
Citation: Zhang, S.; Zhang, L.; Guo,

H.; Zheng, Y.; Ma, S.; Chen, Y.

Inference-Optimized

High-Performance Photoelectric

Target Detection Based on GPU

Framework. Photonics 2023, 10, 459.

https://doi.org/10.3390/

photonics10040459

Received: 25 February 2023

Revised: 5 April 2023

Accepted: 12 April 2023

Published: 16 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Inference-Optimized High-Performance Photoelectric Target
Detection Based on GPU Framework
Shicheng Zhang 1, Laixian Zhang 2,*, Huichao Guo 2, Yonghui Zheng 3, Song Ma 4 and Ying Chen 4

1 Graduate School, Space Engineering University, Beijing 101416, China
2 Department of Electronic and Optical Engineering, Space Engineering University, Beijing 101416, China
3 Beijing Space Information Transmission Center, Beijing 102300, China
4 Southwest China Institute of Electronic Technology, Chengdu 610036, China
* Correspondence: zhanglaixian@pku.edu.cn; Tel.: +86-1366-133-8085

Abstract: Deep learning has better detection efficiency than typical methods in photoelectric target
detection. However, classical CNNs on GPU frameworks consume too much computing power and
memory resources. We propose a multi-stream inference-optimized TensorRT (MSIOT) method to
solve this problem effectively. MSIOT uses knowledge distillation to effectively reduce the number of
model parameters by layer guidance between CNNs and lightweight networks. Moreover, we use
the TensorRT and multi-stream mode to reduce the number of model computations. MSIOT again
increases inference speed by 9.3% based on the 4.3–7.2× acceleration of TensorRT. The experimental
results show that the model’s mean average accuracy, precision, recall, and F1 score after distillation
can reach up to 94.20%, 93.16%, 95.4%, and 94.27%, respectively. It is of great significance for designing
a real-time photoelectric target detection system.

Keywords: photoelectric targets; knowledge distillation; TensorRT acceleration; multi-stream; infer-
ence optimized

1. Introduction

The rapid development of optoelectronic equipment such as pinhole and miniature
cameras has brought serious risks of information leakage, leading to serious property
damage and threatening personal safety. In response to this adverse phenomenon, this
work exploits the cat-eye effect to detect the camera and effectively solve it. For clarity,
it should be mentioned that the cat-eye effect [1] is the incident-light irradiation of the
focal plane photoelectric sensor inside the camera, forming a photoelectric target. Re-
garding the cat-eye effect, photoelectric target detection using active laser imaging [2] is
currently the most effective way to detect the camera. This method focuses on the camera’s
physical characteristics.

Researchers in this field initially focused on detecting the optical properties of opto-
electronic targets [3–7]. However, the detection effect was not ideal. After 2010, AlexNet [8],
VGGNet [9], and ResNet [10] have made breakthroughs in the field of image recognition
tasks, such as target detection, classification, face recognition, pose estimation, and other
aspects. Krizhevsky et al. [8] designed a seven-layer AlexNet network to prove the effec-
tiveness of convolutional neural networks (CNN), which has multi-level feature extraction
ability [11,12], demonstrating an object detection effect that outperformed classical detec-
tion algorithms. As a result, researchers gradually focused on CNN. Some researchers
used deep learning to extract photoelectric target feature information [13,14]. Ke [15]
designed a fully automatic camera detection and recognition system based on the PC,
which combines machine learning and neural network methods to identify surveillance
camera equipment effectively. This method improved VGGNet-16, and the single forward
inference time reached 5.36 s, which could not meet the real-time detection requirements
of photoelectric targets and was unsuitable for engineering applications. Liu et al. [16]

Photonics 2023, 10, 459. https://doi.org/10.3390/photonics10040459 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10040459
https://doi.org/10.3390/photonics10040459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics10040459
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10040459?type=check_update&version=2

Photonics 2023, 10, 459 2 of 17

developed a convolutional neural network photoelectric target detection and recognition
system based on NVIDIA Jeston TX2, which uses a lightweight network to detect miniature
indoor cameras. This method needs to improve the accuracy and inference acceleration of
lightweight networks and relies too much on the computing performance of NVIDIA Jeston
TX2. Moreover, Huang et al. [17] designed an improved YOLOv3 model based on the PC,
which recognizes miniature cameras in a single frame. This method requires large-volume
hardware support, and eliminating false targets in complex background environments
needs to be more thorough, as this results in unstable detection accuracy.

