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Abstract: For the first time, the synthesis, luminescent and structural properties of stable perovskite-
type (Cs1−xRbx)4PbBr6 (R = Cs, Rb) nanocrystals are shown. In the absence of rubidium, Cs4PbBr6

and CsPbBr3 perovskite crystals precipitate in the ZnO–Na2O–B2O3–GeO2 glass matrix. With
ascending rubidium content, the precipitation of (Cs,Rb)4PbBr6 nanocrystals is replaced by the
Rb4PbBr6 nanocrystals nucleation. Nucleated nanocrystals exhibit an intense green luminescence.
With an increase of the rubidium content, the luminescence maximum shifts to the blue region,
the luminescence quantum yield increases from 28 to 51%, and the average decay time increases
from 2 to 8 ns. Several assumptions have been made about the nature of the green luminescence of
perovskite-like Cs4PbBr6 and (Cs,Rb)4PbBr6 crystals in glasses. It is concluded that the most probable
cause is the impurity inclusions of CsPbBr3 and (Cs,Rb)PbBr3 crystals.

Keywords: perovskite quantum dots; cesium lead bromide perovskite; Rb-doping; Cs4PbBr6 quantum
dots; borogermanate glass

1. Introduction

About 25% of the world’s electricity demand is used for lighting [1]. White light-
emitting diodes, which are much more efficient than incandescent and fluorescent lamps,
are becoming more and more popular in order to reduce lighting energy costs. Using
semiconductor quantum dots in light sources, it is possible to achieve a good spectral
overlap between the sensitivity of the eye and the emission spectrum. Light emission can
also be adjusted to the desired hue [2].

By varying the halogen ions in perovskite CsPbHal3 nanocrystals, the luminescence
color of the material can be changed over the entire visible region. Since CsPbHal3 crystals
can be created both with one type of halogen ion, and with two at the same time, the
luminescence peak wavelength can be tuned with a very small spectral step by varying the
ratio of the corresponding halogens. By now, many works have shown the possibility of
obtaining mixed chlorine-bromine [3] and bromine-iodine [4,5] perovskite crystals, both in
solutions and in glass matrices. In addition, due to their relatively low energy of formation
and high resistance to defects, they can be easily synthesized with simple procedures at
much lower temperatures [6].

However, in addition to the halogen-ion replacement in perovskite crystals, the re-
placement of the alkali ion is also possible. Many studies have shown both complete and
partial replacement of cesium ions by rubidium and potassium ions in colloidal perovskite
nanocrystals of CsPbCl3 [7,8], CsPbBr2Cl [9], CsPbBr3 [10–12], and CsPbBrI2 [13]. There
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are much fewer similar works on the preparation of perovskite nanocrystals with mixed
alkali ions in glass, since the alkali ions in the glass structure play the role of the grid
modifiers and do not tend to enter the crystalline phase so actively. However, the prepa-
ration of Pb-crystals of perovskites CsPbBr3 [14] and K-doped crystals of CsPbI3 [15] and
CsPbBr3 [12] in zinc-borosilicate glass was shown. When a cesium ion is replaced by any
smaller alkali ion, a short-wavelength shift of the luminescence maximum occurs from
5 nm [15] up to 50 nm [14]. Structurally, the occurrence of Rb and K ions in CsPbBr3 crystals
is usually proved by reflection shifts in the diffraction pattern towards large angles relative
to the reflections’ position of pure CsPbBr3. However, all studies show a shift of diffraction
reflections by tenths of a degree with almost complete replacement of cesium ions by other
alkalis, which raises doubts that the substitution of alkali ions can have such a strong effect
on the luminescence location of nanocrystals.

