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Abstract: Free-space optical (FSO) communications can offer high-capacity transmission owing to the
properties of the laser beams. However, performance degradation caused by atmospheric turbulence
is an urgent issue. Recently, the application of polar codes, which can provide capacity-achieving
error-correcting performance with low computational cost for decoding, to FSO communications
has been studied. However, long-distance and real-field experiments have not been conducted
in these studies. To the best of our knowledge, this study is the first to present the experimental
results of polar-coded transmission over 7.8-km FSO links. Using experimental data, we investigated
the performance of polar codes over atmospheric channels, including their superiority to regular
low-density parity-check codes. We expect that our results will offer a path toward the application of
polar codes in high-speed optical communication networks including satellites.

Keywords: free space optics; transmission experiments; polar code; low-density parity-check code;
channel equalization

1. Introduction

Free-space optical (FSO) communications are expected to satisfy the continually in-
creasing demand for high-capacity wireless communication [1] owing to features such as
a wide bandwidth in an unregulated spectrum, ultra-low inter-channel interference, and
power-efficient transmission. In addition, implemented in satellites, FSO communications
can expand the coverage of high-speed communications to the sea and sky, where optical
fiber implementation is difficult [2]. However, a laser beam propagating in the atmosphere
is influenced by atmospheric turbulence, which causes random fluctuations in the received
power and thus degrades communication performance.

Error-correcting codes, used in radio-frequency wireless and fiber-based optical com-
munications, remain an effective means to address this problem even in FSO communica-
tions. The application of conventional error-correcting codes, such as the Reed–Solomon [3],
low-density parity check (LDPC) [4], and turbo [5] codes for FSO communications has been
investigated through numerical simulation and experiments [6–8]. In parallel, discussions
on the standardization of error-correcting codes in satellite-to-ground FSO communications
have been promoted by the Consultative Committee for Space Data Systems (CCSDS) [9].

In recent years, the application of polar codes [10] to optical wireless communication
has also been investigated. Polar codes are known as capacity-achieving codes, as with
LDPC codes. Moreover, the computational costs for decoding polar codes are lower than
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those for LDPC codes. Recently, polar codes with successive cancellation list decoding
(SCLD) [11] concatenated by cyclic redundancy check (CRC) codes, that is, polar codes
with CRC-aided SCLD (CA-SCLD), can achieve a higher error-correcting performance
than LDPC codes in the short-code-length regime. Refs. [12,13] experimentally revealed
the superiority of polar codes over LDPC codes in terms of ultraviolet and visible light
communication, respectively.

The performance of polar-coded transmission over FSO communications has also
been studied numerically [14] and experimentally [15]. In particular, Ref. [15] performed
a CA-SCLD polar-coded transmission experiment in a laboratory environment, and demon-
strated that CA-SCLD polar code has an acceptable error-correcting performance, even over
atmospheric channels. However, the communication path of the experiment was 7 m, and
the fading was simulated using a hot-air heater. Therefore, the experiment addressed only
a limited case with weaker turbulence. Because in a real-field environment, the degree of
atmospheric turbulence varies over a wider range and the transmission distance can span
from a hundred meters to several kilometers, a performance investigation in a real-field
environment is highly desirable.

In this study, we report a real-field CA-SCLD polar code transmission experiment
over a 7.8-km terrestrial FSO link in urban Tokyo. To the best of our knowledge, polar code
transmission experiments across such extensive atmospheric paths have not been reported
yet. Based on the experimental data, we demonstrate the effectiveness of equalization
and block interleaving, techniques used to mitigate atmospheric effects, over a real-field
long-distance FSO link. We also compared the experimental results with computational
simulations that indicated the decoding performance degradation by the real-field effect. In
addition, we performed a CA-SCLD benchmark test for some types of LDPC code. These
results are beneficial for designing high-performance error-correcting codes for emerging
non-terrestrial networks (NTN) to aid the consideration of an increase in transmission
speed using the FSO link.

