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Abstract: Laser Direct Writing (LDW), also known as 3D multi-photon laser lithography of resins, is
a promising technique for fabricating complex free-form elements, including micro-optical functional
components. Regular organic or hybrid (organic–inorganic) resins are often used, with the latter
exhibiting better optical characteristics, as well as having the option to be heat-treated into inorganic
glass-like structures particularly useful for resilient micro-optics. This work is a continuation of our
SZ2080™ calcination development of micro-optics, specifically studying the Laser-Induced Damage
Threshold (LIDT). Such sol–gel-derived glass 3D micro-structures, particularly those that undergo
heat treatment, have not been well-characterized in this respect. In this pilot study, we investigated
the LIDT using the Series-on-One (S-on-1) protocol of functional micro-lenses produced via LDW
and subsequently calcinated. Our results demonstrate that the LIDT can be significantly increased,
even multiple times, by this approach, thus enhancing the resilience and usefulness of these free-
form micro-optics. This work represents the first investigation in terms of LIDT into the impact
of calcination on LDW-produced, sol–gel-derived glass micro-structures and provides important
insights for the development of robust micro-optical devices.

Keywords: laser-induced damage threshold (LIDT); 3D micro-optics; laser direct writing; multi-
photon lithography; SZ2080™; calcination; thermal treatment; polymers; glass

1. Introduction

The field of laser multi-photon lithography, also known as Laser Direct Writing (LDW),
is witnessing rapid progress [1], with an increasing number of micro-optical devices [2]
being produced at the micro-scale. These devices include conventional [3] and Fresnel
micro-lenses [4], holographic elements [5], polarization-controlled lens arrays [6], meta-
optics [7], and multi-component systems [8], most notably, micro-objectives [9], non-linear
excitation imaging systems [10], as well as anti-reflective-coated complex systems [11].
Furthermore, grayscale lithography has been utilized to create step-free micro-lens systems
either by using increased resolution [12] or variable laser fluence [13]. The LDW method
may also be used as an alternative for “classic” lithography, especially flexible maskless
diffractive imaging systems [14]. Furthermore, precise systems such as microfluidic devices
with complex geometries and high aspect ratios [15], as well as actively tunable photonic
crystals with sub-micron features [16], also benefit from LDW.

Distinct benefits of the LDW method are its <200 nm resolution [17]; the ease of
manufacturing compared to traditional methods in the micro- and nano-scale; the vast
availability of organic and hybrid resins; and various post-processing steps, such as optical
coating deposition [11] and calcination into inorganic glass [18–20]. However, one problem
that has been often overlooked with micro-optics produced by LDW is their laser-induced
damage threshold (LIDT) behavior. This can pose a significant limitation for applications
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that involve modern high-intensity pico- and femtosecond pulses since high LIDT is not
always guaranteed.

Classical measurement of LIDT for coating (thin film) and bulk objects is standard-
ized [21] and industrially beneficial; however, it is rarely utilized for LDW-fabricated
elements. Several attempts have been made to measure such elemental LIDT, and the
results have shown variations based on various factors, such as the resin type used (organic
or hybrid) [22–24], the presence of a photo-initiator (PI) [25], and the type of structure pro-
duced, whether it is a thin-film [24] or bulk object [26] or a free-form device [27,28]. While
some methods can increase LIDT, such as using resins without PI [29] or a less organic
composition [30], we propose an alternative approach. We aim to create purely inorganic
structures using a heat-based post-processing method (calcination) while retaining the
benefits of the LDW method [31].

For hybrid prepolymers such as SZ2080™ [32], calcination above 1000 °C results in
an inorganic composite glass or glass–ceramic phase while retaining the printed geometry
with homogeneous and repeatable shrinking [33]. It is often assumed that transparent
glassy structures should feature higher LIDT values and, therefore, must be more resilient to
high-intensity radiation, but this idea has not been tested before [27]. However, highly me-
chanically resilient silicon oxycarbide structures have already been fabricated by utilizing
calcination [34].

In this paper, we aim to fabricate suspended and functional structures—namely, micro-
lenses—heat-treat them, and confirm the useful increase in LIDT. Figure 1 illustrates the
process and the resulting structures.

Figure 1. The experimental principle: (a) the fabrication of the test lens structure in resin, (b) heat
treatment of the structure and compliant columns, (c) the exposure of the structures to measure the
LIDT values. Represented here: delocalized LIDT regime and an array of micro-lenses tested.