Much controversy considers the fact that crystals of the A4PbX6 type have lumines-
cence in the visible region. The first works on growing and studying the optical properties
of perovskite and perovskite-like single crystals were published by Nikl et al. [16–19].
They showed that the electronic structure of Cs4PbBr6 was similar to the electronic struc-
ture of PbBr2 crystals. The exciton absorption bands in PbBr2 crystals were due to the
1s0→3p1 transition of the cationic Frenkel exciton [16] in Pb2+ ions [20]. The exciton absorp-
tion edge occurred at 310–330 nm, and the maximum exciton luminescence occurred at
360–380 nm. This is a spin-forbidden transition, which can be partially allowed due to
spin-orbit interaction. According to Schmitt [21], when potassium ions in the KBr:Pb2+

crystalline matrix were replaced by rubidium ions, the luminescence lifetime of lead ions
slightly increased, and the maximum luminescence band shifted to the red region. Ac-
cording to Nickl et al. [18,22], the lifetime of the main Pb2+ luminescence band in the
region of 360 nm was about several milliseconds. A similar luminescence lifetime was
found in Cs4PbCl6 crystals [23], which was correlated with the luminescence of isolated
Pb2+-emitting centers. The luminescence in CsPbCl3 crystals can be explained under the
assumption of Wannier–Mott exciton creation in the Pb2+ sublattice, possessing a lifetime
on the order of several nanoseconds [24] and subject to a strong quantum size effect [25].

Starting from 1995, various authors [26–29] have shown that when CsCl:Pb2+ crystals
were grown, CsPbCl3 aggregates spontaneously appeared in them, which had intense
narrow-band luminescence with short lifetimes. When works on Cs4PbBr6 crystals with
green luminescence appeared in the literature, debates about the nature of this luminescence
began [30–33]. Saidaminov et al. [31] reported the preparation of a highly luminescent
phosphor and claimed that the high-luminescence quantum yield (QY) originated from
PbBr6

4− octahedra in Cs4PbBr6. However, in perovskite, octahedra are corner-sharing,
and both 6s and 6p states of Pb participate in the construction of conduction and valence
bands. In Cs4PbBr6, the octahedra are isolated from each other, causing a discontinuity of
the electronic structure and an ultra-large Eg [34]. It was shown [35] that in the absorption
spectra of single crystals or crystalline films of Cs4PbBr6, in addition to the absorption
bands in the near UV region, a low-intensity absorption band at about 500 nm was observed,
which corresponded to the absorption of CsPbBr3.

It is assumed [36] that the structure of Rb4PbBr6 crystals will coincide with that of
Cs4PbBr6, and their absorption bands will also locate in the near UV spectral range with
the corresponding luminescence in the blue region corresponding to Frenkel excitons in
Pb2+ ions. However, single crystals or crystalline films of this composition have not been
reported so far. Only the preparation of Rb4PbBr6 crystals in the form of a shell on CsPbBr3
crystals has been shown [6], while Rb4PbBr6 crystals did not exhibit any characteristic
spectral properties, only increasing the luminescence stability of CsPbBr3 crystals.

Thus, this work shows the precipitation of (Cs,Rb)4PbBr6 nanocrystals in a boroger-
manate matrix glass upon equimolecular substitution of rubidium ions for cesium ions, and
the effect of this substitution on the luminescent and structural properties of nanocrystals.
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2. Materials and Methods
2.1. Material Synthesis

For the study, a series of borogermanate glasses with a composition of: 23.59 B2O3–
38.09 GeO2–6.41 Na2O–5.03 ZnO–1.38 P2O5–2.85 TiO2–4.99 K2O–5.41 × (1 − x) Cs2O–
(5.41 × x) Rb2O–2.26 PbO–9.98 Br mol.%, where x = 0; 0.25; 0.5; 0.75 (x is calculated from
the batch composition) was chosen. Glass was synthesized in an air atmosphere at a
temperature of 950 ◦C for 30 min. Perovskite nanocrystals were precipitated in the glass
matrix during fine annealing from 450 ◦C.

