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Abstract: With the continuous development of artificial intelligence technology, visible-light position-
ing (VLP) based on machine learning and deep learning algorithms has become a research hotspot
for indoor positioning technology. To improve the accuracy of robot positioning, we established a
three-dimensional (3D) positioning system of visible-light consisting of two LED lights and three
photodetectors. In this system, three photodetectors are located on the robot’s head. We considered
the impact of line-of-sight (LOS) and non-line-of-sight (NLOS) links on the received signals and used
gated recurrent unit (GRU) neural networks to deal with nonlinearity in the system. To address the
problem of poor stability during GRU network training, we used a learning rate attenuation strategy
to improve the performance of the GRU network. The simulation results showed that the average
positioning error of the system was 2.69 cm in a space of 4 m X 4 m X 3 m when only LOS links were
considered and 2.66 cm when both LOS and NLOS links were considered with 95% of the positioning
errors within 7.88 cm. For two-dimensional (2D) positioning with a fixed positioning height, 80% of
the positioning error was within 9.87 cm. This showed that the system had a high anti-interference
ability, could achieve centimeter-level positioning accuracy, and met the requirements of robot indoor
positioning.

Keywords: robot; visible-light positioning (VLP); three-dimensional (3D); line-of-sight (LOS) and non-
line-of-sight (NLOS) links; gated recurrent units (GRU) neural networks; learning rate decay strategy

1. Introduction

With the progress of human beings and the development of technology, the appli-
cation scenarios of robots have become more complex and diversified, and robots need
to complete more difficult and intelligent work. In order to improve the efficiency and
performance of robots, the positioning and navigation of autonomous robots are essential.
At present, wireless positioning technologies such as wireless local area networks (WLANSs),
Bluetooth, radio frequency identification (RFID), ZigBee, and ultra-wideband (UWB) are
commonly used for indoor positioning [1-5], but these wireless technologies generally
have disadvantages such as high electromagnetic radiation, high deployment costs, and
low positioning accuracy [6]. Compared with these wireless technologies, visible-light has
the advantages of abundant bandwidth resources, no electromagnetic pollution, and low
equipment costs, and it can achieve lighting and positioning at the same time. As a new
type of wireless positioning technology, visible-light positioning based on LED has become
a research hotspot in the field of wireless positioning [7].

In recent years, with the development of artificial intelligence, machine learning and
deep learning algorithms, with their strong self-learning and generalization abilities, have
become able to provide accurate positioning results in the context of VLP, and increas-
ing numbers of people have applied them to indoor visible-light positioning. Abu Bakar
et al. [8] use a weighted k-nearest neighbor (WKNN) algorithm for localization in a fin-
gerprint recognition technique based on received signal strength (RSS). The results show
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that the positioning accuracy of the WKNN algorithm is better than that of the multi-layer
perceptron (MLP)-based regressor. In addition to using a single ML algorithm, multiple
ML algorithms can also be used for fusion localization. Huy Q. Tran et al. [9] use a dual-
functional ML algorithm leveraging machine learning classification (MLC) and machine
learning regression (MLR) functions to improve localization accuracy under the negative
effects of multipath reflection. They use ML classification functions to divide the floor of a
room into two separate zones. Then, the regression function of the ML algorithm is used to
predict the position of the optical receiver. ML algorithms can also analyze and optimize
other parameters. Sheng Zhang et al. [10] use neural networks to reduce position offset
errors caused by uneven initial delay patterns of off-the-shelf LEDs. However, applying
ML algorithms in VLP also has limitations, as they often require propagation of near-ideal
behavior of the model and its parameters to perform well, and ML algorithms are too
data-dependent and require a lot of time to be measured offline. We can obtain the data set
by linear fitting, which can effectively reduce the offline measurement time. In addition, the
parameter settings in the ML algorithm have a great influence on the positioning results,
and the best model is not obtained frequently. Therefore, we need to call parameters or
process them using optimization algorithms.