Classical CNNs running on GPU computing frameworks [18–20] create problems
with poor real-time performance. Therefore, this paper proposes a multi-stream inference-
optimized TensorRT (MSIOT) inference acceleration method. This method verifies the
real-time detection of photoelectric targets on the GPU computing frame with limited
computing power. This paper’s significant contributions are as follows:

• In order to effectively reduce the number of model parameters and ensure the high
accuracy of the neural network, we trained a high-precision CNN model through
knowledge distillation [21]; guided learning was performed on lightweight networks.
Finally, a high-precision lightweight network model was obtained.

• In order to reduce the number of computations in the process of model inference, we
deeply explored the inference acceleration principle of the TensorRT [22–24] engine
based on the characteristics of the GPU computing framework and built a computa-
tional graph based on the existing network. Experiments verified the effectiveness
and practicality of the TensorRT inference acceleration.

• In order to solve the excessive waste of time for data replication and overlapping
calculations during the model inference, we optimized TensorRT to exploit CUDA
(Computer Unified Device Architecture) control based on the kernel execution princi-
ple. The utilization of the GPU was fully invoked through the multi-stream [25] mode,
further shortening the inference time of deep learning models.

2. Materials
2.1. Dataset

The datasets in this experiment included exclusively accurate shots. During the
experiment, highly reflective substances such as glass, tin foil, plastic bottles, and metals
were added to simulate false targets and increase the background complexity. For this
study, we acquired 3000 active and 3000 passive images adopting the strategy described
in the literature [14]. To obtain richer miniature camera target feature information, both
images are 2048 × 2048 pixels high-resolution grayscale images. The dataset was collected
and labeled in the active image (Figure 1) based on the characteristics of the active image
enhancement target information. Specifically, the miniature camera lens’ reflected flare
(green area in the image) is the dataset’s true target. The dataset’s false targets are the metal,
plastic film, and other items near the cabinet reflected flare (red areas in the image). We
cropped 3000 active images acquired in various indoor scenarios and created 6570 datasets
of true targets. Moreover, to enhance the neural network’s object classification effect, the
ratio of the number of real target and false target datasets is controlled to 1:1. Therefore,
6570 false target images are screened, each with a size of 20 × 20 pixels.

Photonics 2023, 10, 459 3 of 17Photonics 2023, 10, x FOR PEER REVIEW 3 of 17

(a) (b) (c)

Figure 1. Sample images of a partial dataset: (a) active image labeled with a true target in the da-
taset, (b) part of the true target dataset, and (c) part of the false target dataset.

2.2. Experimental Environment
The proposed deep learning model and knowledge distillation process were imple-

mented on Inter (R) Core (TM) i7-9700F CPU@3.00 GHz, GTX TITAN XP with 12 GB GPU
memory, and a Windows 10 operating system with 64 GB system memory. The testing
environment and TensorRT acceleration utilized a NVIDIA Jeston Nano 4 GB embedded
development board, with a quad-core ARM Cortex-A57 MPCore processor and an
NVIDIA Maxwell architecture GPU with 128 NVIDIA CUDA® cores, providing 472
GFlops of computing performance.

In the network training process, the optimizer was SGD, the cross-entropy loss func-
tion was BCELoss, the momentum was set to 0.9, the initial learning rate was set to 0.001,
which dropped to the original 0.92 every ten generations, and the training samples for
each learning were 30 for a total of 100 iterations. After completing the training, the best
evaluation result was saved as the final model.

3. Methods
The main idea of this method is to ensure that the model’s parameters and calculation

burden are significantly reduced and its inference speed is improved while attaining high
prediction accuracy. It is used to solve the problem of long running time and easy jam-
ming caused by deploying a deep learning network model to a GPU computing frame-
work with limited computing power. Therefore, we developed the MSIOT inference ac-
celeration method, which fully considers the compatibility of model compression meth-
ods with inference acceleration. Knowledge distillation is adopted during model training,
and multi-stream is used for optimization during model inference based on the TensorRT
to build small memory engine files. It can further reduce the inference time to achieve fast
real-time detection of photoelectric targets.

