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Abstract: In this paper, we focus on the study of the negative energy flow in the tight focusing of a
radially polarized vortex beam. We know that, because of the coupling of the polarization state and
the vortex charge, the on-axis energy flow in the focal region can be well modulated by changing
the polarization order and the vortex charge of the incident vector beam. This shows that when the
polarization order and the vortex charge satisfy the specific relation, the on-axis negative energy flow
can be obtained in the focal region. Moreover, the initial phases of two polarization unit vectors also
affect the evolution of the on-axis negative energy flow in the tight focusing of the radially polarized
beam. The phase difference modulation of the two polarization unit vectors indicates two different
modulations of the polarization state. Our work provides a more flexible modulation method for
focal shaping and optical modulation.
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1. Introduction

A radially polarized beam is a type of structured beam with a non-uniform polarization
state, which is a particular solution of the Helmholtz equation [1–7]. In recent years, the
radially polarized beam has become a research focus in optics and photonics, because of
its extensive potential applications in optical trapping, imaging, optical communication,
etc. [1,7–15].

There are some interesting phenomena in the tight focusing of radially polarized
beams, such as the spin to orbital angular momentum conversion, the on-axis negative
energy, the spin Hall effect, and the spin–orbit Hall effect, etc. [16–22]. Kotlyar et al. showed
that there is an on-axis negative energy flow in the tight focusing of a second-order radially
polarized beam [23]. Moreover, the on-axis negative energy flow also can be obtained
in the tight focusing of a radially polarized vortex beam, which can be modulated by
changing the vortex charge and the polarization order of the incident beam. It is known
that the initial phase of the polarization state describes a type of rotation operation on
two polarization unit vectors; for example, the radial polarization state will evolve into an
azimuthal polarization state when its initial phase changes from 0 to π/2. Meanwhile, if
the phase difference of two polarization unit vectors is not equal to zero, it means that both
the polarization state and the amplitude of two field components are modulated with the
change in the initial phase of the two polarization unit vectors. All of these indicate that
the initial phase modulation of the polarization state also plays an important role in the
tight focusing of radially polarized beams.

In this paper, we focus on the study of the negative energy flow in the tight focusing
of the radially polarized vortex beam. When the polarization order and the vortex charge
satisfy a specific relation, the on-axis negative energy flow in the focal region can be well
controlled by the joint modulation of the polarization order and the vortex charge of the
incident vector beam. Furthermore, by modulating the initial phases of two polarization
unit vectors, the on-axis negative energy flow also can be obtained when the polarization
order and the vortex charge satisfy the specific relation. If the initial phases of the two
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polarization unit vectors are modulated simultaneously, the polarization state distribution
is rotated in its entirety for the high-order radially polarized beams. Interestingly, if the
modulation of the initial phases of the two polarization unit vectors is not synchronous, it
means that both the polarization state and the amplitude of the incident radially polarized
beam are modulated. We find that the initial phases of the two polarization unit vectors
also affect the evolution of the on-axis negative energy flow in the tight focusing of the
radially polarized beam. Our work provides a more flexible modulation method for focal
shaping and optical modulation.

2. Theoretical Model

The electric and magnetic field components of the focal field in the tight focusing
of vector vortex beams can be obtained through the Richards–Wolf formula in Debye
approximation as follows [7,23]:[

E(ρ, φ, z)
H(ρ, φ, z)

]
= − i f

λ

∫ θmax
0

∫ 2π
0 F(θ, ϕ)

√
cos θ sin θ

×
[

PE(θ, ϕ)
PH(θ, ϕ)

]
exp[ik(ρ sin θ cos[ϕ− φ] + z cos θ)]dθdϕ,

(1)

where

PE =

 A(θ, ϕ) C(θ, ϕ)
C(θ, ϕ) B(θ, ϕ)
−D(θ, ϕ) −E(θ, ϕ)

[cx(ϕ)
cy(ϕ)

]
, PH =

 C(θ, ϕ) −A(θ, ϕ)
B(θ, ϕ) −C(θ, ϕ)
−E(θ, ϕ) D(θ, ϕ)

[cx(ϕ)
cy(ϕ)