The results of this study partly appeared in [16] and [17]. In [16], the initial exper-
imental results of polar code transmission were reported. However, the transmission
performance could not be improved because channel equalization was not used. In [17],
although the application of channel equalization improved the characteristics, the reasons
that led to this improvement were not sufficiently considered. In this paper, we newly add
an analysis of experimental results and a discussion to reinforce the insights deduced from
the experiment. The contributions of this study are as follows:

- Long-distance transmission of polar and LDPC codes over a 7.8-km terrestrial FSO
link, demonstrating that the characteristics, especially block error performance, of
polar codes are better than those of the regular LDPC codes;

- Investigating factors that cause differences in the characteristics of polar and LDPC
codes in FSO communications;

- Comparing the performance of LDPC codes used in the recent standardization of the
fifth-generation mobile communications system (5G) numerically, and clarifying the
effectiveness of polar code transmission.

2. CA-SCLD Polar-Coded FSO Transmission System

In this section, we explain the CA-SCLD polar-coded FSO transmission system [11],
the block diagram of which is displayed in Figure 1. The sender prepares a (K− k)-
bit message sequence, mK−k, and inputs it into the CRC encoder. The CRC encoder

adds k-bit CRC parity to mK−k and inputs the resulting K-bit sequence
∼
m

K
into a polar

encoder. The polar encoder computes the location of the frozen bits (i.e., the bits with a

high probability of causing an error at the receiver side) in
∼
m

K
and inserts bit “0” to the

corresponding locations, which results in an N-bit information sequence uN . We assume
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that N = 2n with an integer n. The polar encoder further transforms uN into the polar
codeword xN as follows:

xN = uNGN (1)

where GN is a generator matrix defined as follows:

GN = RN(F⊗ IN/2)(I2 ⊗GN/2),G1 = I1,F =

[
1 0
1 1

]
, (2)

with a unit matrix INof order N, the Kronecker product ⊗, and a permutation matrix RN
that reorders the vector elements into even- and odd-index parts.
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Figure 1. Block diagram of CA-SCLD polar-coded FSO transmission system.

The sender transmits the codeword xN over the atmospheric channel by modulating
the laser source with an on–off keying (OOK) scheme, where the laser source turns “on”
for bit xi = 0 and turns “off” for xi = 1. We assume that the inter-symbol interference
induced by the atmospheric effect is negligible as in real FSO channels because of strong
beam directivity. It is also assumed that the thermal noise at the receiver’s detector follows
a Gaussian distribution. Therefore, the received symbol yi ∈ R output from the channel is
given as follows:

yi = hi(xi ⊕ 1) + ni, (3)

where hi ∈ R is the channel coefficient and ni ∈ R is the zero-mean Gaussian white noise
with a variance of σ2.

At the receiver side, soft-decision decoding [18] is performed. The SCLD decoder
calculates the initial log-likelihood ratio (LLR) LAWGN(yi, hi) for each received symbol yi
as follows:

LAWGN(yi, hi) =
h2

i − 2hiyi

2σ2 . (4)

From this initial LLR, the SCLD decoder iteratively calculates the LLR as follows:

Li , ln
Pr
(
yN , ui

∣∣ui = 0
)

Pr
(
yN , ui

∣∣ui = 1
) (5)

and determines the estimation ûi of information bit ui as follows:

ûi =

{
0, Li ≥ 0
1, Li < 0

(6)

in ascending order of the index i. If ui is a frozen bit, ûi = 0 immediately. Finally, the SCLD
decoder outputs a list of Lmax candidates in terms of the path metrics. This list is input into
the CRC decoder, and the candidate sequence passing the CRC check is finally outputted
as the decoded sequence m̂K−k.

Before calculating LAWGN(yi, hi), we employ a process called channel equalization.
Channel gain hi of the atmospheric channel varies temporally. Further, in the OOK scheme,
hi influences only the on-signal (i.e., xi = 0), as opposed to the phase modulation schemes.
These effects cause asymmetry in the probability distribution of the received symbol yi and
the LLR distribution, resulting in degradation of the error-correcting performance. Channel
equalization is used to compensate for this degradation. In channel equalization, we estimate
hi from temporally varying received sequences or channel state information (CSI).