3.1. Knowledge Distillation
Many scholars have praised convolutional neural networks due to their excellent de-

tection effects. However, directly deployed on the embedded device side, CNNs with a
huge computation complexity will affect the operation, imposing poor real-time perfor-
mance due to the device’s hardware limitations. Given that lightweight networks have
fast uptime but poor detection rates, this paper uses knowledge distillation between con-
volutional neural networks and lightweight networks to solve this problem effectively.

The complete knowledge distillation concept was first proposed in 2014 by Google
Labs Hinton [24], which experimentally verified its feasibility and the effectiveness of
CNN compression on MNIST datasets. The probability of an error class is relatively small
in the probability distribution output of a well-trained photoelectric target detection
model. Since its relative probability distribution hides the feature information that the real

Figure 1. Sample images of a partial dataset: (a) active image labeled with a true target in the dataset,
(b) part of the true target dataset, and (c) part of the false target dataset.

2.2. Experimental Environment

The proposed deep learning model and knowledge distillation process were imple-
mented on Inter (R) Core (TM) i7-9700F CPU@3.00 GHz, GTX TITAN XP with 12 GB GPU
memory, and a Windows 10 operating system with 64 GB system memory. The testing
environment and TensorRT acceleration utilized a NVIDIA Jeston Nano 4 GB embedded
development board, with a quad-core ARM Cortex-A57 MPCore processor and an NVIDIA
Maxwell architecture GPU with 128 NVIDIA CUDA® cores, providing 472 GFlops of
computing performance.

In the network training process, the optimizer was SGD, the cross-entropy loss function
was BCELoss, the momentum was set to 0.9, the initial learning rate was set to 0.001, which
dropped to the original 0.92 every ten generations, and the training samples for each
learning were 30 for a total of 100 iterations. After completing the training, the best
evaluation result was saved as the final model.

3. Methods

The main idea of this method is to ensure that the model’s parameters and calculation
burden are significantly reduced and its inference speed is improved while attaining high
prediction accuracy. It is used to solve the problem of long running time and easy jamming
caused by deploying a deep learning network model to a GPU computing framework
with limited computing power. Therefore, we developed the MSIOT inference acceleration
method, which fully considers the compatibility of model compression methods with
inference acceleration. Knowledge distillation is adopted during model training, and multi-
stream is used for optimization during model inference based on the TensorRT to build
small memory engine files. It can further reduce the inference time to achieve fast real-time
detection of photoelectric targets.

3.1. Knowledge Distillation

Many scholars have praised convolutional neural networks due to their excellent detec-
tion effects. However, directly deployed on the embedded device side, CNNs with a huge
computation complexity will affect the operation, imposing poor real-time performance
due to the device’s hardware limitations. Given that lightweight networks have fast uptime
but poor detection rates, this paper uses knowledge distillation between convolutional
neural networks and lightweight networks to solve this problem effectively.

The complete knowledge distillation concept was first proposed in 2014 by Google
Labs Hinton [24], which experimentally verified its feasibility and the effectiveness of CNN
compression on MNIST datasets. The probability of an error class is relatively small in the
probability distribution output of a well-trained photoelectric target detection model. Since
its relative probability distribution hides the feature information that the real label does

Photonics 2023, 10, 459 4 of 17

not have, knowledge distillation is introduced to improve the discriminant accuracy of
lightweight networks. As shown in Figure 2:

Photonics 2023, 10, x FOR PEER REVIEW 4 of 17

label does not have, knowledge distillation is introduced to improve the discriminant ac-
curacy of lightweight networks. As shown in Figure 2:

Figure 2. Knowledge distillation schematic diagram.

