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Abstract: Free-form surfaces have good aberration correction capability and balance capability for
nonrotationally symmetric imaging systems. In this study, we analyzed the quantitative relationship
between X–Y polynomial combination and aberration for the efficient design of X–Y free-form optical
systems. The purpose of this study was to provide an exhaustive design method for off-axis triple
inverse optical systems with X–Y free-form surfaces. Finally, we designed a free-form off-axis optical
system with a large field of view (FOV) and low distortion based on the off-axis triple inverse optical
system without an intermediate image plane. The primary mirror (PM) of the system adopted an X–Y
polynomial free-form surface to correct the aberration of different FOVs of the system and improve
the image width and quality. The optical system had a focal length of 1000 mm, an F-value of 9.5,
an FOV angle of 23◦ × 1◦, a maximum distortion grid in the FOV less than or equal to −0.05%, and
a full-field average wave aberration better than 0.055 λ (λ/18.2, λ = 632.8 nm). The analysis of the
design results showed that the system had high-quality imaging and a compact structure. This design
method can provide a technical reference for the study of such free-form off-axis systems.

Keywords: optical design; off-axis three mirrors; free-form surface; distortion; tolerance analysis

1. Introduction

With the rapid development of advanced precision optics, optical imaging systems
with high resolution, large field of view (FOV) and wide spectral range have become the
new development trend [1–3]. A three-mirror anastigmat system (TMAS) is a reflective
optical system that evolved from a three-mirror coaxis system (TMCS) by biasing the FOV or
aperture. The TMAS has received an increasing amount of attention in the domain of optical
remote sensing because the system has the characteristics of long focal length, no chromatic
aberration, good thermal performance, and comprehensive spectral band coverage. Thus,
the TMAS has the advantages of a larger FOV and better imaging quality [4,5]. TMASs have
been widely used in many international remote sensing optical systems, such as SPOT-6,
Worldview-1, ALOS-3, PROB-V, and GOCI [6–9].

The TMAS avoids the central occlusion of the TMCS and improves the imaging quality.
At the same time, the system loses its rotational symmetry, leading to a dramatic increase
in advanced aberration of off-axis FOV. For large FOV optical systems using linear array
push-scan mode imaging, aberrations in the push-scan direction can cause image shift,
which leads to blurred imaging and reduces the imaging quality of the system [10,11]. How-
ever, it is challenging for off-axis reflective optical systems with conventional spherical or
nonspherical shapes to balance large FOV, low distortion, and system modulation transfer
function (MTF) because of the design degrees of freedom (DOF). Therefore, understanding
how to increase the system FOV, reduce aberrations, and ensure a compact system structure
with high-quality imaging has become an urgent problem in space optical systems.

Free-form surfaces, which rely on manufacturing and inspection technology devel-
opments, provide an excellent solution to meet the increasingly demanding performance
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specifications and large FOV requirements of optical systems [12–14]. The free-form surface
is widely used in panoramic optical systems, head-mounted displays, and off-axis reflective
optical systems [15–17]. Free-form optics are optical surfaces with nonrotationally symmet-
ric characteristics that can improve optical performance while enabling more novel features,
reducing the size of rotationally asymmetric optical systems, and correcting system aber-
rations [18–20]. To date, the main parametric representations for optical free-form design
include X–Y polynomials, Zernike polynomials, Q-polynomials, radial basis functions, and
spline functions [21]. X–Y polynomial surfaces and Zernike polynomial surfaces have the
same free-form surface characterization capability, have interconversion relationships, and
are more often used in machining [22]. In recent years, an increasing number of research
institutions have launched corresponding studies on the spatial application of free-form
surfaces. For example, the imaging spectrometer developed by the Institute of Optics at
the University of Rochester takes advantage of the compactness of the free-form surface
structure, reducing the size of the optical system by a factor of five compared with those
using conventional spherical or aspheric designs, while expanding the spatial spread by
a factor of two [23]. The free-form spatial off-axis reflective optical system developed by
the Changchun Institute of Optics, Fine Mechanics, and Physics of the Chinese Academy of
Sciences, has achieved 76◦ FOV imaging [24]. The free-form off-axis triple inverted infrared
imaging system developed by Tsinghua University and Tianjin University takes advantage
of the free-form design to greatly reduce the difficulty of mounting the system, which
has a focal length of 138 mm and an FOV of 4◦ × 5◦ and works in the medium-wave and
long-wave infrared wavelengths [16].