]
,

A(θ, ϕ) = 1 + cos2 ϕ(cos θ − 1), D(θ, ϕ) = cos ϕ sin θ,
B(θ, ϕ) = 1 + sin2 ϕ(cos θ − 1), E(θ, ϕ) = sin ϕ sin θ,
C(θ, ϕ) = sin ϕ cos ϕ(cos θ − 1),

where F(θ, ϕ) is the complex amplitude of the incident field; for the sake of simplicity, we
take F(θ, ϕ) = exp(i ` ϕ). ` is the vortex charge, f is the focal length, θmax= arcsin(N.A.),
and we take f = 3 mm and N.A. = 0.95 in our numerical simulation, respectively. cx(ϕ)
and cy(ϕ) are the unit vectors of the polarization state; for the radial polarization state,
its forms can be described by cx(ϕ) = cos(mϕ+φ01) and cy(ϕ) = sin(mϕ+φ02

)
. m is the

polarization order, and φ01 and φ02 are the initial phases of the polarization unit vectors.
The phase difference of the polarization unit vectors can be modulated by changing the
initial phases φ01 and φ02. Generally, the polarization unit vectors cx(ϕ) and cy(ϕ) should

satisfy the relationship |cx(ϕ)|2 +
∣∣cy(ϕ)

∣∣2= 1; this means that the two polarization unit
vectors are modulated synchronously, and the phase difference of the polarization unit
vectors is equal to zero (φ01 = φ02). It is known that the initial phase of the polarization state
indicates the rotation operation on the polarization unit vector. If the initial phases of two
polarization unit vectors are modulated simultaneously, the polarization state distribution
is rotated in its entirety for the high-order radially polarized beam. However, if the phase
difference of two polarization unit vectors is not equal to zero, φ01 6= φ02, both the
polarization state and the amplitude of two transverse field components are modulated
with the change in the initial phases of the two polarization unit vectors.

According to Equation (1), we can obtain the electric field components of the focal
field as follows:
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Ex(ρ, φ, z) = − i f
λ

∫ θmax
0

√
cos θ sin θ exp(ikz cos θ)

×
[

1
2 (cos θ + 1)Tx1 +

1
4 (cos θ − 1)(Tx21 + Tx22) +

1
4 (cos θ − 1)(Tx31 − Tx32)

]
dθ,

Ey(ρ, φ, z) = − i f
λ

∫ θmax
0

√
cos θ sin θ exp(ikz cos θ)

×
[

1
2 (cos θ + 1)Ty1 +

1
4 (cos θ − 1)

(
Ty21 − Ty22

)
− 1

4 (cos θ − 1)
(
Ty31 + Ty32

)]
dθ,

Ez(ρ, φ, z) = − i f
λ

∫ θmax
0

√
cos θ sin θ exp(ikz cos θ)

× 1
2 sin θ

(
−TE

z1 − TE
z2 − TE

z3 + TE
z4
)
dθ,

(2)

where

Tx1 = πi`+m exp[i(`+ m)φ + iφ01]J`+m(t) + πi`−m exp[i(`−m)φ− iφ01]J`−m(t),
Tx21 = πi`+m−2 exp[i(`+ m− 2)φ + iφ01]J`+m−2(t) + πi`−m+2 exp[i(`−m + 2)φ− iφ01]J`−m+2(t),
Tx22 = πi`+m+2 exp[i(`+ m + 2)φ + iφ01]J`+m+2(t) + πi`−m−2 exp[i(`−m− 2)φ− iφ01]J`−m−2(t),
Tx31 = πi`+m−2 exp[i(`+ m− 2)φ + iφ02]J`+m−2(t) + πi`−m+2 exp[i(`−m + 2)φ− iφ02]J`−m+2(t),
Tx32 = πi`+m+2 exp[i(`+ m + 2)φ + iφ02]J`+m+2(t) + πi`−m−2 exp[i(`−m− 2)φ− iφ02]J`−m−2(t),
Ty1 = πi`+m−1 exp[i(`+ m)φ + iφ02]J`+m(t)− πi`−m−1 exp[i(`−m)φ− iφ02]J`−m(t),
Ty21 = πi`+m+1 exp[i(`+ m + 2)φ + iφ01]J`+m+2(t)− πi`−m−3 exp[i(`−m− 2)φ− iφ01]J`−m−2(t),
Ty22 = πi`+m−3 exp[i(`+ m− 2)φ + iφ01]J`+m−2(t)− πi`−m+1 exp[i(`−m + 2)φ− iφ01]J`−m+2(t),
Ty31 = πi`+m+1 exp[i(`+ m + 2)φ + iφ02]J`+m+2(t)− πi`−m−3 exp[i(`−m− 2)φ− iφ02]J`−m−2(t),
Ty32 = πi`+m−3 exp[i(`+ m− 2)φ + iφ02]J`+m−2(t)− πi`−m+1 exp[i(`−m + 2)φ− iφ02]J`−m+2(t),
TE