At present, most work on indoor visible-light localization has focused on
two-dimensional positioning, assuming a fixed receiver height and ignoring positional
errors due to height variation [11-13]. In the future, robots will need to complete a variety
of difficult actions, so their positioning height cannot be limited, and they will require
accurate and reliable three-dimensional positioning covering indoor areas. However, some
3D visible-light positioning systems use hybrid algorithms [14-16], which greatly increase
the complexity of the system. In order to improve the accuracy of robot positioning and
reduce system complexity, we proposed a three-dimensional indoor visible-light local-
ization system based on a GRU neural network. We use three PDs as receivers and two
LED light sources as transmitters, each LED sends signals of different frequencies. The
signals collected by PD are filtered to obtain two signals of different frequencies. When
data is processed, it is usually processed sequentially, so the collected data can be con-
sidered a kind of sequential data. Recurrent neural networks are very efficient for data
with sequential properties, and can mine time series information from the data. The GRU
network is a variant of the recurrent network, which can automatically extract effective
features from experimental data, so as to obtain high positioning performance, and the
localization model structure is simple and converges easily. In this study, considering
the influence of LOS and NLOS links on the received signal strength, the GRU algorithm
was applied to a three-dimensional indoor visible-light positioning system; a fingerprint
database was established using the optical power value and position data received by the
PD and then substituted into the GRU neural network to train the model; and, finally,
the position information was predicted by the trained model, and the feasibility of the
proposed algorithm was proved by simulations. As far as we know, the traditional 3D VLP
positioning method requires the use of three or more LEDs to accurately position and does
not consider wall reflections [17,18]. In addition, they usually use multiple localization
algorithms in the selection of positioning algorithms, which makes the VLP system model
complex. Compared to these articles, our proposed VLP system uses only two LEDs and
a new receiver model, which is lower cost and easier to implement. We only use one
positioning algorithm to achieve accurate three-dimensional positioning, and the system
complexity is low. We analyze the influence of positioning height on the VLP system.

The rest of this paper is organized as follows: Section 2 describes the composition of
the visible-light localization system model. Section 3 describes the principles of the GRU
neural network. Then, in Section 4, the application of the GRU neural network for visible-
light localization is described. Finally, the positioning results are discussed in Section 5,
and the performance of the visible-light positioning system is analyzed.
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2. Visible-Light Positioning Model
2.1. System Model

The indoor visible-light localization model designed in this study is shown in Figure 1.
The room size was set to 4 m x 4 m x 3 m, and the corner of the room was used as the
origin to establish the Cartesian coordinate system of the space. We used two LEDs as
transmitters, placed on the ceiling, and each LED sent signals of different frequencies.

LED: LED:

Walls
Wall:
Wall

3m o

Wall:
PDs :‘_ 5 E PD: 4m

PD:

X 4m

Figure 1. Indoor visible-light positioning model.

To fully receive the signal sent by the transmitter, we used three PDs as receivers,
which were located in front of the robot’s head, on the left at the rear, and on the right at the
rear. The model structure of the robot head receiver is shown in Figure 2, which represents
the robot head as a hemispherical model, and the three PDs on the head and the top center
point are equidistant. In this robot head receiver model, the top center point O was used as
the test point; r is the radius of the hemisphere; | is the length of the arc between point O
and PD;; a;(i = 1,2, 3) is the azimuth angle of PDj; 6 is the central angle of the arc between
point O and PD;; and B(0 < B < 90°) is the elevation angle of PD;, which can be expressed
as the following.

B=0=1/r )

A 4

(a) Top view (b) Side view

Figure 2. Robot head receiver model structure.

Therefore, the relationship between the position (x;,y;,z;) of PD; and the position
(x0,Y0,20) of the top center point O is

X;i = X9 + LCOS(D(Z‘)
Yi = yo+ Lsin(a;) , €
zi =20 — H
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where L is the horizontal distance between point O and PDj, and H is the vertical distance
between point O and PD;. L and H can be expressed as the following.

L = rsin(B), (©)]

H =r(1—cos(B)). 4

2.2. Channel Model

The indoor visible-light channel model is shown in Figure 3 for the direct link model
and the reflected link model, respectively. For an LOS link model, the indoor optical signal
transmission link is short, so the attenuation of the optical signal caused by absorption and
scattering is small. However, for an NLOS link model, because the indoor walls, floors,
and other objects with reflection characteristics cause the diffuse reflection of the optical
signal, the optical signal transmission link becomes longer, increasing the attenuation of
the optical signal. Therefore, we considered the transmission of optical signals through
LOS and NLOS links. This not only conformed to the real-world environment but also
allowed further study of the adverse effects of reflection on system performance, making
the positioning system more reliable and practical.

LED & LED S

¢ dij
— Vi

llw/ i ¢
d

Wall i Wall
PD Yiov PD
(a) LOS link model (b) NLOS link model

Figure 3. Indoor visible-light channel model.

In the LOS link model, the relationship between the received power P;pg of the PD
and the LED transmitted power P; can be expressed as [19].