In this study, we proposed a large FOV and low-distortion TMAS based on an X–Y
polynomial and described the method used to achieve this system. Compared to TMAS
using conventional spherical or aspheric surface shapes, this system used the free-form
surface to expand the design freedom of the system and to further improve the aberration
balance capability of the system. Although the loss of rotational symmetry makes the
measurement and processing of free-form surfaces challenging, the increasing sophisti-
cation of computer inspection technology and optical precision machining techniques
have made it possible to fabricate components for imaging systems with larger free-form
surfaces. This system has a certain reference value for designing a space optical system.
It is suitable for a large FOV and low-distortion linear array push-broom imaging optical
system. The remainder of this paper is organized as follows: In Section 2, the optical design,
considerations, and initial configurations of the TMAS are described. In Section 3, the
quantitative relationship between the X–Y polynomial, the Fringe Zernike polynomial,
and the aberration is analyzed. In Section 4, a design example of a TMAS with a focal
length of 1000 mm, an F-value of 9.5, a large FOV of 23◦ × 1◦, and a distortion of less than
0.05% is given, and the imaging quality and tolerance of the system are analyzed. Section 5
discusses the results.

2. Optical System Design

The classic method of establishing the structure of the reflective optical system is based
on the theory of near-axis optics, solving the structural parameters of the coaxial optical
system using primary aberration theory, and then eliminating the central occlusion by
FOV off-axis or aperture off-axis to establish the initial structure. The initial configuration
of a TMAS evolved from a TMCS, a biased aperture, and FOV, and we adopted this
configuration to eliminate the obstruction. The TMCS initial structure parameters include
eight parameters: the radius of three surfaces, namely R1, R2, and R3; the distance from the
primary mirror (PM) to the secondary mirror (SM) is d1; the distance from the SM to the
tertiary mirror (TM) is d2; and the quadratic surface coefficients of the three mirrors are K1,
K2, and K3. To simplify the process of solving the initial structural parameters, the PM and
TM of the optical system overlapped when d1 = d2. The initial configuration of the TMCS
that was used in this study is shown in Figure 1. The calculation method for the initial
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configuration of the TMCS was based on the third-order aberration theory, which has been
introduced in many literature references [25–27] and is not discussed in detail here.
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Figure 1. Initial TMCS configuration.

Two common forms of TMAS are applied in the optical remote sensing domain:
relayed TMAS, shown in Figure 2a, and nonrelayed TMAS, shown in Figure 2b.
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Figure 2. (a) Relayed TMAS; and (b) nonrelayed TMAS.

In a relayed TMAS [28], shown in Figure 2a, the aperture stop is located at the PM
or the entrance pupil of the system. Because the system is the off-axis part of the TMCS,
it inherits the advantage of the highly compact ratio of the TMCS. It has an intermediate
imaging plane between the SM and the TM, and a real exit pupil in the back focal length
(BFL). These places are suitable for a field stop and a rear stop, which can ensure that the
system has good performance in the suppression of stray radiation. Because of the real
exit pupil, the system is also suitable for multispectral imaging with a common aperture.
However, because the relayed TMAS inherited the configurable characteristics of the TMCS,
it has been difficult to achieve a large FOV.

In a nonrelayed TMAS [29], shown in Figure 2b, the aperture stop is located at the SM,
and a biased FOV is adopted to remove the obstruction of the SM. However, because the
biased FOV moves the real FOV away from the field center, more nonsymmetric aberrations
are generated when the biased angle increases. The PM and the TM are symmetrically
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relative to the optical axis, similar to the projection of the subpupil of each FOV. As a
result, forms of the PM and TM are usually rectangular with high aspect ratios (ARs). This
configuration is beneficial to lateral aberration correcting and larger FOV imaging. As the
FOV increases, however, the aspect ratio of the PM and TM will gradually increase.

In contrast to a relayed TMAS, a nonrelayed TMAS can easily implement large FOV
imaging, and it is more suitable for optical remote sensing with a drift-scan pattern. At the
same time, a rectangular mirror manufactured with metal can achieve a low surface shape
error with a much higher lightweight level, which can make up for the deficiency in size
and weight of a nonrelayed TMAS. Therefore, in this study, we adopted a nonrelayed TMAS
for the initial configuration to further optimize the large FOV and the low-distortion TMAS.