Figure 2 displays the probability density functions of the LLR LAWGN(yi, hi) in OOK,
which are numerically simulated for the cases with equalization (green line) and without
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equalization (blue line). These distributions have two peaks, corresponding to xi = 0 (left)
and 1 (right). The distribution without equalization was asymmetric, and the peak for
xi = 1 is significantly greater than that for xi = 0. This asymmetry causes a misestimation of
information bit ui. Conversely, the distribution with equalization is symmetric at LLR = 0,
indicating that channel equalization significantly improves error-correcting performance.
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Figure 2. Distribution of LLR LAWGN(yi, hi) for OOK scheme with and without channel equalizer.
In the simulation, the signal-to-noise ratio (SNR) = 10.0 dB and the intensity variation follows
a gamma–gamma distribution with scintillation index of 0.2. For the distribution without equalization,
we set hi = 1 for all bits.

3. Experimental Setup

In this section, we describe the setup of the transmission experiment.

3.1. Tokyo FSO Testbed

The transmission experiment was conducted over an FSO communication testbed,
called the Tokyo FSO testbed. As indicated in Figure 3, this testbed connects the transmis-
sion system at the University of Electro-Communications (UEC) and the receiving system
at the National Institute of Information and Communications Technology (NICT). The link
distance is approximately 7.8 km.
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Figure 3. Map of Tokyo FSO testbed (©2020 Google).

The transmission system at the UEC site was located in an all-weather dome-shaped
facility. The light source was a direct modulation laser with a central wavelength of
1550 nm and the modulation scheme was OOK with a transmission rate of 10 MHz. Here,
our goal is a high-speed FSO; however, because of the limitations of the experimental
system, a 10 MHz transmission rate is used as the first step. The transmission data were
input to the laser source from an arbitrary waveform generator. The modulated optical
signal from the source was amplified with a fiber amplifier and coupled to a fiber collimator
that expanded the laser beam to a diameter of approximately 5.5 mm.

The receiver system at the NICT site was located near the window of the building.
The laser beam propagating over the 7.8 km FSO link and diverging to 8 m in full width at
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half maximum (FWHM) was collected using a Cassegrain-type telescope with a diameter
of 100 mm and a focal length of 800 mm. The optical intensity was measured using a PIN
photodiode detector and then recorded using an oscilloscope at a sampling rate of 50 MHz.

A more detailed explanation of the Tokyo FSO testbed is available in our previous
studies [17,19–22].

3.2. Error-Correcting Codes

In the field experiment, we compared the error-correcting performance of the CA-
SCLD polar code to that of polar code with normal (i.e., without CRC code check) SCLD
decoding and regular LDPC codes. Table 1 summarizes the parameters of these codes. We
set the code length N to 2048 and the code rate R to 0.5. We set Lmax = 32 and Imax = 50 as
the standard parameters with sufficient decoding performance [11,23,24].

Table 1. Parameters of error-correcting codes used in the experiment.

CA-SCLD Polar SCLD Polar Regular LDPC

Code length N 2048

Code rate R 0.5

CRC length k 24 - -

List size Lmax 32 -

Column and row weights
(dv , dc)

- - (6,3)

Decoding iterations Imax - - 50

In the polar codes, the Monte Carlo method for the AWGN channel is used to select
the frozen bits [25], and those frozen bit tables are assumed to be shared between the
transmitter and receiver in advance. It is empirically demonstrated that frozen bit tables for
AWGN channels are also effective in fading environments, including FSO channels with
strong turbulence; however, the optimization of such frozen bit tables for FSO channels
remains for future study. In the LDPC code, the parity check matrix was generated based
on Gallager’s semi-random construction method and the sum-product decoding algorithm
was used [4].

In Table 2, we compare the computational cost of decoding these codes in terms
of theoretical value and execution time. Theoretical values are calculated based on the
formulas in Table 3. Table 2 illustrates the tradeoff relation between the computational
cost and error-correcting performance. Owing to the employment of CRC, CA-SCLD polar
code can achieve higher error-correcting performance than normal SCLD one, whereas
the latter has a lower computational cost than the former. In addition, the error-correcting
performance of CA-SCLD polar code is superior to that of regular LDPC code at a short
code length [25] and the computational cost of the LDPC code is 35% greater than that of
the polar code with CA-SCLD.

Table 2. Computational cost of error-correcting codes used in the experiment.