Pros = PtH10s(0), (5)

where Hj s (0) is the DC gain of the LOS link. Assuming that the LEDs obey the Lambert
radiation model, H; og(0) can be expressed as [20]

m+1)App m
Hy08(0) = {ﬁl; (@ITI3) cosly), Ofp v i;(/;ovl ©

where App is the effective receiving area of the PD; d is the distance from the PD to the LED;
m is the Lambertian emission order; ¢ is the emission angle of the LED; T () is the optical
filter gain; g(¢) is the gain of the optical concentrator; and ¢ and ¢roy are the incidence
and field-of-view (FOV) angles of the PD, respectively. m and g() can be expressed as [21]

In(2)
In(cos(¢1/2))’

m=—

@)
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I 0<y<
g(y) = {smzwpow =¥ =yrov, ®)
0, Y > Yroy

Hnios(0) =

where ¢/, is the semi-angle at half-power of the LED emitters, and 7 is the internal
refractive index of the optical concentrator. In this paper, two LEDs placed on the ceiling
were used as light sources, and three PDs placed on the hemispherical surface were used as
receivers. Each PD had a certain inclination angle, and the radiating angle cosine of the
LED and the incidence angle cosine of the inclined PD could be expressed as [22]

h
cos(¢p) = 7 9)
- —
UpD_LED " NpD (10)

COS(l[J) = H

— —
OpD_LED H HnPD

where /1 is the vertical height of the LED in relation to the PD; v prLED is the direction

vector from the PD to the LED; and n;D is the normal vector of the PD receiving surface,
which can be expressed as

npp = (cos(ar) sin(By), sin(a,) sin(B;), cos(B+)), (11)

where «, and j, are the azimuth and tilt angles of the PD, respectively. If the LED position
coordinates were (x¢, yt,z¢), and the PD position coordinates were (x;, yr, zr), then from
Equations (10) and (11) we could obtain the incidence angle cosine of the inclined PD to
receive LED light as follows:

cos(tp) = (xt — xy) cos(ay) sin(By) + (vt — yr) sin(a,) sin(Br) + (z¢ — z7) cos(,Br)‘ (12)

VG =50+ (e =10 + (2t — 2,)°

In a primary reflective NLOS link, the relationship between the received power Py1os
of the PD and the LED transmitted power P; can be expressed as

Pnros = PrHN1os(0), (13)

where Hny0s(0) is the DC gain of the primary reflected NLOS link, which can be expressed
as [23]

N App(m+1)paa

prg g 08" (91y) cos () cos () cos () Ts (9)8 (¥25), 0 < ) < Prov

0, P2 > Yrov

where N indicates the number of all reflective walls divided by AA as the area element; p
is the reflectivity of the wall; dy; is the distance between the LED and the wall reflective
element; dzj is the distance between the wall reflective element and the PD; ¢1j is the LED
emission angle; i;; and ¢,; are the incidence and emission angles of the wall reflective

(14)

element, respectively; and ; is the incidence angle of the PD. If the normal vector n;:,]- of
the wall reflecting element is

n;j = (cos(ay,j) sin(Bu,j), sin(ay,j) sin(Be,j), cos(Buw,j)), (15)
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where gy j and [Sw,]' are the azimuth and tilt angles of the wall reflector element, respectively,
then the cosine corresponding to ¢1;,11;,¢2/, and ¢, can be expressed as

hy;

cos(¢y;) = de»' (16)

cos ) = (xt — xuj) cos(ay,j) sin(Bu,) + (ve — yw,E,-ZLsin(aw,j) sin(Bu) + (21 = 20,) €05 (Bu) W)
cos (gn) = (xr — Xu) €08 (g ) sin (Bao) + (vr — Yo ézjsin(txwlj) sin(Bu,) + (2r — Zu,;) €08 (Buw)) ’ .
cos (i) = (xw,j — xr) cos(ay) sin(Br) + (Vuw,j — yr) sin(ar) sin(B;) + (zw,j — 2r) cos(Br) -

daj ’

where hy; is the vertical height of the LED in relation to the wall reflector element, and
(xw,j, Ya,jr Zu, j) are the position coordinates of the wall reflector element.

In the VLP system, each LED is installed in a vertical ceiling downward fashion, with
its half-power half-angle set to 30°, which means the amount of light that the ceiling receives
directly from the LED bulb is limited. We design the robot’s shell with a low-reflectivity
material, so we do not take into account the reflection of the robot itself. The receiver is
mounted on the robot’s head, and the reflection from the floor is blocked by the robot. In
addition, because the optical power reflected more than twice will be less than the noise
power, it can be ignored [24]. In this study, only the primary reflection of the four walls
of the room was considered, which can reduce the complexity of the light propagation
path. This is simpler for VLP system design and implementation. Compared with multiple
reflections, the transmission path stability of NLOS transmission is higher, and the signal
quality and stability are relatively better. The received power P, of the PD during the
transmission of the indoor LED light signal in the LOS link and NLOS link model could be
expressed as [25] the following:

Pr = Pros + Pnros- (20)

3. GRU Neural Network Model

As general recursion neural networks (RNNs) present the problems of long-term
dependence and gradient explosion [26], Hochreiter and Schmidhuber proposed the long
short-term memory (LSTM) neural network in 1997. This network contains input, for-
get, and output gates that control input, memory, and output values, respectively [27].
Therefore, the LSTM network can effectively solve the problem of gradient vanishing and
gradient explosion and is highly effective for large-scale problem processing; thus, it is
widely used. The GRU network was proposed by Kyunghyun Cho et al. in 2014. This is
a highly effective variant of the LSTM network [28], and the basic GRU unit structure is
shown in Figure 4.

Xt

Figure 4. The basic unit structure of the GRU.
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In a classical GRU network, the forward propagation equation at moment ¢ is as

follows:
re =0 (x¢ - Wex + hp_1 - Wy, + by), (21)
zt = 0 (X Way +hyq - Wy + b2), (22)
hy = tanh(x; - Wiy + (1 % hy_q) - Wiy + by,), (23)
he=(1—z¢) % hy_q + 2z % hy, (24)
yr = o(Wo - ht + bo), (25)

where - and * denote matrix multiplication and matrix dot product, respectively; W;x, Wy,
Waex, Wai, Wiy, Wiy, and W, are the hidden layer weights; b;, b, by, and b, are the hidden
layer biases; x; is the input at moment f; ©;_1 is the hidden layer output state at moment
t —1; ry and z; are the reset gate and update gate, respectively; h; is the candidate set state
at moment ¢; /iy is the hidden layer output state at moment ¢; y; is the output at moment ¢;
and o and tanh are activation functions. In general, ¢ is a sigmoid function, which can be
expressed as

1
=, 26
o) = 1 (26)
and tanh is a tangent function, which can be expressed as
eX X
tanh(x) = ——. 27
anh(x) = S @)

As with LSTM networks, GRU networks can also overcome the long-term dependency
problem of traditional RNNs; however, the GRU network integrates the input and forget
gates of the LSTM network into a single update gate, so the only two gates in the GRU
network are the reset and update gates. In Equation (21), the reset gate r; controls the extent
to which the hidden layer output state /;_; at moment ¢ — 1 is passed to the candidate set
h; at moment £. In Equation (22), the update gate z; determines the extent to which the
output state /1;_; at moment ¢t — 1 is carried to moment ¢. In Equation (23), the candidate
set state /1; uses the reset gate r; to store past information. This is because the output of
the reset gate will proceed through the sigmoid function, and each element in its output
matrix is between 0 and 1, so the reset gate will control the size of the gate opening; a value
closer to 1 indicates that more information is memorized. In Equation (24), the update gate
z¢ determines how much of the candidate set state information /z; at moment t and hy 1
at moment t — 1 will be retained, and the retained information is used as the output state
information /; of the hidden layer at moment t. For Equation (25), using the hidden layer
output state i; at moment ¢ as the output y; at moment ¢ is generally straightforward, i.e.,

Yt = hy. (28)

The output at time ¢ is passed to time ¢ 4 1 to continue forward propagation as the
input at time ¢ + 1.

We compared the commonly used recurrent neural networks, employing identical pa-
rameter settings. As shown in Table 1, ensuring prediction accuracy, the model complexity
of the GRU network is lower than that of the LSTM model, which not only reduces the
training parameters, but also accelerates the network training time.
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Table 1. Comparison of positioning algorithms.
Positioning Mean Squared Average Maximum Training Training
Algorithm Error Error (m) Error (m) Parameters Time (s)
SimpleRNN 0.08891 1.02182 1.99923 5475 147.86
GRU 0.00038 0.02666 0.75596 16,923 17291
LSTM 0.00045 0.03554 0.46776 21,675 234.57

4. Positing Process
4.1. Construction of Fingerprint Database

The robot moves in an indoor space area, and the maximum height during its activities
is uncertain. In this study, we took the average height of a person, 1.7 m, as the maximum
height during robot activity. Therefore, a volume of 4 m x 4 m x 1.7 m in the room was
used as the positioning space, divided into sections of 0.18 m x 0.18 m x 0.18 m. The
four vertices of each small square area after division were used as reference points, the
robot head receiver model was placed at each reference point, and the top center point
coincided with the reference point. We used three PDs to acquire optical signals and then
filtered them. Thus, we obtained two signals of different frequencies and calculated their
optical power values. Finally, we recorded the optical power value and position coordinates
obtained at the reference point in the fingerprint database. The fingerprint data at the k-th
reference point can be expressed as:

Fe=[Pa1 Paz Por P2 Po1r P X Yk 2z, (29)

where Py;i(i = 1,2,3;j = 1,2) is the optical power value of the j-th LED light source received
by the i-th PD at the k-th reference point, and (x, yk, zx) are the position coordinates at the
k-th reference point. Therefore, the VLP fingerprint database Fy;, could be constructed as

Fp=[F K - FN]T/ (30)

where N is the number of reference points.