3. Quantitative Analysis of the Free-Form Surface

A free-form surface is a nonrotationally symmetrical optical surface type. Compared
with conventional spherical and aspherical surfaces, a free-form surface can offer more
DOFs for optical designers and enhance the corrective abilities of an off-axis aberration. This
type of optical imaging system mainly uses Zernike polynomials and X–Y polynomials [30].
An X–Y polynomial was first used for low-order free-from surfaces and most commonly
is used to describe free-form surfaces. An X–Y polynomial adds a more refined shape
description to a surface sag as well as more effective DOFs for higher-order aberration
correction. An X–Y polynomial is also a classic nonorthogonal polynomial that is suitable
for three-dimensional modeling and numerically controlled optical manufacturing. Because
it can achieve high precision in mirror shape, it is widely used in metal-based mirrors, such
as the JSS-56 imager [31]. The expression of the X–Y polynomial is as follows:

Z =
cr2

1 +
√

1− (1 + k)c2r2
+ ∑N

i=1 AiEi(x, y) (1)

where Z is the sag of the surface parallel to the z-axis, c is the vertex curvature, r is the
radial coordinate, k is the conic constant, N is the polynomial sequence, Ai is the polynomial
coefficient, and Ei (x, y) is the polynomial-like difference term expression.

A Zernike polynomial is a complete set of functions that is orthogonal over a circle
with a unit radius. This characteristic makes it much more suitable for describing and
fitting an aberration. A fringe Zernike polynomial has a uniform equation and uniform
characteristics, except that the terms of the Fringe Zernike are remapped according to
an interferometric data analysis program. Thus, the Fringe Zernike is widely used in
the design, detection, and alignment of optical systems. The expression of the Zernike
polynomial is as follows:

Z =
cr2

1 +
√

1− (1 + k)c2r2
+ ∑N

j=1 C(j+1)ZPj (2)

where C(j+1) is the polynomial coefficient and ZPj is the polynomial-like difference
term expression.

As seen in Equation (1), the X–Y polynomial is usually expressed in Cartesian coor-
dinates. The X–Y polynomial is consistent with the computer numerical control machine
expression and is highly practical for the machining of metal reflectors [32]. Because the
free-form surface corresponds to a specific geometric aberration, it has a more powerful
off-axis field aberration correction capability. The design of an optical imaging system
involves the process of an aberration balance to produce the minimum residual wavefront
error (WFE). Optimization of optical systems using X–Y polynomials is to obtain better
free-from surface solutions by solving for the coefficients of each order, which in turn opti-
mizes the system aberration to improve the imaging quality. As expressed by Equation (2),
the Zernike polynomial is usually expressed in polar coordinates. The Zernike polynomial
corresponds with the geometric aberration, which can describe the aberration of the system
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more easily. Thus, this translates into the problem of solving the relationship between the
X–Y polynomial and the Fringe Zernike polynomial.

To better illustrate the relationship between the X–Y polynomial and the aberration, we
converted each aberration term in the Fringe Zernike polynomial to a Cartesian coordinate
system, and the conversion equation is shown in Equation (3).

X = R× cosθ
Y = R× sinθ

, (3)

where R is the radial distance and θ is the azimuth angle.
Different X–Y polynomial combinations are added to the single parabolic mirror

surface to characterize the aberrations in the transformed Fringe Zernike polynomials.
This method is used to verify the aberration correction ability of the X–Y polynomial. We
analyzed only third-order aberrations, and the aberration results are shown in Table 1.

Table 1. Coordinate transformation.