The studies of glass chemical composition were performed by X-ray fluorescence
spectroscopy (XRF) using an X-ray fluorescence spectrometer ARL PERFORM’X by Thermo
Scientific with Rh tube, 4.2 kW/60kV generator, FPC and Sc detectors (detectable chemical
elements: from oxygen to uranium). The study was performed at ambient temperature in
the vacuum atmosphere. The chemical composition was averaged over a sample area of
20 mm2.

2.2. Spectral Characterisation

UV-Vis-NIR absorption spectra were recorded using a Lambda 650 two-beam spec-
trophotometer (Perkin Elmer, Waltham, MA, USA) in the 300–900 nm range, with a step of
1 nm and an integration time of 1 s. Plane samples 0.2 mm thick, polished on both sides,
were used for the measurements.

Photoexcitation and photoluminescence spectra were obtained by spectrofluorometer
LS-55 (Perkin Elmer) in the 200–900 nm region with 1 nm step.

Absolute quantum yield was measured on an Absolute PL Quantum Yield Mea-
surement System C9920-02G, -03G (Hamamatsu, Hamamatsu City, Japan), consisting of
PMA-12 Photonic multichannel analyzer with a InGaAs sensor (200–950 nm range with
2 nm resolution), A10104-01 Integrating sphere unit, Monochromatic light source L9799-01
with a 150 W Xenon light source, and remote-controlled monochromator (250–950 nm
range, bandwidth from 2 to 5 nm).

Photoluminescence decay curves were measured at emission peak for each sample by
the time-correlated, single-photon counting (TCSPC) technique with a confocal microscope
NTEGRA Spectra, equipped with a 473 nm diode laser (40 ps pulse width, 20 MHz repeti-
tion rate) as an excitation source and a photomultiplier tube (PMT) as a detector. Excitation
light was focused on a sample surface by 10x objective (NA = 0.28) with average power
density 0.3 W/cm2.

2.3. Structural Characterisation

X-ray diffraction patterns were obtained using a Rigaku Ultima IV X-ray diffractometer
(Japan) at room temperature. The radiation from a copper anode with λ (CuKα) = 1.5418 Å
was used with the filter for a CuKβ radiation. The X-ray diffraction patterns were taken in
the 2θ/θ angle range from 18◦ to 36◦ in the Bragg–Brentano geometry with the scanning
speed of 0.25◦/min. In the experiment, the voltage across the tube was 40 kV, the current
was 40 mA, and the output power was 1.6 kW. The diffraction reflections were interpreted
using the ICDD PDF-2 diffraction database. For the calculation of the X-ray diffraction
patterns, the positions of the diffraction peaks were determined, and the relative integral
intensity was calculated.

3. Results
3.1. XRF Studies

In the process of glass synthesis, its real chemical composition begins to differ from
the chemical composition of the batch. Because of this, the XRF analysis was carried out,
the results of which are presented in Table 1. Since boron is too light of an element for the
XRF method, we assumed that its weight content in the glass composition remained the
same as in the batch. Based on this assumption, the glass composition obtained by XRF
measurements was recalculated and shown in Table 1. The actual ratio of the content of
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rubidium/cesium ions in the series of glasses under study was as follows: 0/1; 0.1/0.9;
0.3/0.7; 0.5/0.5.

Table 1. The calculated batch composition and the glass compositions according to XRF results (mol. %).

Components
Composition #2 Composition #3 Composition #4

Batch XRF Batch XRF Batch XRF

Na2O 6.65 3.67 6.65 3.33 6.65 5.11
Cs2O 5.59 11.12 3.74 6.9 1.87 3.58
Rb2O 1.86 1.52 3.71 2.8 5.57 4.18
ZnO 5.21 3.27 5.21 4.31 5.21 3.65
B2O3 24.46 27.75 24.46 26.84 24.46 25.45
GeO2 39.48 39.75 39.48 41.75 39.48 43.31
TiO2 1.77 0.85 1.77 1.59 1.77 2.6
PbO 1.92 3.94 1.92 4.25 1.92 3.57
K2O 3.96 1.77 3.96 1.99 3.96 2.58
Br 7.92 4.71 7.92 4.21 7.92 3.85