The temperature coefficient T is added to the output layer of Softmax to smooth the
probability distribution of the network’s output. The output obtained is called a soft tar-
get; soft targets and real tags work together to guide student network training. The loss
function KDJ can be expressed as

()

+=

∧∧

iiCEtrueCEKD qpJTpJJ ,,y 2γ (1)

()
()∑

=
∧

j i

i
i Tz

Tzq
/exp

/exp
 (2)

Neural networks typically generate class probabilities using a Softmax output layer,
which normalizes iz to probability iq . Furthermore, (),CE trueJ y p represents the
cross-entropy between the predicted output of the student network and the true label, and
γ is a hyperparameter that adjusts the proportion between the predicted output after
smoothing by the student network and the teacher network. When cross-entropy is back-
propagated, the gradient changes to the original 21/ T , which is smoothed by a hyperpa-
rameter T . Therefore, to preserve the scale of its gradient consistent with the scale of the
cross-entropy corresponding to the true label, it is necessary to multiply the smoothed
cross-entropy by 2T .

3.2. TensorRT Acceleration
TensorRT can reconstruct the computational graph according to the structural char-

acteristics of different deep learning models and then generate engine files that are more
suitable for inference operations. It will select the most suitable CUDNN [26] for acceler-
ation operations, significantly reducing the inference time of deep learning models. The
core part of TensorRT is layer and tensor fusion. It is well known that the excellent per-
formance of deep learning is due to its numerous network layers (convolution layer,
batch-norm layer [27], activation layer, etc.). For regular model deployment inference, the
GPU performs layer-by-layer computation. GPU has a shorter computation time than
CPU because it exploits different CUDA cores. During this operation, a lot of time will be
concentrated on CUDA memory occupation to read and write the weights of each layer,

Figure 2. Knowledge distillation schematic diagram.

The temperature coefficient T is added to the output layer of Softmax to smooth the
probability distribution of the network’s output. The output obtained is called a soft target;
soft targets and real tags work together to guide student network training. The loss function
JKD can be expressed as

JKD = JCE(ytrue, p) + γT2 JCE

(∧
pi,
∧
qi

)
(1)

∧
qi =

exp(zi/T)
∑j exp(zi/T)

(2)

Neural networks typically generate class probabilities using a Softmax output layer,
which normalizes zi to probability qi. Furthermore, JCE(ytrue, p) represents the cross-
entropy between the predicted output of the student network and the true label, and γ is a
hyperparameter that adjusts the proportion between the predicted output after smoothing
by the student network and the teacher network. When cross-entropy is backpropagated,
the gradient changes to the original 1/T2, which is smoothed by a hyperparameter T.
Therefore, to preserve the scale of its gradient consistent with the scale of the cross-entropy
corresponding to the true label, it is necessary to multiply the smoothed cross-entropy
by T2.

3.2. TensorRT Acceleration

TensorRT can reconstruct the computational graph according to the structural char-
acteristics of different deep learning models and then generate engine files that are more
suitable for inference operations. It will select the most suitable CUDNN [26] for accelera-
tion operations, significantly reducing the inference time of deep learning models. The core
part of TensorRT is layer and tensor fusion. It is well known that the excellent performance
of deep learning is due to its numerous network layers (convolution layer, batch-norm
layer [27], activation layer, etc.). For regular model deployment inference, the GPU per-
forms layer-by-layer computation. GPU has a shorter computation time than CPU because
it exploits different CUDA cores. During this operation, a lot of time will be concentrated
on CUDA memory occupation to read and write the weights of each layer, leading to a
serious waste of GPU resources. To alleviate this phenomenon, TensorRT will perform
transverse merging between layers and longitudinal merging between layers.

In this experiment, we selected the lightweight network Shuffv2_x0_5 to detect photo-
electric targets (the specific reasons for selecting the network are analyzed in the experimen-
tal part of Section 4.1). The Shuffv2_x0_5 network ONNX [28] and engine computational
diagram are shown in Figure 3:

Photonics 2023, 10, 459 5 of 17

Photonics 2023, 10, x FOR PEER REVIEW 5 of 17

leading to a serious waste of GPU resources. To alleviate this phenomenon, TensorRT will
perform transverse merging between layers and longitudinal merging between layers.

In this experiment, we selected the lightweight network Shuffv2_x0_5 to detect pho-
toelectric targets (the specific reasons for selecting the network are analyzed in the exper-
imental part of Section 4.1). The Shuffv2_x0_5 network ONNX [28] and engine computa-
tional diagram are shown in Figure 3:

(a)

(b)

Figure 3. ShuffleNetV2 network structure: (a) ONNX format file calculation diagram and (b) engine
format file calculation diagram.