No. Aberration Radial Coordinate Cartesian Coordinate

1 Piston 1 1

2 Tilt (X) Rcos θ X

3 Tilt (Y) Rsin θ Y

4 Defocus 2R2 − 1 2X2 + 2Y2 − 1

5 Astig (0◦) R2cos (2θ) X2 − Y2

6 Astig (45◦) R2sin (2θ) 2XY

7 Coma (X) (3R3 − 2R)cos θ 3X3 + 3XY2 − 2X

8 Coma (Y) (3R3 − 2R)sin θ 3X2Y + 3Y3−2Y

9 Spherical 6R4 − 6R2 + 1 6X4 + 12 X2Y2 + 6Y4 −
6X2 − 6Y2 + 1

10 Trefoil (X) R3cos (3θ) X3 − 3XY2

11 Trefoil (Y) R3sin (3θ) 3X2Y − Y3

The analysis and results of the relationship between the combination of X–Y polynomi-
als and each of the aberrations using the specified approach revealed the following: (1) The
sign of the monomial only affected the value of the aberration, without affecting the type of
aberration, and the variation in the coefficient of Aij led to an absolute value change in the
aberration. (2) In the polynomial combinations used to represent the different aberrations,
the sign of various monomials affected the types of aberration. Considering items 4 and 5
in Table 2 as an example, when A02 had a positive value, the system was defocused. The
wavefront aberration map for this scenario is shown in Figure 3a. When A02 had a negative
value, the system had an astigmatism. The wavefront aberration map for this scenario
is shown in Figure 3b. (3) The combination of X–Y polynomials, when characterizing
a particular aberration, also produced other aberration terms, but the magnitude of the
other aberration terms usually was small.
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Table 2. Relationship between X–Y polynomial and Fringe Zernike polynomial.

No. Aberrations Coefficient Value X–Y Polynomial
Combinations Coefficient Value

1 Piston 0 0 0 0 0

2 Tilt (X) 0 0 A10 0 0

3 Tilt (Y) 0 0 A01 0 0

4 Defocus 1 × 10−3 −6.3209 2A20 + 2A02 1 × 10−3 Piston: −3.1605
Defocus: −3.129

5 Astig (0◦) 1 × 10−3 −3.1531 A20 − A02 1 × 10−3 −3.1534

6 Astig (45◦) 1 × 10−3 −3.1530 2A11 1 × 10−3 −3.1528

7 Coma (X) 1 × 10−3 Tilt(X): −6.322
Coma(X): −3.105 3A30 + 3A12 − 2A10 1 × 10−3 Tilt(X): −6.322

Coma(X): −3.105

8 Coma (Y) 1 × 10−3 Tilt(Y): −6.322
Coma(Y): −3.105 3A21 + 3A03 − 2A01 1 × 10−3 Tilt(X): −6.322

Coma(X): −3.105

9 Spherical 1 × 10−3 Piston: 3.1604
Spherical: −3.146

6A40 + 12A22 +
6A04 − 6A20 − A02

1 × 10−3 Piston: 3.1446
Spherical: −3.146

10 Trefoil (X) 1 × 10−3 −3.1547 A30 − 3A12 1 × 10−3 −3.1548

11 Trefoil (Y) 1 × 10−3 −3.1547 3A21 − A03 1 × 10−3 −3.1548
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(b) A02 with negative value, aberration-like scattering.

Based on this analysis, the generated aberration of the X–Y polynomial combinations
was consistent with the aberration of the Fringe Zernike polynomial, and these two types
had the same value, which proved the quantitative relationship between the X–Y free-form
surface and the aberration. This was an instructive method for aberration balancing and
optical designing based on an X–Y free-form surface. The 3D diagram of the free-form
surface is shown in Figure 4. As could be seen from the figure, the free-form surface
had a gentle variation, which was suitable for Computer-Generated Hologram (CGH) for
mounting and inspection, with less processing difficulty and error, and easy to achieve
high inspection accuracy. Therefore, we used the free-form surface described by the X–Y
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polynomial in the designed off-axis triple inverse optical system to increase the effective
FOV of the system and improve the correction capability of off-axis aberration, especially
the correction of off-axis asymmetric aberration.
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4. System Design and Analysis
4.1. Design Results

In this study, we selected the optical simulation software Code V to optimize the
aberrations of the TMAS without an intermediate image plane by using the X–Y polynomial
surface shape analyzed earlier. In the optimization process, astigmatism and coma were
the most important initial aberrations in the parallax field imaging system. Therefore,
we selected A20, A02, A21, A03, and A01 to correct these two aberrations. Throughout the
optimization process, the aberration values of the system were controlled. Next, we selected
A40, A22, and A40 for spherical aberration correction. Finally, we used other higher-order
terms to minimize the RMS wave aberrations in the full FOV. After optimizing the design
according to the optical system parameters, we obtained a TMAS with large FOV and low
distortion. The optical system structure diagram is shown in Figure 5, the optical path
diagram after adding the fold mirror is shown in Figure 6, and the system parameters
are given in Table 3. The PM of the system used an X–Y polynomial free-form surface to
correct for aberrations in the different FOVs of the system. The system’s SM was parabolic,
which reduced the difficulty of machining and setting up the system. The TM of the system
was an ellipsoidal surface with a high secondary term. To further compress the volume,
the focal plane could be folded into the lower part of the TM by adding a fold mirror
(400 mm × 52 mm) to the rear intercept of the system. The final optical system had an
overall length of f ′/2.6, a height of f ′/2.9, and a width of f ′/2.25, creating a compact
system. The configuration parameters are given in Table 4, and the X–Y polynomial of the
PM is given in Table 5.
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Table 3. Parameters of optical system.