After dividing the positioning space into 0.18 m x 0.18 m x (0.18 m sections, the data
obtained at the reference point were used as the training set. In addition, the positioning
space was divided into 0.24 m x 0.24 m x 0.24 m sections, and the data obtained at this
reference point were used as the test set. The training set was used to train the network
model and provide it with a predictive ability, and the test set was used to evaluate the
performance of the trained network model.

4.2. Data Preprocessing

GRU neural networks are very sensitive to input data, so we needed to normalize the
input data. This process involved mapping the input data onto the same dimension, so that
data of different dimensions had equal importance in the network. This not only improved
the speed of network convergence, but also eliminated the influence of dimensions on the
final result. We normalized the input data using

Xnorm = 7'/ 31)

where x is the input data for the training set, X, is the minimum value of all input data in
the training set, xmax is the maximum value of all input data in the training set, and x,orm
is the normalized input data.

In addition, the GRU network required three-dimensional tensor inputs, so the input
data needed to be converted into three-dimensional tensors before they were fed into the
network. The input of the network was the optical power data, so the power data needed
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to be converted into three-dimensional tensors. The converted k-th power data could be
represented as

L= [[Pa1 Paz] [P1 P2 [Pes1 Pes2)]- (32)

Then, the input data could be expressed as

I=[h L - L], (33)

where 7 is the number of input data, and the shape of input data is (n, 3,2).

4.3. Selection of Performance Indicators

We used the mean squared error (MSE) and root mean squared error (RMSE) to
evaluate the performance of the GRU network and VLP models.

The loss and evaluation functions of the GRU network model used MSE, which could
effectively represent the error between the predicted and actual output of the network.
In the process of neural network training, the gradient obtained by the loss function
was input into the optimizer for gradient descent, and then the network weight was
updated by backpropagation. We repeatedly trained the network to continuously improve
its predictive capabilities. Finally, the test set was substituted into the trained network
model for evaluation, and the network performance was evaluated by MSE. The MSE was
calculated as follows:

1N

€MSE = NZ%
1=

[(J?i —xi)? + (0 — i) + (& —Zi)z}/ (34)
where N is the number of sample sets, (x;, y;, z;) are the true values of the i-th sample point
of the sample set, and (£;,7;,2;) are the predicted values of the i-th sample point of the
sample set.

In the positioning process, the RMSE could better reflect the relationship between
the predicted and true positions, so the RMSE was used to calculate the VLP error. The
RMSE between the true and predicted coordinates of the k-th reference point could be
expressed as

e = \/(fk —x)? + (O — vi)® + (B —z)% (35)

where (xy, yx, zx) are the true coordinates of the k-th reference point in the test set, and
(Xk, Uk, 2x) are the predicted coordinates of the k-th reference point in the test set. Therefore,
the average positioning error was

e = — 2 €. (36)

4.4. Building the GRU Network Model

We used the Python 3.9 compiler for the experiments and Tensorflow 2.6 and the Keras
2.6 deep learning framework to build the GRU network models. When building a network
model, its initial weights are random, and so the predictions of the trained model differ
each time. Therefore, in order to achieve reproducible experimental results, we had to fix
the random seed before building the network model. In addition, in the process of network
model construction, one must manually configure the number of GRU network layers and
the number of neurons in the network layer. Furthermore, before training the network, one
must also set the hyperparameters, such as the learning rate, number of iterations, and
batch size. These parameters affect the complexity and performance of a model, so they
need to be set appropriately. Below, we present the comparison and analysis of different
hyperparameter values.

To explore the influence of the number of neurons on the accuracy of the model, we
compared the values at intervals of eight.
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As shown in Figure 5, the average positioning error was lower when the number of
neurons in the GRU network layer was 24. However, the complexity of the model also
increased when the number of neurons exceeded 24, and the average positioning error did
not change significantly with an increase in the number of neurons. Therefore, the number
of neurons in the GRU layer of the network model was set to 24.

0.14 ‘*l* Average positioning error‘

0.12 o

\
\
\
\
\
\
\ Y
N N
~ I

Average positioning error/m
> o o
i=3 (=3 —_
& 8 o=
1 1 1

Number of neurous

Figure 5. Average localization error for different numbers of neurons.