P2O5 1.18 1.66 1.18 2.02 1.18 2.12

Cs/Rb ratio 0.75/025 0.9/0.1 0.5/05 0.3/0.7 0.25/0.75 0.5/0.5

The volatility of halogens leads to a strong decrease in their concentration in the glass
composition despite the low-synthesis temperature. However, the remaining amount was
enough for the formation of perovskite nanocrystals in such a concentration that the glass
possessed high-intensity luminescence, which is presented below.

3.2. Structural Properties

The dimensionality degree of the perovskite materials is determined by the connec-
tions of the octahedral units. In Cs4PbBr6 crystals, the [PbX6]4− octahedral units are
completely isolated, which make these crystals a so-called “0D perovskite”; however, in
a strict approximation, these crystals do not have the perovskite structure. The CsPbBr3
crystal is the case of a three-dimensional perovskite with complete corner sharing octahe-
dra. The cations are situated in the voids created by the octahedral fragments. The spatial
arrangement of the lead-halide octahedra is largely influenced by the size of the A cation
and the A:B:X stoichiometry [37].

In Composition 1, the nucleation of CsPbBr3 (cubic Pm3m space group, a = b =
c = 5.95 Å [38]) and Cs4PbBr6 (trigonal, R-3c, a = 13.7216 Å, b = 13.7219 A, c = 17.3153 Å [39])
was obtained (Figure 1a). The Cs+ cations in Cs4PbX6 have split into two distinct sites [39].
The structure consists of alternating [PbX6]4− octahedra and Cs+(2) trigonal prisms that
share one trigonal face to form infinite [CsPbX6]n

3− chains perpendicular to the c axis.
These chains are joined together through six Cs+(1) cations, forming edge-sharing distorted
decahedra that are corrugated chains extending along the [001] direction [37].

The coexistence of both compounds has been reported before, in bulk and thin films,
as well as in nanometer-sized aggregates dispersed in a crystal lattice. CsPbBr3 NCs
embedded in the Cs4PbBr6 matrix with high PLQY and stability can be synthesized due
to good lattice matching [40,41]. Because of this, it is also rather difficult to prove the
production of a core/shell CsPbBr3/Cs4PbBr6 system, since the crystalline phases are more
likely to mix, forming a continuous solid solution [40]. However, in [42,43], it is argued
that the Cs4PbBr6 layer passivates and stabilizes the CsPbBr3 particles.

It is noted in [44,45] that the CsPbX3 impurity phase is likely unavoidable in melt-
grown Cs4PbX6 because of incongruent melting in its phase diagram. However, the reverse
situation (inclusions of Cs4PbBr6 in CsPbBr3 crystals) occurs much less frequently and in
those cases when the content of cesium in the composition is several times higher than the
content of lead [46].
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Compositions 2 and 3 contain a crystalline phase whose diffraction maxima occupy
exactly an intermediate position between the peaks of pure Cs4Pbbr6 and Rb4PbBr6 crystals
(Figure 1b,c), while in Composition 2, the reflections are closer to Cs4PbBr6, and in Compo-
sition 3, they are closer to Rb4PbBr6. Thus, due to the compression/stretching of the crystal
lattice, due to the introduction of alkali ions of smaller or larger diameters, respectively,
this led to a subsequent change in the lattice parameters. The introduction of rubidium
ions into pure cesium crystals shifts the diffraction maxima towards higher angles, due to
the lattice contraction with a smaller, alkali metal ion [6] by an average of 0.26◦ [47].