No. Parameter Value

1 Focal length (mm) 1000

2 F# 9.5

3 FOV (◦) 23 × 1

4 Spectrum (nm) 450–850

5 Nyquist frequency (lp/mm) 71.4

Table 4. Configuration parameters of reflective mirror.

Mirror Surface Type Radius (mm) Distance
(mm) Conic Size (mm)

PM X–Y
polynomial −1538.978 −384.8 −1.52 444 × 125

SM Paraboloid −592.75 384.8 −1 Φ58

TM Even asphere −935.58 −648.81 −0.178 392 × 84

Table 5. Polynomial parameters of free-form primary mirror.

No. Item Aij No. Item Aij No. Item Aij

1 X1Y0 0 10 X4Y0 2.09 × 10−11 19 X1Y4 0

2 X0Y1 −3.97 × 10−4 11 X3Y1 0 20 X0Y5 −1.63 × 10−13

3 X2Y0 −1.41 × 10−7 12 X2Y2 3.8 × 10−11 21 X6Y0 −2.98 × 10−17

4 X1Y1 0 13 X1Y3 0 22 X5Y1 0

5 X0Y2 −1.37 × 10−7 14 X0Y4 4.47 × 10−11 23 X4Y2 −7.32 × 10−18

6 X3Y0 0 15 X5Y0 0 24 X3Y3 0

7 X2Y1 7 × 10−10 16 X4Y1 −2.01 × 10−14 25 X2Y4 6.83 × 10−18

8 X1Y2 0 17 X3Y2 0 26 X1Y5 0

9 X0Y3 −1.39 × 10−9 18 X2Y3 −2.63 × 10−14 27 X0Y6 3.4 × 10−16
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The structural form of the system shows that the TMAC was symmetrical with respect
to the y-axis direction of the meridional plane. To ensure that the imaging quality of the
system was symmetrical with respect to the meridional plane, we could not use an expres-
sion with odd symmetry for the x-axis in the design process for optimization. Therefore,
we used 13 of the first 28 terms of the X–Y polynomial as variables to optimize the imaging
quality of the system. The X–Y polynomial expressed as follows:

Z =
cr2

1 +
√

1− (1 + k)c2r2
+ A01x0y1 + A20x2y0 + · · ·+ A06x0y6 (4)

4.2. Tolerance Analysis

The FOV of the TMAC designed in this paper was −11.5◦ to + 11.5◦ in the arc vector
direction and−5◦ to−6◦ in the meridian direction. We selected 10 FOVs within the effective
FOV and evaluated the image quality of the optical system using the operating wavelength
of the optical system λ = 632.8 nm as the reference wavelength, as shown in Table 6. From
the design results, it could be seen that the maximum value of system aberration occurs
in the (−11.5◦, −6◦) FOV, and the ideal ray tracing position (Parax X, Parax Y) of this
FOV was calculated to be (−203.597599, −105.18107), and the actual ray tracing position
(Real X, Real Y) was (−203.4958002, −105.086116). According to the distortion formula
where distortion = (real value − ideal value)/ideal value × 100%, we could get the system
in this FOV arc to where the vector direction distortion was −0.05%, and the meridian
direction distortion was 0.01%, so the system maximum distortion was −0.05%.

Table 6. Field of view (FOV).

No. x/(◦) y/(◦) No. x/(◦) y/(◦)

1 0 −5 6 8.05 −5.5
2 5.75 −5 7 11.5 −5.5
3 8.05 −5 8 −5.75 −6
4 11.5 −5 9 −8.05 −6
5 5.75 −5.5 10 −11.5 −6