In the process of deploying model inference, the operation of each layer is completed
by the GPU by booting different CUDA core calculations. Although the CUDA core com-
puting tensor is very fast, much time is wasted to start up CUDA cores to read and write
tensor on each layer. This causes a bottleneck in memory bandwidth and a serious waste
of GPU resources. For example, in the Figure 3 Block 1 structure, Conv 1 × 1 layer, Conv 3
× 3 layer, BN layer, and Relu layer each need to start different CUDA cores. The vast ma-
jority of computation in neural networks is concentrated in the Conv layer and the Relu
layer. TensorRT will conduct transverse merging between layers. As shown in Figure 3b,
the Conv layer and BN layer are transverse merged into a CB structure. Transverse merges
the Conv layer, BN layer, and Relu layer into a CBR structure. This strategy reduces the
memory footprint by occupying only one CUDA core. The Conv layer can be expressed
as:

∑ +=
N

i iiconv bxwY (3)

Figure 3. ShuffleNetV2 network structure: (a) ONNX format file calculation diagram and (b) engine
format file calculation diagram.

In the process of deploying model inference, the operation of each layer is completed
by the GPU by booting different CUDA core calculations. Although the CUDA core
computing tensor is very fast, much time is wasted to start up CUDA cores to read and
write tensor on each layer. This causes a bottleneck in memory bandwidth and a serious
waste of GPU resources. For example, in the Figure 3 Block 1 structure, Conv 1 × 1 layer,
Conv 3× 3 layer, BN layer, and Relu layer each need to start different CUDA cores. The vast
majority of computation in neural networks is concentrated in the Conv layer and the Relu
layer. TensorRT will conduct transverse merging between layers. As shown in Figure 3b,
the Conv layer and BN layer are transverse merged into a CB structure. Transverse merges
the Conv layer, BN layer, and Relu layer into a CBR structure. This strategy reduces the
memory footprint by occupying only one CUDA core. The Conv layer can be expressed as:

Yconv = ∑N
i wixi + b (3)

where xi is the input tensor of the layer’s shape, C× H ×W, Yconv is the output tensor of
the layer’s shape, C× H ×W, wi is the weight parameter, and b is the bias parameter. The
BN layer can be expressed as

YBN =
XBN −meanBN√
varBN + epsilon

· scale + β (4)

Photonics 2023, 10, 459 6 of 17

where meanBN is the mean of the input tensor, varBN is the variance of the input tensor,
and β is a learnable parameter. In TensorRT optimization, the Conv layer is usually merged
with the BN layer to reduce the memory footprint. Take the output Yconv of the Conv layer
in Equation (1) as input XBN of the BN layer. After the Conv layer is fused with the BN
layer, the merged layer can be expressed as:

YBN =
∑N

i wi · scale√
varBN + epsilon

· xi +
b−meanBN√

varBN + epsilon
· scale + BBN (5)

where the weight parameter W and the paranoid parameter B after fusion can be ex-
pressed as:

W =
∑N

i wi · scale√
varBN + epsilon

(6)

B =
b−meanBN√

varBN + epsilon
· scale + β (7)

During the float32 or float16 quantification, the Relu layer can be fused with the Conv
+ BN layer. For the input vector from the previous convolutional layer, the output can
be obtained using the linear rectification activation function. The fusion result can be
expressed as:

YRelu = max(0, YBN) (8)

Furthermore, the Shuffv2_x0_5 network structure in Figure 3a reduces the 244 layers
to 135 layers through the transverse merging of TensorRT. Moreover, TensorRT further
conducts longitudinal merging between layers by merging layers of the same structures
and different values, which also occupies only a single CUDA core. For example, in Figure 3
Block 1, the CBR contains Conv 1 ×1 layers, BN layers, and Relu layers of channel 1 and
channel 2. The Shuffv2_x0_5 network is reduced to 106 layers through longitudinal merging
between the layers. The merged CBR structure will traverse CUDA depthwise convolution,
fused contact convolution, CuDNN convolution, CuBLAS convolution, cask convolution,
and other tactics, and then choose the fastest tactic for the operation. After TensorRT
optimization, the number of computational layers significantly reduces. Meanwhile, the
CUDA cores and memory also reduce to achieve inference acceleration. Overall, the
TensorRT quantification tool provides a complete automated calibration process in addition
to the transverse and longitudinal merging between layers. It avoids the complicated
and cumbersome workload of manual parameter adjustment, and its quantification effect
is superior.