There is no unequivocal information on the formation of crystals of the A4PbX6 type
upon substitution of an alkali ion. However, there is information about the possibility
of the nucleation of crystals of the Cs4PbX6 type, where X = Br, I [48]. In [10,13], partial
substitution of Cs for Rb ions in crystals of the APbBr3 type is shown. At the same
time, the diffraction patterns in Figure 2b,c do not contain reflections corresponding to
CsPbBr3 crystals.

In Composition 4, the Rb4PbBr6 phase (trigonal R3c space group, a = 13.4 Å, b = 13.4 Å,
c = 16.56 Å) prevails (Figure 1d). The position of the diffraction peaks of these crystals
was determined purely theoretically, based on DFT calculations by Körbel et al. [36], since
Rb4PbBr6 single crystals have not yet been obtained. Wang and others [6] show the prepa-
ration of a CsPbBr3/Rb4PbBr6 system of the core/shell type. Confirmation of the crystals’
chemical composition and type was provided based on XRD data; however, the authors
themselves admitted that they could not fully prove that the resulting structures really
consist of a core/shell, and not of mixed crystalline inclusions. The glass diffraction pattern
also lacks peaks corresponding to RbPbBr3 crystals. RbPbBr3 was predicted, and the loca-
tion of diffraction peaks was calculated by Körbel in [36], but there is no evidence that such
crystals could be obtained experimentally in the form of a single crystal, microcrystalline
powders, or nanocrystals in an amorphous matrix.
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The average size of nanocrystals in the series of Compositions 2–4 is the largest for
Composition 2; therefore, the location of its luminescence band falls out of the tendency to
shift to the short-wavelength region with an increase in the rubidium content, which will
be shown below.
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3.3. Spectral Properties

Figure 2a demonstrates absorption spectra of the obtained glass with different rubid-
ium/caesium ions concentrations ratio. The spectra demonstrate exciton absorption in the
direct gap semiconductor crystal near 520 nm [4,5,7]. According to XRD data, all samples
contain a crystalline phase of the A4PbBr6 type, which is characterized by a large band
gap and a corresponding arrangement of absorption bands at wavelengths of 317 nm or
less. However, in our case, the concentration of the crystalline phase did not allow us to
resolve absorption bands in the near UV region for most glasses, except for Composition 1.
Perhaps, this confirms that there are Cs4PbBr6 absorption bands. This also affected on the
luminescence spectra of this composition, providing two close-locating bands (Figure 2b).
The insert in Figure 2a illustrates the change of the absorption edge location depending
on the Cs/Rb ratio. The main trend is that the edge shifts towards short wavelengths
while rubidium concentration increases. The luminescence peak location shows the same
behavior when shifting for 10 nm from Compositions 2 to 4. The inset in Figure 1b presents
the results of absolute quantum yield (QY) measurements, and its value increases up to
51% with the ascending Rb+ ions concentration.

The luminescence decay curves (Figure 3) were obtained at wavelengths corresponding
to the maximum of the emission band upon excitation at a wavelength of 473 nm. The
measured curves were fitted with a bi-exponential decay function. The parameters of
fitted curves are presented in Table 2, in which the short-lived component (τ1) is related
to the energy transfer to trap states, and the long-lived component (τ2) associates to the
exciton recombination transitions. For some applications of glasses doped with perovskite
nanocrystals, for example, scintillators, where the lifetime of emission plays an important
role but is not measured directly, one of the key characteristics is the average lifetime. The
average fluorescence lifetimes were calculated with the following equation:

τavg =
A1τ2

1 + A2τ2
2

A1τ1 + A2τ2
(1)

where Ai is the amplitude of component i, and τi is the lifetime of component i. The duration
of both components, as well as the average lifetime, grows with increasing rubidium content
up to 0.3, and presents small changes with further increase. The order of the obtained
lifetimes coincides with that of pure CsPbX3 [7,42] and mixed CsPbBr3/Rb4PbBr6 [6]
nanocrystals. For CsPbBr3/Cs4PbBr6 hybrid- or hetero-structures, the lifetime is several
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tens of nanoseconds [49,50]. The luminescence of lead ion impurities in alkali halide crystals
is on the order of several milliseconds [37].

