In numerical simulation experiments, the network effectively preserves
fine details. However, in real-world experiments, there is an occurrence of unexpected
filtering of some echo signals. For instance, in the window part of the far-field experiment
(Figure 6), the resulting image appears excessively blurred, potentially due to the negative
impact of the introduced soft thresholding. Future work can focus on further optimizing
the thresholding process or selecting more suitable loss functions to enhance the network’s
reconstruction performance.

6. Conclusions

To address the problem of poor single photon imaging quality caused by the limited
spatial resolution of the SPAD array, a GAN-based neural network called TSDSR is utilized
for super-resolution reconstruction. This method uses a residual structure and an NLSA
module for feature extraction. The discriminator employs the Unet architecture, with the
encoder performing classification by image and the decoder by pixel. This architectural
improvement results in a stronger discriminator, which is encouraged to maintain a more
powerful data representation, making it more difficult for the generator to deceive the
discriminator and thereby enhancing the quality of generated samples. Soft threshold
processing is added to the residual module to lessen the negative impact of background
noise on reconstruction quality. The network’s high reconstruction performance is vali-
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dated through numerical simulations of various scenarios, and ablation experiments are
conducted to examine the influence of each module on network performance. Furthermore,
the proposed method has been evaluated in real-world tests. Compared to other existing
deep learning methods, the proposed network can reconstruct HR range images of the
target with higher quality.
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