3.3. Multi-Stream Mode

The optimization of general TensorRT mainly includes the multi-optimization profile
mode, multi-context mode, and multi-stream mode. Among them, the multi-optimization
profile mode solves the problem that TensorRT needs to be compatible with multiple
different dynamic sizes when performing optimization on kernels, and the kernel performs
poorly for some specific sizes when the dynamic size is relatively large. The multi-context
mode solves the problem that the engine saves duplicates during the TensorRT multi-
threaded inference. It can be achieved by saving only one engine file on the GPU for
multiple threads to perform inference calculations, and the memory footprint and inference
computation can be superimposed simultaneously. The multi-stream mode solves the
problem of excessive time wasted due to data copying and overlapping calculations during
engineering applications. Essentially, the multi-stream mode increases GPU usage and
increases inference speed.

According to the actual real-time detection requirements for detecting optoelec-
tronic targets, the input data dimensions are fixed values when inference is performed in
Shuffv2_x0_5 models. Therefore, we only use the multi-stream mode to further optimize
the general TensorRT inference in CUDA computing GPU-related function calls. For exam-

Photonics 2023, 10, 459 7 of 17

ple, asynchronous memory request/release, asynchronous memory copy, kernel execution,
and other operations will be placed in the stream. In the same stream, the order of function
operation is gradually operated by the time order in which each step joins the stream.
When performing tasks of different streams, we must insert CUDA events to control stream
timing synchronization. As shown in Figure 4:

Photonics 2023, 10, x FOR PEER REVIEW 7 of 17

3.3. Multi-Stream Mode
The optimization of general TensorRT mainly includes the multi-optimization profile

mode, multi-context mode, and multi-stream mode. Among them, the multi-optimization
profile mode solves the problem that TensorRT needs to be compatible with multiple dif-
ferent dynamic sizes when performing optimization on kernels, and the kernel performs
poorly for some specific sizes when the dynamic size is relatively large. The multi-context
mode solves the problem that the engine saves duplicates during the TensorRT multi-
threaded inference. It can be achieved by saving only one engine file on the GPU for mul-
tiple threads to perform inference calculations, and the memory footprint and inference
computation can be superimposed simultaneously. The multi-stream mode solves the
problem of excessive time wasted due to data copying and overlapping calculations dur-
ing engineering applications. Essentially, the multi-stream mode increases GPU usage
and increases inference speed.

According to the actual real-time detection requirements for detecting optoelectronic
targets, the input data dimensions are fixed values when inference is performed in
Shuffv2_x0_5 models. Therefore, we only use the multi-stream mode to further optimize
the general TensorRT inference in CUDA computing GPU-related function calls. For ex-
ample, asynchronous memory request/release, asynchronous memory copy, kernel exe-
cution, and other operations will be placed in the stream. In the same stream, the order of
function operation is gradually operated by the time order in which each step joins the
stream. When performing tasks of different streams, we must insert CUDA events to con-
trol stream timing synchronization. As shown in Figure 4:

(a) (b)

Figure 4. Stream inference mode execution order: (a) single-stream, (b) multi-stream.

In multi-stream mode, Stream 0 is executed sequentially (Asynchronous copy of data
→ Kernel 0 → EventRecord → Asynchronous copy of data). Stream 1 is executed sequen-
tially (Asynchronous copy of data → Stream Wait Record → Kernel 1 → Asynchronous
copy of data). The difference is that Stream 1 waits when it executes Stream Wait Record.
Moreover, Stream 1 will continue to execute when Stream 0 finishes executing the Even-
tRecord step. This ensures that Kernel 1 is executed only after Kernel 0 is executed, which
controls the order in which different kernels are executed between different streams. It is
worth mentioning that the CPU-side data of all CUDA event function calls is returned
immediately. The memory in the CPU side is divisible that swaps data into a file in order
to conserve memory usage. This will lead to an undesirable phenomenon. The memory
required by the CPU has been swapped to a file when the kernel is not executed. To solve
this problem, we need to use pinned-memory in the multi-stream mode to call the CUDA
stream function and the CUDA event function. This saves resources in time and space;
multi-streams transfer each other between asynchronous copies and accelerated inference
calculations.