2. Fabrication

To produce the lenses, we used the low-shrinkage organic–inorganic prepolymer
SZ2080™ [35]. The preparation and exposure conditions (Figure 1a) were selected following
the methodology reported in [35], using a 63x 1.4 NA Plan-Apochromat immersion oil
objective (Zeiss), 517 ± 10 nm wavelength, and 144 fs pulse duration with a repetition rate
of 76 MHz. Scanning speed was set to 2000 µm/s utilizing Aerotech IFOV technology;
beam intensity was −0.4 TW/cm2. Development was carried out in Methyl isobutyl
ketone for 15 min. The lenses were printed on a quartz substrate, with the final baseline
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geometry being a plano-convex, 50 µm diameter, 300 µm focal length lens with a thickness
of approximately 2 µm. To support the lenses above the quartz substrate, pillars were
printed with an inclination angle of 35° [33] and a total height close to 30 µm, giving us
pristine non-calcinated (NCA) lenses. Heat treatment was performed at 1100 ◦C with a rise
time of 12 h and held for 3 h, resulting in calcinated (CA) lenses. Transitional reactions with
the ambient atmosphere and carbon-induced darkening are expected at around 500–600 ◦C.
The final transparent phase, characterized in this work, is generated at the highest treatment
temperature. (Figure 1b overviews the calcination transition).

3. LIDT Metrology

Non-calcinated (NCA) and calcinated (CA) samples were qualitatively examined
and exposed to the probe beam in damage tests in an array form (Figure 1c). Qualitative
characterization of their ability to form an image of an object placed under microscope
illumination was performed in a bright-field microscope to confirm their imaging function
before and after LIDT measurements. See Figure 2a for the illustrated concept. The imaging
function was used to confirm the occurrence of significant and catastrophic damage events
(Figure 2b–e). After, they were characterized using a Scanning Electron Microscope (Model
Hitachi TM1000 SEM, Figure 3).

Figure 2. Optical characterization of micro-optics using an inverted microscope: (a) image of the
surface of the optic components, (b) an image of the focal position (300 µm) of the same micro-optics,
(c) bright-field image after LIDT testing, (d) degradation in image quality in the focal position of
damaged lenses, (e) bright-field image after calcination and LIDT testing.

Tests were performed on arrays of micro-lenses. Arrays, mainly composed of 16 lenses,
were divided in half to account for damage experiments for NCA (reference) and CA (test)
micro-optics. Tests were performed in the following sequence: an array of lenses was
printed; half of the lenses were exposed before calcination; then, the array was calcinated
as described previously; and finally, the second half of the lenses was exposed. The laser
system parameters used for all experiments were as follows: wavelength λ1 = 1030 nm and
λ2 = 515 nm, repetition rate f = 200 kHz, pulse duration τ = 300 fs, Plan-Apochromat Zeiss
20x objective (0.8 NA). S-on-1 damage tests [21] were performed with both wavelengths,
exposing the lenses for 50 ms and 5 s, corresponding to 10,000-on-1 and 1,000,000-on-1
pulses.

S-on-1 testing was applied in two regimes (as illustrated in Figure 3f) by varying the
applied beam diameter. The first regime is referred to as a local-damage protocol, where
the beam diameter is around 4 µm (1/e2 intensity level) on the sample. The second regime
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is referred to as delocalized, where the probe beam diameter is 20 µm, attained by shifting
the (relative to the lens) focus position of the laser beam. The delocalized regime was used
to demonstrate the expected behavior where the full aperture of the lens is used, such as
in high-intensity focusing, while the local regime shows the behavior of a highly focused
laser beam on the optics themselves.

Figure 3. SEM micrographs of micro-lenses, illustrating the typical damage morphologies observed:
(a) image of a pristine (untested) NCA lens, (b) local damage regime-tested NCA lens, (c) delocalized
damage regime-tested NCA lens, (d) localised and delocalised regime laser spot diameter representa-
tion, (e) local regime-tested CA lens, (f) delocalized regime-tested CA lens. Tracks are formed around
the damage sites for easier visualization.

4. Results
4.1. Morphology

The morphology of the observed damage is depicted in Figure 3. It shows an example
of a pristine lens (Figure 3a) with a diameter of 50 µm that shrinks to 30 µm (40% shrinkage,
expected and matching [33]) after calcination. The localized damage regime results in
small (<1 µm) damage sites, while the delocalized-damage regime produces large (approx.
10 µm) damage sites for NCA lenses (Figure 3b). The latter results in catastrophic damage,
as most of the aperture becomes distorted and the lenses lose their imaging function.
However, CA lenses, as shown in Figure 3d,e, retain their imaging function and exhibit
small-diameter ablation sites similar to those produced by fs-laser surface ablation [36].
The morphology does not vary significantly depending on the wavelength used. The only
observed difference for NCA lenses is the prominent brown discoloration, particularly for
λ = 1030 nm. Previous research by Jonusauskas et al. [37] had concluded that the damage
mode of non-calcinated SZ2080™ structures in the femtosecond regime is volume heat
accumulation. By its nature, SZ2080™ should have a similar heat conductance to other
hybrid polymers such as PDMS ([38], 0.2 W/m*K) or Ormocomp (0.4 W/m*K estimated
from [39]). It was suggested that better heat load mitigation might increase LIDT. Butkute
et al. [27] explained the phenomena as Coulomb explosion-driven dielectric breakdown.
In both cases, calcinated Si-Zr glass micro-structures excel in LIDT by potentially having
better heat transfer characteristics (SiO2-ZrO2 composites [40] 1 to 3 W/m*K). In addition,
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the minimum bond energy for Si-O (89 kcal/mol) bond in glass is higher than for C-C
(80 kcal/mol) or C-O (79 kcal/mol) bonds that constitute the weaker link [41].