CA-SCLD Polar SCLD Polar Regular LDPC

Theoretical value [a.u.] 589,056 573,440 793,600

Normalized by CA-SCLD
polar 1 0.973 1.35

Execution time [ms] 6064 5985 13,687

Table 3. Formulas for computational cost of error-correcting codes.

Error-Correcting Code Computational Cost for Decoding

CA-SCLD polar code [26,27] Lmax(N(1 + log2 N) + K(2log2(Lmax) + 4)− k)

SCLD polar code [26,27] Lmax(N(1 + log2 N) + K(2log2(Lmax) + 3))

Regular LDPC code [28,29] Imax(2dv N + (2dc + 1)(N − K))
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The execution time was measured using our decoding program. Our program is
written in C and runs on our Linux workstation equipped with an Intel Core i9-11900K
processor clocked at 3.50 GHz. The values listed in Table 2 are the averages of 100 codeword
trials with the configuration listed in Table 1 with the AWGN channel having Eb/N0 = 2 dB.
The relationship between these measured execution times approximately follows that of
the theoretical values, corroborating the superiority of the CA-SCLD polar code. Here,
the relatively long LDPC transmission execution time was due to the program not being
particularly well-optimized.

3.3. Data Frame Format

Figure 4 shows a schematic diagram of our data frame format used in the transmission
experiment. We designed this format to realize: (1) CSI collection for channel equalization;
(2) comparison of three error correction codes under similar conditions; and (3) timing
synchronization.
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Figure 4. Data frame format for transmission experiment.

For the information data to be transmitted, we employed the “Lena” image with
a size of 131,504 bits. For the CA-SCLD polar code, we divided this image into 132 blocks
with a size of 1000 bits. The last 132-th block was padded with “0” bits so that its size
became 1000 bits. After adding the 24-bit CRC code, the 1024-bit blocks were encoded into
2048-bit codewords and concatenated into a 270,336-bit sequence. Similarly, for SCLD polar
code and regular LDPC code, we divided the Lena image into 129 blocks of size 1024 bits.
After zero-bit padding to the last block, these 1024-bit blocks were encoded into 2048-bit
codewords and concatenated into a 264,192-bit sequence. We concatenated the 264,192-bit
sequences for regular LDPC code and SCLD polar code and the 270,336-bit sequence for
CA-SCLD polar code.

Subsequently, we divided this sequence into 1560 blocks (516 blocks for regular LDPC
code and SCLD polar code, and 528 blocks for CA-SCLD polar code) with a size of 512
bits. We added a 128-bit pilot sequence, which was an iterative “01” pattern, at the end of
each 512-bit sequence. CSI was estimated by averaging the received optical power for “on”
symbols in the pilot. We decided on the length of pilot sequence with careful consideration:
When the pilot sequence becomes longer, the precision of the CSI estimation becomes
greater, whereas the transmission rate decreases. In the CCSDS standard, a series of 16 to
192 bits is typically used for synchronization [30,31]. Further, the tail sequence for LDPC
codes in [30] is 128 bits. Therefore, 128 bits are used in this study.

Additionally, we constructed another sequence to investigate the effects of block
interleaving. In this experiment, we adopted block interleaving at a depth of ten. We added
an ancillary codeword consisting of iterative “01” patterns such that the number of code
words for each error-correcting code was a multiple of ten.

Finally, we added a 256-bit preamble for synchronization at the beginning of the
sequence. Thus, the frame length is 2,022,656 bits.
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4. Experimental Results

In this section, we present the results of the transmission experiments. We conducted
an FSO transmission campaign from 29 January 2020, at 18:00 JST, to 31 January 2020,
at 13:00 JST. We transmitted a single 2,022,656-bit frame every ten minutes. During the
campaign, we adjusted the transmission power to investigate the performance as a function
of signal-to-noise ratio (SNR) at the receiver side. The total number of transmitted frames
differed with the SNR on the receiver side. For example, 2000, 5800, and 240 frames were
transmitted at 0, 10, and 24 dB, respectively.