z1 = πi`+m−1 exp[i(`+ m− 1)φ + iφ01]J`+m−1(t) + πi`−m+1 exp[i(`−m + 1)φ− iφ01]J`−m+1(t),
TE

z2 = πi`+m+1 exp[i(`+ m + 1)φ + iφ01]J`+m+1(t) + πi`−m−1 exp[i(`−m− 1)φ− iφ01]J`−m−1(t),
TE

z3 = πi`+m−1 exp[i(`+ m− 1)φ + iφ02]J`+m−1(t) + πi`−m+1 exp[i(`−m + 1)φ− iφ02]J`−m+1(t),
TE

z4 = πi`+m+1 exp[i(`+ m + 1)φ + iφ02]J`+m+1(t) + πi`−m−1 exp[i(`−m− 1)φ− iφ02]J`−m−1(t),

in which t = kρsin θ, and Jn(·) is an n-th order Bessel function. It shows that the focal field
is determined by the polarization order and the vortex charge of the incident vector beam.
According to the expression of the electric field components, Figures 1 and 2 show the
intensity patterns of the focal field in the focal plane when the vortex charge ` = 0. It
is shown that the focal pattern is closely related to the polarization order of the incident
vector beam, and the focal spots will be split or concentrated with the increase in initial
phase φ01 (or φ02). In fact, for a second-order polarized beam, the focal field pattern does
not change with the simultaneous modulation of the initial phase of the polarization state.
If only one initial phase of the polarization state is modulated, both the polarization state
and the amplitude of the incident beam are changed. Thus, the initial phase modulation of
the polarization state can affect the focal field property, as shown in Figures 1 and 2.

Figure 3 displays the intensity pattern of the focal field when the incident vector beam
possesses a vortex charge and the initial phase of the polarization state φ02 = 0. Compared
with the results shown in Figures 1 and 2, it shows that the vortex charge plays a key
role in the tight focusing of vector beams. We find that the focal pattern shows different
distribution properties with the change in the initial phase φ01. More importantly, when
the polarization order is equal to the vortex charge, ` = m, the focal field pattern evolves
into a spot, and the initial phase φ01 does not affect the property of the focal spot. Because
of the rotation symmetry of Equation (2) on the polarization order and vortex charge, the
intensity distribution at a negative vortex charge is the same as that at a positive charge, as
seen in Figure 4. It is known that although the radially polarized beams do not possess spin
angular momentum, the initial phase of the polarization state can affect the distribution
property of the spin angular momentum [19]. All these results indicate that the initial phase
of the polarization state can directly affect the spin–orbit coupling in the tight focusing of a
radially polarized vortex beam. In the next section, we will focus on the evolution of the
negative energy flow in the focal region.
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Figure 3. Evolution of intensity patterns of focal field in the focal plane (z = 0) with different vortex
charges and φ02 = 0, (a) φ01 = 0; (b) φ01 = π/2; (c) φ01 = π. Columns (1) and (2) are ` = 2, (1) m = 1;
(2) m = 2. Columns (3)~(5) are ` = 3, (3) m = 1; (4) m = 2; (5) m = 3.
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3. Negative Energy Flow in Focal Region

In this section, we will investigate the evolution property of the energy flow in the
focal region. The energy flow can be described by the Poynting vector, which has the
following form [23–26]:

S =
c

8π
Re(E∗ ×H), (3)

and the longitudinal component of the energy flow density in the focal plane can be
expressed as

Sz = Re
(

E∗x Hy − E∗y Hx

)
. (4)

The expression of the magnetic field components can be derived from Equation (2)
directly,

Hx(ρ, φ, z) = − i f
λ

∫ θmax
0

√
cos θ sin θ exp(ikz cos θ)

×
[
− 1

2 (cos θ + 1)Ty1 +
1
4 (cos θ − 1)