Photonics 2023, 9, x FOR PEER REVIEW 7 of 11 
 

 

the energy transfer to trap states, and the long-lived component (τ2) associates to the ex-
citon recombination transitions. For some applications of glasses doped with perovskite 
nanocrystals, for example, scintillators, where the lifetime of emission plays an important 
role but is not measured directly, one of the key characteristics is the average lifetime. The 
average fluorescence lifetimes were calculated with the following equation: 𝜏௔௩௚ = 𝐴ଵ𝜏ଵଶ + 𝐴ଶ𝜏ଶଶ𝐴ଵ𝜏ଵ + 𝐴ଶ𝜏ଶ  (1) 

where Ai is the amplitude of component i, and τi is the lifetime of component i. The dura-
tion of both components, as well as the average lifetime, grows with increasing rubidium 
content up to 0.3, and presents small changes with further increase. The order of the ob-
tained lifetimes coincides with that of pure CsPbX3 [7,42] and mixed CsPbBr3/Rb4PbBr6 [6] 
nanocrystals. For CsPbBr3/Cs4PbBr6 hybrid- or hetero-structures, the lifetime is several 
tens of nanoseconds [49,50]. The luminescence of lead ion impurities in alkali halide crys-
tals is on the order of several milliseconds [37]. 

 
Figure 3. Fluorescence decay kinetics of perovskite glass with different Cs/Rb ratio. 

Table 2. Fluorescence lifetimes of perovskite nanocrystals in the studied glass-ceramics. τi—lifetime 
of i fluorescence component, τavg—average fluorescence lifetime, excitation wavelength λex = 473 nm. 

Sample A1 τ1 (ns) A2 τ2 (ns) τavg (ns) 
Cs1Rb0 34 1.25 0.45 9.32 1.97 

Cs0.9Rb0.1 11.82 1.60 0.66 11.22 4.31 
Cs0.7Rb0.3 5.44 2.01 0.74 14.30 8.05 
Cs0.5Rb0.5 5.51 2.03 0.74 13.14 7.20 

An increase in the luminescence lifetime upon the addition of rubidium ions to nano-
crystals can be associated with two main reasons. The first is the presence of defects in 
perovskite nanocrystals. Numerous works on the synthesis of perovskite nanocrystals 
have shown [4,5,7,12] that obtained ABX3 crystals have a defective structure. The incorpo-
ration of rubidium ions could relax structural defects or, as suggested in [7], create a pro-
tective passivation layer on the surface, reducing the defectiveness of the surface layers of 
nanocrystals. This would lead to a decrease in the contribution of the short-lived compo-
nent in the emission lifetime due to a reduction in the nonradiative channel for excitation 
transfer to crystal defects. The second reason is the presence of two types of crystals in 
Cs1Rb0 glass: emissive and non-emissive. According to XRD, the concentration of both 
types of crystals is of the same order, so the nonradiative relaxation channel from emissive 
crystals to non-emissive ones has a large contribution, and the luminescence lifetime for 
Cs1Rb0 glass is the shortest. When rubidium was added to the glass, only one kind of 
crystals was nucleated, which were emissive, and the channel of non-radiative energy 
transfer to non-emissive crystals ceased to contribute to the luminescence lifetime. There-
fore, when comparing Cs1Rb0 and Cs0.9Rb0.1 glass, the lifetime increased twice. 

  

Figure 3. Fluorescence decay kinetics of perovskite glass with different Cs/Rb ratio.

Table 2. Fluorescence lifetimes of perovskite nanocrystals in the studied glass-ceramics. τi—lifetime
of i fluorescence component, τavg—average fluorescence lifetime, excitation wavelength λex = 473 nm.