4.1. Lena Image

Figure 5 shows a typical example of a decoded Lena image for each error-correcting
code. This figure shows the characteristics of the error correction performance of these
codes. As expected from the fading nature of the FSO links, burst errors occurred in these
figures. However, the distribution of these errors was clearly different for these codes.
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The erroneous areas of polar codes seem completely random and no longer hold any
information about the original image, whereas we can identify the original image from the
decoded image to a certain extent in regular LDPC code. This is because of the property
of the SCLD algorithm wherein bit errors are scattered over the codeword. Furthermore,
errors are densely accumulated in polar codes, whereas they are sparsely distributed in
regular LDPC code. This implies that residual error is more likely in regular LDPC code
than in polar codes because the decoding of regular LDPC code is sensitive to imperfections
in the CSI estimation. We further discuss the properties of the decoding algorithms for
these codes in Section 5.

4.2. Error-correcting Performance

Figure 6a,b displays the bit error rate (BER) and block error rate (BLER) of the experi-
mental data as functions of the average SNR at the receiver. For the cases without channel
equalization, we subtracted the received voltage by 1/2 of the average when “on” was
transmitted to the pilot symbol to mitigate the degradation due to the asymmetry of the
LLR distribution [17].

Figure 6 demonstrates that the curves with channel equalization (solid lines) clearly
surpass those without equalization (dotted lines) for both BER and BLER. The BER gain
of channel equalization was approximately 4 dB with SNR = 20 dB. In addition, the
error floor in the LDPC BLER, which occurs due to residual bit error generated by the
sum-product algorithm, disappeared when channel equalization was applied. These
observations indicate that channel equalization significantly improves the error correction
performance of the polar and LDPC codes. Next, we investigate the BER and BLER
performances with channel equalization.

As shown in Figure 6a, the relationship of BER performance between the three error-
correcting codes is different in the lower and higher SNR regions. In the lower SNR region,
the BER performance of regular LDPC was better than that of the polar codes, and the
curves of the polar codes overlapped. This behavior can be due to the error-scattering
property of SCLD decoding, as discussed in Section 4.1. As the SNR increases, the curve
of the regular LDPC code becomes gentler and approaches that of the polar codes. The



Photonics 2023, 10, 462 8 of 14

curves of the regular LDPC and CA-SCLD polar codes cross at an SNR of 19.5 dB. This is
because of the residual error of sum-product decoding. Simultaneously, the gap between
the two polar codes widens with an increase in SNR, indicating the efficacy of the CRC
code. Its function, selecting the correct codeword from the list of potential candidates,
effectively eliminates the residual error bits. This function does not work effectively in the
lower SNR region because the CRC itself does not have an error-correcting ability.
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Figure 6. (a) BER and (b) BLER of experimental data. The solid and dotted lines are for the cases
with and without channel equalization, respectively.

BLER performance is slightly different from that of BER, as shown in Figure 6b. The
curves of the polar codes are lower than those of the regular LDPC codes, which are
irrelevant to SNR. This behavior indicates higher BLER performance for polar codes. The
state-of-the-art standardization for modern communication systems (e.g., ground cellar
systems, satellite communication systems, etc.) encourages the adoption of the packet
transmission scheme with a sufficient SNR link-budget margin. We observed that polar
codes were more beneficial to these systems than regular LDPC codes based on real-field
transmission data.

4.3. Effect of Interleaving

In Figure 7, we show the BLER performance of three error-correcting codes without
block interleaving (solid lines) and with block interleaving (dashed lines). The result
demonstrates that block interleaving improves the performance because the interleaver
spreads burst errors and improves the LLR quality in the decoding process.
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4.4. Comparison with Numerical Results

We compared the error-correcting performance of the numerical simulation with the
experimental results. In the simulation, we generated a sequence based on time-correlated
gamma–gamma distribution [32] to mimic the channel coefficient. The distribution can be
parametrized using the scintillation index (SI), which is given as follows:

SI =
〈

I2〉
〈I〉2

− 1 (7)

where I denotes the received power intensity included in the pilot sequence. We calculate the
SI for the experimental data using Equation (7) and use it to generate the simulated sequence.

Figure 8a,b shows the BER and BLER performances for the experimental (solid lines)
and the numerical simulation (dashed lines) results, respectively. In these figures, the
simulation results outperform the experimental results. The real-field data contain several
effects which are not necessarily originated from the atmospheric turbulences. This results
in the deviation of the LLR of the experimental data from that obtained from the simulation,
and, hence, the deterioration of the BER and BLER performances.
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(a) BER and (b) BLER. BLER performance for experimental result is the same as shown in Figure 7.