After settling on 24 network neurons, we analyzed the influence of the number of
GRU network layers on the model performance.

From Table 2, one can see that the mean squared error and average localization error
of the GRU network were smaller when the number of layers was two, and the model
performance was improved. Furthermore, as the number of network layers increased, the
error increased. When the number of layers is greater than two, increasing the number of
layers of the network requires assigning more weights and training time to the network,
which will lead to increased complexity of the network model and overfitting of the model,
reducing the accuracy of the model. Therefore, we set the number of layers in the GRU
network to two.

Table 2. The influence of the number of GRU network layers on the accuracy of the model.

Number of Network Layers Mean Squared Error Average Error (m)
1 0.00483 0.11334
2 0.00082 0.04432
3 0.00203 0.08636
4 0.00231 0.07098
5 0.00467 0.14691

The batch size is the number of samples selected for training at one time, and back-
propagation is performed by calculating the gradient of these samples, so it affects the
degree of optimization and speed of a model.

In this study, the compared batch sizes were 16, 32, 64, 128, and 256. From Table 3, one
can see that when the batch size was too small, the gradient of calculation was unstable
due to the paucity of samples, and the network did not easily converge, causing the model
accuracy to decrease. However, the network generalization ability was reduced when the
batch size was too large, though the network model error did not change significantly.
Table 3 also shows that the training time decreased as the batch size increased. According
to our comparative analysis, the model was more effective when the batch size was set
to 128.
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Table 3. The influence of batch size on the accuracy of the model.

Batch Size Mean Squared Error Average Error (m) Training Time (s)
16 0.00714 0.15795 2015.49
32 0.00143 0.08539 1036.73
64 0.00176 0.07599 617.59
128 0.00082 0.04432 388.47
256 0.00106 0.06665 247.98

Table 4 shows the effect of the learning rate on the model performance. The model
performance was more favorable when the learning rate was set to 0.01, and the decreasing
curve of the network loss function is shown in Figure 6.

Table 4. The influence of the learning rate on the accuracy of the model.

Learning Rate Mean Squared Error Average Error (m)
0.005 0.00091 0.04544
0.010 0.00082 0.04432
0.015 0.00151 0.07569
0.020 0.00193 0.08529
0.025 0.00724 0.18912
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Figure 6. Loss function decline curve.

Figure 6 shows that when the number of iterations was around 950, the downward
curve of the loss function was relatively flat, and there was no downward trend in subse-
quent iterations. To prevent overfitting and reduce training time, the maximum number of
iterations of the network set to 950.

During network training, the gradient descent was slow when the learning rate was
too small; thus, the training time needed to be increased to bring the model closer to the
local optimum. However, the gradient decreased quickly when the learning rate was too
large. Oscillation is easy in the later stage of training, but stabilization to local optimality is
not straightforward, and gradient explosion may occur. In order to ensure that the network
converged quickly at the beginning of training and more effectively at the end of training,
we proposed a strategy to adjust the learning rate dynamically. Thus, the learning rate
decay curve could be expressed as:

a

Ir(epoch) = 1+ exp(c(epoch — b))’ 37)

where epoch is the iteration number of network training, and 4, b, and c are set values,
satisfying a > 0, b > 0, and ¢ > 0. Here, a is the upper convergence boundary of the
learning rate decay curve, and the value of Ir(0) is a/ (1 + exp(—bc)) when epoch = 0. If
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exp(—bc) << 1,1r(0) is closer to a. Therefore, a can be regarded as the initial learning rate.
In this study, a = 0.01 was adopted. The value denoted as b is the inflection point of the
curve; Ir is larger in the interval of epoch € [0,b), so the gradient descent is faster and the
network converges rapidly. Additionally, [r decreases continuously after epoch = b, so the
gradient descent slows down, which effectively suppresses the gradient oscillation it the
late training period, and the network is more easily stabilized to the local optimum. The
component c is related to the decrease in the curve at the inflection point; the higher the
value of ¢, the faster the curve falls at the inflection point. Based on continuous testing,
the average positioning error was small when a = 0.01, b = 700, and ¢ = 0.02, and the
corresponding learning rate decay curve is shown in Figure 7.

0.010 Ir

0.008

0.006 4

Learning rate

0.004 4

0.002 4

0.000 T T T T T T T T T
0 100 200 300 400 500 600 700 800 900

epoch

Figure 7. Learning rate decay curve.

As shown in Table 5, the learning rate decay strategy proposed in this paper corre-
sponded to a higher VLP system accuracy, indicating that the method was effective.

Table 5. The effect of the proposed learning rate decay strategy and the learning rate setting of 0.1 on
the accuracy of the model.