Sample A1 τ1 (ns) A2 τ2 (ns) τavg (ns)

Cs1Rb0 34 1.25 0.45 9.32 1.97

Cs0.9Rb0.1 11.82 1.60 0.66 11.22 4.31

Cs0.7Rb0.3 5.44 2.01 0.74 14.30 8.05

Cs0.5Rb0.5 5.51 2.03 0.74 13.14 7.20

An increase in the luminescence lifetime upon the addition of rubidium ions to
nanocrystals can be associated with two main reasons. The first is the presence of defects
in perovskite nanocrystals. Numerous works on the synthesis of perovskite nanocrys-
tals have shown [4,5,7,12] that obtained ABX3 crystals have a defective structure. The
incorporation of rubidium ions could relax structural defects or, as suggested in [7], create
a protective passivation layer on the surface, reducing the defectiveness of the surface
layers of nanocrystals. This would lead to a decrease in the contribution of the short-lived
component in the emission lifetime due to a reduction in the nonradiative channel for
excitation transfer to crystal defects. The second reason is the presence of two types of
crystals in Cs1Rb0 glass: emissive and non-emissive. According to XRD, the concentration
of both types of crystals is of the same order, so the nonradiative relaxation channel from
emissive crystals to non-emissive ones has a large contribution, and the luminescence
lifetime for Cs1Rb0 glass is the shortest. When rubidium was added to the glass, only one
kind of crystals was nucleated, which were emissive, and the channel of non-radiative
energy transfer to non-emissive crystals ceased to contribute to the luminescence lifetime.
Therefore, when comparing Cs1Rb0 and Cs0.9Rb0.1 glass, the lifetime increased twice.

4. Discussion

The nature of the green luminescence in the samples under study is not obvious.
APbX3 perovskite structure is characterized by corner-sharing [PbX6]4− octahedra with the
A+ cations filling the voids created by four neighboring PbX6

4− octahedra. In the A4PbX6
structure (A = Rb+, Cs+), the PbX6

4− octahedra are completely decoupled in all dimensions
and the optical properties of such crystals closely resemble those of individual [PbX6]4−

clusters that have been observed experimentally in halide salts doped with Pb2+ ions [32].
For Cs4PbBr6 crystals, weak luminescence was obtained in the region of 375–380 nm upon
irradiation in the excitation bands at 250 and 310 nm [19]. However, there is still no clear
idea whether Cs4PbBr6 crystals exhibit luminescence in the green region or not. At the
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moment, there are two main opinions on this issue. It was shown in [30,33,49] that since
CsPbBr3 NCs can have very high-PL quantum yields (PLQYs), up to 95%, only a very
small fraction of them can be enough to result in a green, CsPbBr3-like emission, even
if apparently no trace of CsPbBr3 can be found by X-ray diffraction analysis [30]. Based
on this, Cs4PbBr6 crystals do not exhibit luminescence in the visible region. On the other
hand, the authors of [46,51,52] showed by different methods the complete absence of the
CsPbBr3 phase, but the presence of intense luminescence in the green region. Based on
these cases, Wang and co-authors [53] even proposed a classification of Cs4PbBr6 crystals
into three types, according to the supposed nature of their luminescence (or its absence):
P-Cs4PbBr6 (pure nonemissive), D-Cs4PbBr6 (defective emissive), H-Cs4PbBr6 (hybrid with
CsPbBr3 emissive).

The main difference between emissive crystals in such a system was the presence
of impurities or defects. If the absence of CsPbBr3 in the system is confirmed by other
methods, but luminescence is present, then radiative transitions are carried out using
defects in Cs4PbBr6, such as Br vacancies, self-trapped excitons and others. The first
characteristic feature of defect luminescence is the absence of the quantum size effect on
it [39]. Thus, it is possible to check the reliability of this theory by synthesizing crystals with
different sizes. However, in later studies in glasses, it was shown that the luminescence of
Cs4PbBr6 crystals shifts with a change in their synthesis regimes (which directly affects the
average size of the crystals), and no CsPbBr3 crystals were found in the matrix. The second
characteristic feature of the defect-based luminescence is the lifetime of the order of one
hundred nanoseconds [43,45], while the luminescence of cubic perovskite crystals has a
lifetime of the order of several nanoseconds [40,42].