The MTF is the main parameter used to evaluate the imaging quality of an optical
system. As the MTF value increased, the spatial frequency sharpness increased, and the
pixel resolution increased. The MTF curve is shown in Figure 7, and the MTF of the system
was better than 0.403 at the Nyquist frequency (71.4 lp/mm). The system used a free-form
surface to compensate for the asymmetric aberration, which at the same time led to poor
uniformity of imaging quality between FOVs. Therefore, the image quality had to be
evaluated for the whole FOV. The wave aberration of each FOV is shown in Figure 8,
and the maximum wave aberration of the system was 0.055 λ (λ/18.2, λ = 632.8 nm),
and the system imaging is good. The aberration grid is shown in Figure 9, which is the
visual response of the image aberration. As can be seen from the figure, after optimized
design, there was basically no deviation between the ideal imaging position and the real
image point position. Thus, the aberration was well corrected for the large FOV imaging
optical system. Because of the influence of the system phase difference, the light passed
through the optical system and presented a diffuse spot on the image surface, and the
size of the diffuse spot determined the perfection of the system. As shown in Figure 10,
the spot column diagram of each FOV of the system was within the Airy spot, and the
imaging quality of the system was completely proportional to the meridional plane. A
comprehensive analysis of the data showed that the system had good imaging quality in
the effective FOV, and the system had high balance correction capability and low distortion
in phase difference. The designed off-axis triple-reverse optical system met the parameters
specified in Table 3.
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4.3. System Tolerance Analysis

We analyzed the manufacturing and assembly tolerances of the TMA system using
the Monte Carlo method. We used the complex color MTF in Code V software as the
performance index and used the FOV in Table 6 as the feature reference point. The image
plane position was used as the compensation parameter. The machining tolerances included
curvature radius tolerance, secondary surface coefficient tolerance, high secondary aspheric
surface tolerance, and face shape tolerance. In the system-mounting process, we used the
PM as the reference, and the SM and TM had six DOFs—that is, six position tolerances,
including translation and rotation tolerances along the x-, y-, and z-axes. The results of
tolerance allocation of the system are shown in Table 7.

After bringing the above tolerances into the optical system, we obtained the MTF
curves of different FOVs, as shown in Figure 11. Thus, the results showed that 80% of
the MTF was better than 0.37 at Nyquist frequency, and the tolerances were reasonably
allocated to meet the design index requirements.
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Table 7. Tolerance allocation result.

Type Item Primary Mirror Secondary Mirror Tertiary Mirror

Displacement x/mm - 0.05 0.1

Displacement y/mm - 0.05 0.1

Assembling Displacement z/mm - 0.2 0.3

Tilt α/(”) - 20 20

Tilt β/(”) - 20 30

Tilt γ/(”) - 40 60

∆R/mm 0.8 0.3 0.3

Manufacturing ∆K 0.001 0.002 0.001

Surface error RMS
(λ = 632.8 nm) λ/50 λ/50 λ/50
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5. Results and Discussion

In this study, we analyzed and compared the TMAS with an intermediate phase plane
and the TMAS without an intermediate image plane. We found that the TMAS without
an intermediate image plane was suitable for large FOV imaging, which provided a theo-
retical basis for the selection of a large FOV imaging optical system design. We verified
the relationship between the X–Y polynomial, Fringe-Zernike polynomial, and the aberra-
tion based on the quantitative relationship between the X–Y polynomial and aberration.
The results provided a guideline for the balance of aberration and the application of the
X–Y polynomial free-form surface shapes in optical system design. A three-dimensional
diagram of the designed X–Y polynomial free-form surface shape was also created for
the purpose of visual observation. Finally, based on the off-axis triple-reversal optical
system without an intermediate image plane and the analyzed free-form surface shape,
we designed a large FOV low-distortion off-axis triple-reversal optical system with a focal
length of 1000 mm, an F-value of 9.5, and an FOV angle of 23◦ × 1◦. The PM adopted
an X–Y polynomial free-form surface to increase the freedom of the system while also
correcting the aberration of each FOV. The SM adopted a paraboloidal surface to reduce
the difficulty of processing and mounting the system, and the TM was ellipsoidal with
a high secondary term. After optimizing the design, the imaging quality of the system
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was close to the diffraction limit, the maximum distortion grid in the FOV was less than
or equal to −0.05%, and the average wave aberration in the whole FOV was better than
0.055 λ. Meanwhile, after adding the plane reflector to fold the rear optical path, the total
optical length of the system reached f ′/2.6, the height reached f ′/2.9, and the width
reached f ′/2.25, creating a compact system structure. The application of the free-form
surface expanded the FOV and corrected the system aberrations. After the image quality
evaluation and tolerance analysis, we determined that the system achieved good imaging
quality. This design method has good application prospects in the design of high-resolution,
large FOV, with a long focal length and a light and small push-scan imaging optical load.
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