Learning Rate Mean Squared Error Average Error (m) Training Time (s)
0.01 0.00075 0.04131 169.09
Ir 0.00038 0.02660 172.91

Therefore, the GRU network model was constructed according to the parameters
established above, and its structure is shown in Figure 8.

4P| GRU Layer |—>| GRU Layer |—>| Dense Layer |—>| Output Layer x
Input Layer 4>| GRU Layer |—>| GRU Layer |—>| Dense Layer |—>| Output Layer y
4>| GRU Layer |—P| GRU Layer |—>| Dense Layer |—P| Output Layer z

Figure 8. Structure of the GRU network model.

The model contained an input layer and three output layers, that is, the power data
were input into the network, and the output comprised three coordinates. The hidden layer
used three identical network structures, each containing two GRU network layers. In order
to transform the data format of the GRU layer output into the final output data format,
a dense layer was added before the output layer, and the network model parameters are
shown in Table 6.
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Table 6. GRU network model parameters.

Parameter Value
Number of neurons in the GRU layer 24
Number of neurons in the dense layer 1
Batch size 128
Number of iterations 950
Learning rate Equation (37)
Optimizer Adam

5. Simulation Results and Analysis

To verify the localization performance of the proposed algorithm, a simulation envi-
ronment was built according to the indoor visible-light localization model in Figure 1. We
placed the hemispherical surface receiver model at each reference point in the positioning
space and used three PDs on the hemispherical surface to acquire the signals sent by the
two LEDs. The simulation parameters are shown in Table 7.

Table 7. Main parameters of simulation experiment.

Parameter

Value

Room size (length x width x height)

4mx4m x 3m

Height of positioning space 0-1.7m
(Training, testing) partition (0.18,0.24) m
LED position (x, y, z) (1,2,3);3,2,3)
LED semi — angle at half — power (¢ ,7) 30°
Amplitude of LED signal 10V
Frequency of LED signal 4 KHz and 5 KHz
Effective area of PD (App) 10~* m?2
Azimuth angle of PDs (a1, a3, a3) 0°,135°, 225°
Radius of the robot receiver model (r) 0.15m
Arc length from PD to the top center point (I) 0.05m
Gain of optical filter Ts(yp) 1
Refractive index of optical concentrator (1) 1.5
FOV of PD (l,bpov) 90°
Refractive index (p) 0.8
Reflection surface element area (AA) 0.0225 m?
Filter sampling frequency 15 KHz
Type of filter Butterworth bandpass filter

In the simulation, the LED emitted a cosine AC signal, and to ensure that the LED
communicated while achieving normal lighting, we added a DC bias to the LED signal.
At the receiving end, the phase of the AC signal received by the PD was related to the
transmission path of the signal, and the phase of the received signal differed each iteration.
To be realistic, a phase shift of kT was implemented for the LED emission signal in the
simulation, where k € [0,1) is a randomly generated value and T is the LED emission
signal period.

We obtained the simulated fingerprint data from the VLP model, and the sizes of the
training and testing sets were 5290 and 2312, respectively. The training set was substituted
into the GRU neural network to train the model, and after the training was completed,
the testing set was substituted into the trained model to predict the position. The three-
dimensional positioning predicted using the GRU network model for the LOS link and
LOS + NLOS link scenarios is shown in Figure 9.
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(a) LOS link (b) LOS + NLOS link

Figure 9. Three-dimensional positioning predicted by GRU model.

Figure 9a,b show that as the positioning height increases, the deviation of the predicted
location point from the actual location point increases. The positioning results in the corners
are relatively poor. In addition, by comparing the positioning results in the z-axis direction
of the LOS link and the LOS + NLOS link at a positioning height of 1.68 m, we find that the
positioning results in the LOS + NLOS link are better.

Table 8 shows that the average localization error of the VLP model was 2.69 cm when
only the LOS link case was considered, while the average localization error was 2.66 cm
when both the LOS and NLOS link cases were considered. Figure 10 indicates that 95% of
the positioning error was within 7.88 cm, showing that the model achieved centimeter-level
positioning accuracy and met the needs of indoor positioning for robots.

Table 8. Performance comparison of 3D indoor visible-light localization models under different links.

Link Mean Squared Error Average Error (m)
LOS 0.00045 0.02687
LOS + NLOS 0.00038 0.02660
——1L0S
~—+ LOS+NLOS|
1.0+
o 95%
0.8 4 )
o, 06 - -
5] /

0.4 4

0.2 4

o0 002 00r  0ds

o0 o1z on ole

Pos

004 =

Position error(m)

Figure 10. Cumulative distribution of positioning errors for LOS and LOS + NLOS links in 3D
visible-light positioning system.