Thus, we can assume two possible sources of green emission.
The first assumption: We do have impurity crystals of the APbBr3 type, their number

is very small, so they were not detected by XRD, but their luminescence is large, so we still
notice it despite the small number and size. Rubidium ions are evenly distributed in the
glass; therefore, they are incorporated into the structure both of Cs4PbBr6, which is why we
see shifts in diffraction peaks, and of CsPbBr3, which is why the shift in the luminescence
band occurred. This theory is confirmed by the size effect and short luminescence life-
times. The increase in lifetime is explained by the following: the introduction of Cs4PbBr6
nanoparticles attached on CsPbBr3 NCs could improve emission lifetime by decreasing the
non-radiative energy transfer to the trap states, via controlling the trap density [30].

The second assumption: Optical properties of Cs4PbBr6 raised from the 6s2 Pb2+

cations electronic outer shell [39]. In [45], two UV-emission bands were found in Cs4PbBr6
nanocrystals attributed to different optical transitions related to Pb2+ ions that are occupying
Cs+ sites. The high-energy band is attributed to the allowed 3P1→1S0 optical transition of
the Pb2+ ion and the low-energy band is a consequence of the charge transfer state (D-state)
emission of the Pb2+ ion in the host lattice [19]. For these bands, the short component, τ1 of
0.04–0.15 µs, originates from the 3P1→3P0 transition as a non-radiative recombination, and
the long-lifetime component, τ2 of 1.10–1.41 µs, originates from the 3P1→1S0 transition as a
radiative recombination [47]. The self-trapped excitons appearing in the structure can create
additional low-energy levels in the bandgap of Pb2+ ions, from which radiative transitions
can occur, including those in the green region. In this case, the green luminescence may
have a defect nature, and its shift to the blue region with an increase in the rubidium
concentration may occur, since the created defect can be associated with an alkali ion.
For example, these are radiative transitions related to Pb2+ ions that are occupying partly
Rb+, partly Cs+ sites. Because the energy level of the defect increases, the time of non-
radiative relaxation to it decreases, which leads to a decrease in the contribution of τ1 in the
luminescence lifetime. However, this assumption does not look plausible because of the
obtained luminescence decay time, which for radiative transitions from trap states should
be of the order of 0.05 µs or more. In our case, the lifetime is units of nanoseconds, which
confirms the validity of the first assumption.
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5. Conclusions

The paper shows the spectral and structural properties of perovskite-type (Cs1−xRbx)4PbBr6
(R = Cs, Rb) nanocrystals in ZnO–Na2O–B2O3–GeO2 glass. In the absence of rubidium,
Cs4PbBr6 and CsPbBr3 perovskite crystals precipitated in the borogermanate matrix. With
ascending rubidium content, the precipitation of (Cs,Rb)4PbBr6 nanocrystals were replaced
by the Rb4PbBr6 nanocrystals nucleation. Nucleated nanocrystals exhibited intense green
luminescence. With an increase of the rubidium content from Cs0.9Rb0.1 to Cs0.5Rb0.5, the
luminescence maximum shifted to the blue region from 521 to 511 nm, the luminescence
quantum yield increased from 28 to 51%, and the average decay time increased from 2 to
8 ns. The nature of the green luminescence of perovskite-like (Cs,Rb)4PbBr6 and Cs4PbBr6
crystals in glasses is proposed based on two assumptions: hybrid- and defect-based the-
ories. The authors are inclined to the first assumption and the presence of perovskite
(Cs,Rb)PbBr3 and RbPbBr3 crystals in the glass as well.
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