4.2. LIDT Values

Figure 4 presents results of LIDT measurements, which include a combination of
localized and non-localized damage regimes for NCA and CA lenses, as well as exposure
to 104-on-1 and 106-on-1 pulses at 515 and 1030 nm wavelengths. The LIDT of NCA lenses
at the localized regime was measured to be F = 0.12–0.17 J/cm2 and F = 0.6–0.8 J/cm2

at 515 and 1030 nm, respectively. The delocalized regime resulted in LIDT values of
F = 0.07–0.08 J/cm2 and F = 0.28–0.31 J/cm2.

Figure 4. Damage threshold measurement results for (a) localized damage protocol, (b) non-localized
damage protocol.

The results show that local regime LIDT values in calcinated micro-optics exhibit the
highest increase. Using a 300 fs laser pulse duration at 1030 nm, a 3-fold increase in the
laser-induced damage threshold was observed, from F = 0.6–0.8 J/cm2 to F = 2.3–2.7 J/cm2.
This increase was the highest among all measured values and was consistent across the
entire exposure duration range from 50 ms to 5 s. The use of a second harmonic (515 nm)
resulted in the highest percentile increase in measured LIDT, with a 6-fold increase in LIDT
observed across all exposure durations, from F = 0.12–0.17 J/cm2 to F = 0.8–0.9 J/cm2.

However, when exposed in the delocalized regime, with an increased exposure area
on the CA lens compared to NCA counterparts, a decrease in measured damage thresholds
is observed. For the 1030 nm wavelength, the effect of calcination was less pronounced,
with only a 1.5 times increase in LIDT observed from F = 0.28–0.31 J/cm2 for NCA to
F = 0.38–0.47 J/cm2 for calcinated lenses, while a 515 nm wavelength exhibited a 2.7 times
increase in LIDT—from F = 0.07–0.08 J/cm2 for NCA to F = 0.19–0.21 J/cm2 for CA lenses.
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5. Discussion

The results provided above are interesting in multiple ways. To begin with, the LIDT
values for NCA localized damage regimes were consistent with previously reported scien-
tific data, with F1030 = 0.57 J/cm2 and F515 = 0.13 J/cm2 [24,25,30]. Secondly, the reported
CA values exceed all known previous observations for NCA SZ2080™, consistently and
regardless of irradiation area or testing process. Our findings demonstrate a significant
increase in damage threshold, reaching a 3-6 times increase as a conservative estimate,
which supersedes all measured values before. The maximum measured LIDT value at
λ = 1030 nm is F = 2.74 J/cm2, which is relatively large and approaches the level of fused
silica [26] F = 3.11 J/cm2.

In contrast, the LIDT measured using the non-localized regime is lower compared to
known reported values [24,25,30]. The previous experiments that employed S-on-1 damage
testing protocols only exposed the samples to up to 1000 pulses. The current tests featured
at least by an order larger pulse amounts (104-on-1 and 106-on-1 protocols). Therefore,
current measurements of the degradation effects in time offer a novel insight into calcinated
hybrid polymer fatigue behavior.

6. Conclusions

In this study, we have reported laser-induced damage threshold measurements of
SZ2080™ material after calcination for the first time. Our findings demonstrate a signifi-
cant increase in damage threshold, reaching 3–6 times as a conservative estimate, which
supersedes all measured values before. These results are promising, as they suggest that
the LDW method combined with heat treatment can offer a technologically viable pathway
to producing optical-grade glass-level performance in micro-optical elements for use in
harsh environments in visible and IR wavelengths, as previously postulated.

As this pilot study covers only femtosecond LIDTs, further research is needed for other
significant regimes, such as the nanosecond and continuous-wave damage tests. In sum-
mary, our findings contribute to the field by providing new insights into the performance
of SZ2080™ material after calcination and offer exciting possibilities for the development
of high-performance micro-optical elements. Furthermore, increased LIDT usually results
in an increase in the optics’ useful lifetime, particularly useful in femtosecond applica-
tions [42]. Finally, increased fluence pump sources may be utilized in Glass-on-Glass [43]
LDW fabricated micro-lasers, consisting of high-resilience polymers [44].
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Abbreviations
The following abbreviations are used in this manuscript:

LIDT Laser-Induced Damage Threshold
LDW Laser Direct Writing
S-on-1 Series-on-One
PI Photo-Initiator
CA Calcinated
NCA Non-Calcinated
SEM Scanning Electron Microscope
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