(
Ty21 − Ty22

)
− 1

4 (cos θ − 1)
(
Ty31 + Ty32

)]
dθ,

Hy(ρ, φ, z) = − i f
λ

∫ θmax
0

√
cos θ sin θ exp(ikz cos θ)

×
[

1
2 (cos θ + 1)Tx1 − 1

4 (cos θ − 1)(Tx21 + Tx22)− 1
4 (cos θ − 1)(Tx31 − Tx32)

]
dθ,

Hz(ρ, φ, z) = − i f
λ

∫ θmax
0

√
cos θ sin θ exp(ikz cos θ)× 1

2
(
−TH

z1 + TH
z2 + TH

z3 + TH
z4
)
dθ,

(5)

where

TH
z1 = πi`+m exp[i(`+ m + 1)φ + iφ01]J`+m+1(t)− πi`−m−2 exp[i(`−m− 1)φ− iφ01]J`−m−1(t),

TH
z2 = πi`+m−2 exp[i(`+ m− 1)φ + iφ01]J`+m−1(t)− πi`−m exp[i(`−m + 1)φ− iφ01]J`−m+1(t),

TH
z3 = πi`+m exp[i(`+ m + 1)φ + iφ02]J`+m+1(t)− πi`−m+1 exp[i(`−m− 1)φ− iφ02]J`−m−1(t),

TH
z4 = πi`+m−2 exp[i(`+ m− 1)φ + iφ02]J`+m−1(t)− πi`−m exp[i(`−m + 1)φ− iφ02]J`−m+1(t).

Then, the evolution properties of the longitudinal energy flow can be easily obtained
according to Equation (4). Figure 5 shows the evolution properties of the longitudinal
energy flow in the focal plane (z = 0) when the incident vector beam is without a vortex
charge and the initial phase φ02 = 0. We can see that when the incident vector beam does
not possess a vortex charge and the polarization order equals 2, a negative on-axis energy
flow can be obtained, and it can be changed by modulating the initial phase φ02. When
the polarization order of the incident radially polarized beam is greater than 2, the on-axis
energy flow always is zero. Interestingly, we find that when the initial phase φ01 = π/2,
the energy flow is negative in these two cases. In fact, when the initial phase φ01 = π/2,
the incident beam possesses a linear polarization state, and its amplitude is modulated by
the sinusoidal function.
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` = 0. Rows (a) (m = 2) and (b) (m = 3) show the longitudinal energy flow’s evolution with initial
phase φ01 changing from 0 to π. (c) (m = 2) and (d) (m = 3) plot the longitudinal energy flow in the
focal plane.

Figures 6 and 7 show the evolution properties of the longitudinal energy flow in the
focal plane (z = 0) when the incident vector beam has a vortex charge and the initial phase
φ02 = 0. The vortex charge plays a key role in the appearance of the on-axis negative energy
flow. By comparison with the results shown in Figure 5, we can see that the on-axis negative
energy flow can be obtained when the vortex charge and the polarization order satisfy a
specific relation |`|+ 2 = m. It indicates that the sign of the vortex charge does not affect
the evolution property of the on-axis negative energy flow in the focal region. Obviously, if
the vortex charge takes a value of zero, the evolution of the on-axis negative energy flow is
consistent with the result shown in [18,19]. Meanwhile, the on-axis negative flow can be
modulated by changing the initial phase of the polarization state. This is because the initial
phase of the polarization state can change the distribution property of the spin angular
momentum and affect the spin–orbit coupling in the tight focusing of vector beams.
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Figure 6. Evolution properties of longitudinal energy flow Sz in the focal plane when φ02 = 0
and ` > 1. Rows (a) (` = 2, m = 4) and (b) (` = 3, m = 5) show the longitudinal energy flow’s
evolution with initial phase φ01 changing from 0 to π. (c) (` = 2, m = 4) and (d) (` = 3, m = 5) plot
the longitudinal energy flow in the focal plane.

Photonics 2023, 10, x FOR PEER REVIEW 8 of 9 
 

 

 
Figure 7. Evolution properties of longitudinal energy flow Sz in the focal plane when ϕ02 = 0. 
Rows (a) (ℓ = 2, m = 4) and (b) (ℓ = –2, m = 4) show the longitudinal energy flow’s evolution with 
initial phase ϕ01 changing from 0 to 𝜋. The longitudinal energy flow at ℓ < 0 is the same as that 
at ℓ < 0. 