Among the three codes, the gap between the experiment and the simulation was
relatively smaller for the CA-SCLD polar code compared with the others. The benefit of
the CRC code is as follows: the decoding method of the other two codes depends only on
the LLR. In contrast, CA-SCLD exploits the CRC code. It is independent of the LLR, and
thus mitigates deterioration due to the deviation between experiment and simulation.

5. Discussion on Experimental Results
5.1. Different BER and BLER Tendency of Polar and LDPC Codes

In this subsection, we discuss the difference in the error-correcting performance of
the polar and LDPC codes presented in the previous section from the viewpoint of the
decoding method.

First, we provide a detailed explanation of the decoding method for the polar codes.
As explained in Section 2, the SCLD algorithm calculates the LLR Li and estimates ûi in
ascending order of index i. This algorithm is schematically represented in Figure 9. For
code length N = 2n, this graph has n + 1 layers of nodes indexed by λ ∈ [0, n]. The
adjacent layers are connected by edges specified by the permutation matrix RN . The initial
LLR L(0)

i = LAWGN(yi, hi) is input into the corresponding i-th node of the rightmost layer
(λ = 0). The LLR at each layer is then iteratively computed based on the LLRs in the right
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layer. Specifically, from the pair of LLRs, L(λ)
i and L(λ)

i+1 for the λ-th layer and an odd index

i, LLRs
∼
L
(λ)

i and
∼
L
(λ)

i+1 are calculated as follows:
∼
L
(λ)

i = fpolar

(
L(λ)

i , L(λ)
i+1

)
, (8)

∼
L
(λ)

i = gpolar

(
L(λ)

i , L(λ)
i+1, û(λ)

i

)
, (9)

where û(λ)
i denotes an estimation of the information bit at the λ-th layer calculated from

the estimations previously determined, and the functions fpolar and gpolar are defined as
follows, respectively [33]:

fpolar
(

Lα, Lβ

)
, 2 tanh−1

(
tanh

(
Lα

2

)
tanh

( Lβ

2

))
, (10)

gpolar
(

Lα, Lβ, û
)
, (−1)ûLα + Lβ, (11)

LLRs
∼
L
(λ)

i and
∼
L
(λ)

i+1 are sent to the next left layer over the edge. As indicated above, the LLR
calculation in polar codes requires estimation of the information bit, which has previously
been estimated. Therefore, if the estimation fails, the error will propagate over the code
word. This explains why errors occur in the polar codes, as indicated in Figure 5.
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Second, we demonstrate that the function gpolar
(

Lα, Lβ, û
)

makes polar codes insen-
sitive to imperfections in the CSI estimation, which is caused by the limited length of the
pilot sequence. For example, we assume that we send an “all zero” codeword. In this
case, û(λ)

i should be “0” if the estimation succeeds and the LLR is likely positive. Hence,
Equation (11) becomes

gpolar
(

Lα, Lβ, û
)
= Lα + Lβ, (12)

which is greater than that of the two inputs, Lα and Lβ. This value is input into the tanhx
function in the functions fpolar

(
Lα, Lβ

)
of the next layer. Recalling that the increase in the

tanhx function becomes slower as |x| increases, the functions fpolar
(

Lα, Lβ

)
become insen-

sitive to small changes in the initial LLR L(0)
i . Therefore, polar codes become insensitive to

LLR errors owing to imperfect CSI estimations.
Conversely, in the sum-product decoding of the LDPC code, a priori LLR u(l)

mn and
external v(l)mn are exchanged between check node m and variable node n at iteration l. The
LLR values are then updated using the following equations:

v(l)mn =

(
∏

n′∈Nmrn
sign

(
u(l)

mn′

))
fLDPC

(
∑

n′∈Nmrn
fLDPC

(∣∣∣u(l)
mn′

∣∣∣)), (13)
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u(l)
mn = ∑

m′∈Mnrm
v(l)m′n, (14)

where Mn and Nm denote the sets of check and variable nodes connected to variable nodes
n and check node m, respectively, and the function fLDPC(·) is given as follows:

fLDPC(x) = ln
ex + 1
ex − 1

= −ln
[
tanh

( x
2

)]
. (15)

As indicated, in LDPC codes, the LLR value is directly input to the tanhx function [34],
and there is no mechanism to amplify the LLR value, such as the function gpolar

(
Lα, Lβ, û

)
in polar codes. This is why residual errors occur, as indicated in Figure 5. Hence, the BLER
performance of the LDPC function is reduced by the residual errors.