In the study, we used the same GRU network structure to make separate predictions
for x, y, and z coordinates. To study the GRU network’s prediction of x, y, and z coordinates,
we analyze each coordinate error distribution separately. As can be seen from Figure 11,
90% of the errors in LOS + NLOS links are within 0.0265 m. Among them, the error in
predicting the x-coordinate is the largest. As can be seen from Figure 1, the arrangement of
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LEDs in the x-axis direction has a greater influence on the optical signal received by the
receiver.

0.0265

1.0 4 BB & 4 u
i 90%

0.8 e x
ey

A7

0.6

CDF

0.44

0.2 4

0.0

T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

Error (m)

Figure 11. Cumulative distribution of errors for predicting three coordinates in a LOS + NLOS link.

To analyze the influence of the height on the accuracy of the model, we compared the
two-dimensional positioning errors of the planes corresponding to different positioning
heights. Table 9 shows the average and maximum positioning errors corresponding to
the two-dimensional planes with the receiver placed at different heights under the LOS
and LOS + NLOS link scenarios. When the positioning height was 0.24 m, the average
positioning error of the model was the smallest for both LOS and LOS + NLOS links: the
minimum values were 1.32 cm and 1.34 cm, respectively, and the maximum errors were
8.72 cm and 6.9 cm, respectively. However, when the positioning height was 1.68 m, the
average positioning error of the model was the highest for both LOS and LOS + NLOS
links, with maximum values of 7.75 cm and 7.84 cm, respectively, and maximum errors of
101.65 cm and 75.6 cm, respectively.

Table 9. Comparison of 2D positioning errors at different positioning heights for LOS and LOS +
NLOS links.

. LOS LOS + NLOS
Height (m)
Average Error (m) Maximum Error (m) Average Error (m) Maximum Error (m)

0 0.01672 0.08093 0.01771 0.08095
0.24 0.01324 0.08719 0.01347 0.06899
0.48 0.01420 0.08867 0.01384 0.09652
0.72 0.01752 0.13633 0.01614 0.14298
0.96 0.01976 0.23178 0.01946 0.22707
1.20 0.02436 0.22531 0.02308 0.24067
1.44 0.03169 0.18135 0.03071 0.18333
1.68 0.07747 1.01654 0.07839 0.75597

Figure 12 shows that 80% of the positioning errors were within 9.87 cm for different
positioning heights under the LOS link and LOS + NLOS link scenarios, and 80% of the
positioning errors were within 3.44 cm for positioning heights below 1.44 m. Moreover,
the CDF curve of the positioning error produced by the proposed algorithm for the LOS
and LOS + NLOS link scenarios was small, which indicated that the algorithm had a good
generalization ability and robustness for locating different links. Therefore, we will only
discuss the positioning results for LOS + NLOS links.
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Figure 12. Cumulative distribution of two-dimensional positioning errors at different heights.

Figure 13 shows that when the positioning height was low, the errors were basically
the same. When the positioning plane increased to a certain height, the positioning error
also increased, and when the positioning height increased from 1.44 m to 1.68 m, this trend
was more obvious. An analysis of Equations (15) and (27) reveals that the positioning error
was mainly due to measurement errors related to the dc gain H;ps(0) and Hnros(0) of the
channel. When the positioning height increased, the emission angle of the LED light source
also increased, and, according to Equations (4) and (12), this led to the higher attenuation
of the optical signal, thereby increasing the error of the optical signal received by the PD
and reducing the positioning accuracy.
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Figure 13. Comparison chart of 2D positioning results on different positioning heights under
LOS + NLOS link.

6. Conclusions

We proposed an indoor visible-light three-dimensional positioning system based on a
GRU neural network that solved the problem of the low positioning accuracy of existing
robots. After the GRU network model was established, a learning rate attenuation strategy
was proposed to improve the performance of the GRU network. A receiver placed on the
robot’s head was used to collect optical power data and then predict position coordinates
from the trained GRU neural network. The experimental results showed that the average
3D positioning error was 2.69 cm when considering only LOS links, while the average
error was 2.66 cm when considering LOS and NLOS links at the same time, and 95% of
the positioning error was within 7.88 cm. For two-dimensional positioning with a fixed
positioning height, 80% of the positioning error was within 9.87 cm. When the positioning
height was 0.24 m, the average positioning error of the model under LOS and LOS + NLOS
link scenarios was 1.32 cm and 1.34 cm, respectively. Therefore, the proposed method could
achieve centimeter-level positioning accuracy to meet the needs of indoor robot positioning.
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