4. Conclusions 
In this paper, we focused on the evolution of the on-axis negative flow in the tight 

focusing of radially polarized vortex beams. It was shown that, as with the polarization 
order of the incident radially polarized beam, the vortex charge also plays a key role in 
the appearance of the on-axis negative energy flow in the tight focusing of vector beams. 
It was demonstrated that the on-axis negative energy flow can be obtained in the tight 
focusing of a second-order radially polarized beam. Then, if the incident radially polar-
ized beams possess a vortex charge, when the vortex charge and the polarization order 
satisfy a specific relation, the on-axis negative energy flow can be obtained in the focal 
region. Furthermore, by modulating the initial phases of two polarization unit vectors, 
the on-axis negative energy flow can be well controlled. In fact, if the initial phases of the 
two polarization unit vectors are modulated simultaneously, the polarization state dis-
tribution is rotated in its entirety for high-order radially polarized beams. If the modula-
tion of the initial phases of the two polarization unit vectors is not synchronous, it means 
that both the polarization state and the amplitude of the incident radially polarized 
beam are modulated. Our work provides a more flexible modulation method for focal 
shaping, including the focal field intensity and optical angular momentum, and gives a 
potential technique to generate a customized focal field for optical manipulation and op-
tical micro-fabrication. 

Author Contributions: Conceptualization, H.L.; Software, R.C.; Formal analysis, T.S.; Investigation, 
Y.L.; Writing—original draft, R.C.; Writing—review & editing, H.L.; Supervision, H.L. and X.L. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (NSFC), 
grant numbers 11974101, 11974102. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Rosales-Guzmán, C.; Ndagano, B.; Forbes, A. A Review of Complex Vector Light Fields and Their Applications. J. Opt. 2018, 20, 

123001. https://doi.org/10.1088/2040-8986/aaeb7d. 
2. Zhan, Q. Cylindrical Vector Beams: From Mathematical Concepts to Applications. Adv. Opt. Photon. 2009, 1, 1–57. 

https://doi.org/10.1364/aop.1.000001. 
3. Khonina, S.N.; Karpeev, S.V. Grating-Based Optical Scheme for the Universal Generation of Inhomogeneously Polarized Laser 

Beams. Appl. Opt. 2010, 49, 1734–1738. https://doi.org/10.1364/ao.49.001734. 
4. Chen, J.; Wan, C.; Zhan, Q. Vectorial Optical Fields: Recent Advances and Future Prospects. Sci. Bull. 2018, 63, 54–74. 

https://doi.org/10.1016/j.scib.2017.12.014. 

Figure 7. Evolution properties of longitudinal energy flow Sz in the focal plane when φ02 = 0. Rows
(a) (` = 2, m = 4) and (b) (` = −2, m = 4) show the longitudinal energy flow’s evolution with initial
phase φ01 changing from 0 to π. The longitudinal energy flow at ` < 0 is the same as that at ` < 0.

4. Conclusions

In this paper, we focused on the evolution of the on-axis negative flow in the tight
focusing of radially polarized vortex beams. It was shown that, as with the polarization
order of the incident radially polarized beam, the vortex charge also plays a key role in the
appearance of the on-axis negative energy flow in the tight focusing of vector beams. It was
demonstrated that the on-axis negative energy flow can be obtained in the tight focusing
of a second-order radially polarized beam. Then, if the incident radially polarized beams
possess a vortex charge, when the vortex charge and the polarization order satisfy a specific
relation, the on-axis negative energy flow can be obtained in the focal region. Furthermore,
by modulating the initial phases of two polarization unit vectors, the on-axis negative
energy flow can be well controlled. In fact, if the initial phases of the two polarization unit
vectors are modulated simultaneously, the polarization state distribution is rotated in its
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entirety for high-order radially polarized beams. If the modulation of the initial phases of
the two polarization unit vectors is not synchronous, it means that both the polarization
state and the amplitude of the incident radially polarized beam are modulated. Our work
provides a more flexible modulation method for focal shaping, including the focal field
intensity and optical angular momentum, and gives a potential technique to generate a
customized focal field for optical manipulation and optical micro-fabrication.
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