5.2. Comparison with 5G LDPC Codes

We have only devoted our attention to regular LDPC code in the results presented
above. However, irregular LDPC codes, which have a better performance, are the standard
use in 5G new radio (NR) [35] and CCSDS [30,31]. In this subsection, we compare the
characteristics of polar and irregular LDPC codes based on the numerical simulation.

We evaluated the BER characteristics of the AWGN channel versus Eb/N0 as the
characteristics of channel codes are generally evaluated in a Gaussian noise channel and
its relative characteristics are preserved in a fading environment. Table 4 shows the
simulation parameters of the compared codes, where the basic parameters match those
used for the experiments in this study (shown in Table 1). The decoding method for 5G
NR LDPC was the offset min-sum algorithm with a maximum iteration number of 20. This
decoding method and the iteration number are commonly used in 5G systems and it also
considers the computational complexity and delay time of decoding [36–38]. In addition,
we investigated the performance of the 5G NR LDPC code based on sum-product decoding
with 50 iterations, which was the best decoding method.

Table 4. Simulation conditions.

5G NR LDPC Regular LDPC

Code length 2048

Code rate 0.5

Column and row weights Variable, base-graph 2 (6,3)

Decoding algorithm Offset min-sum Sum-product Sum-product

Decoding iterations 20 50 50

Figure 10 shows the BER performance of the CA-SCLD code and LDPC codes as a
function of Eb/N0. The 5G NR LDPC code based on the sum-product algorithm exhibited
the best performance among these codes. The relationship between CA-SCLD polar and
regular LDPC codes is approximately the same in Figures 6a and 8a. The former is better
than the latter in the higher SNR region, and these curves cross a certain threshold. However,
the threshold SNR was much lower than that shown in previous figures. This can be
attributed to differences in the channel model. The AWGN channel is shown in Figure 10,
whereas the gamma–gamma fading channel is shown in Figures 6 and 8. Furthermore, the
gamma–gamma distributions in Figure 8 are far from ideal because they were obtained
through a real-field experiment. These factors deteriorate the performance of the CA-SCLD
polar code more than that of the regular LDPC code; hence, the crossover point moves
toward the higher-SNR region.
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5G NR LDPC code based on offset min-sum decoding provides an approximate
0.2 dB improvement over the (3,6) regular LDPC code at an error rate of 10−4. However,
it was found that the polar code has better characteristics, which is consistent with the
results of a previous study [37]. In addition, [37,39] showed that implementation of the
5G NR LDPC code is much more complex that of CA-SCLD polar code. The LDPC code
used in CCSDS [30] utilizes an irregular check matrix generated using a protograph. The
structure of this check matrix is similar to that of the 5G NR LDPC; therefore, the BER
characteristics were considered comparable. The application of nonbinary LDPC has
been discussed; however, it is not currently implemented due to the increased decoding
complexity compared to the gain obtained [40]. It can be concluded that the application of
polar code is effective compared to recent practical LDPC codes.

6. Conclusions

In this study, we evaluated the performance of error-correcting codes with channel
estimation and equalization of polar-coded terrestrial FSO transmission over a distance
of 7.8 km. The results show that the decoding performance of the codes can be improved
through channel equalization. Moreover, even with channel equalization, the BLER of
polar codes was superior to that of the regular LDPC codes. In addition, we compared the
computational complexity of polar codes with LDPC codes and demonstrated that polar
codes have a lower computational complexity than LDPC codes. Based on the results of
this study, we believe that the characteristics of polar codes may be further improved by
the construction of a frozen bit table for FSO communications, implementing an adaptive
modification of coding rate, or the coupling of block error correcting codes, such as Reed-
Solomon codes, via interleave, all of which will be considered in future studies.
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