Figure 4. Stream inference mode execution order: (a) single-stream, (b) multi-stream.

In multi-stream mode, Stream 0 is executed sequentially (Asynchronous copy of data
→ Kernel 0→ EventRecord→ Asynchronous copy of data). Stream 1 is executed sequen-
tially (Asynchronous copy of data→ Stream Wait Record→ Kernel 1→ Asynchronous
copy of data). The difference is that Stream 1 waits when it executes Stream Wait Record.
Moreover, Stream 1 will continue to execute when Stream 0 finishes executing the Even-
tRecord step. This ensures that Kernel 1 is executed only after Kernel 0 is executed, which
controls the order in which different kernels are executed between different streams. It
is worth mentioning that the CPU-side data of all CUDA event function calls is returned
immediately. The memory in the CPU side is divisible that swaps data into a file in order
to conserve memory usage. This will lead to an undesirable phenomenon. The memory
required by the CPU has been swapped to a file when the kernel is not executed. To
solve this problem, we need to use pinned-memory in the multi-stream mode to call the
CUDA stream function and the CUDA event function. This saves resources in time and
space; multi-streams transfer each other between asynchronous copies and accelerated
inference calculations.

4. Results
4.1. Analysis of Knowledge Distillation Results

In this section, we conducted relevant experiments in order to verify that knowledge
distillation can eliminate the poor real-time performance of convolutional neural networks
deployed in GPU computing frameworks with limited computing power, and to improve
the prediction accuracy of lightweight network models. The hardware device used in the
experiment is the NVIDIA Jeston Nano, well-received industry hardware that is commonly
used as a cost-effective edge device. The knowledge distillation teacher network mainly
selects three classical neural networks: VGG16, AlexNet, and Resnet18.

The number of parameters and calculations are two important indicators to mea-
sure the deep learning method. The top1%, parameter amount, calculation amount,
and average inference time of 50 inferences in the NVIDIA Jeston Nano are reported in
Table 1 (—indicates that the resources occupied by NVIDIA Jeston Nano are too large
to run).

Photonics 2023, 10, 459 8 of 17

Table 1. Candidate teacher network Top-1%, parameter quantity, calculation amount, and inference
time in NVIDIA Jeston Nano.

Network Top-1% Parameter
Quantity (M)

Calculated
Amount (M)

Inference Time
(s)

VGG16 99.18% 134.27 1368.74 -
AlexNet 98.75% 57.00 90.61 0.2152

ResNet18 98.27% 23.51 82.27 0.1343

Table 1 shows that the three classical neural networks VGG16, AlexNet, and Resnet18
have little effect on the detection accuracy of photoelectric targets. The difference lies in
the complexity of the respective network structure. It leads to large differences in the
number of parameters and calculations of the network. It will affect the inference speed of
the network.

Therefore, we carried out knowledge distillation comparison experiments between
teacher networks and different student networks. The student network was one of the
lightweight networks: Shuffv2 [29], Squeezent [30], GhostNet [31], and CondenseNetv2 [32].
The parameters of top-1%, parameter quantity, calculation amount, and average inference
time of 50 inferences in the NVIDIA Jeston Nano after knowledge distillation on the four
lightweight networks are reported in Table 2:

Table 2. Lightweight network top-1% before and after knowledge distillation, parameter quantity,
calculation amount, and the inference time in NVIDIA Jeston Nano.

Network Top-
1%

KD-
VGG16
Top-1%

KD- AlexNet
Top-1%

KD-
ResNet18
Top-1%

Parameter
Quantity

(M)

Calculated
Amount (M)

Inference
Time (s)

Shuffv2_x0_5 97.31% 96.47% 96.08% 97.72% 0.34 2.95 0.0759
Shuffv2_x1_0 97.87% 97.22% 97.74% 98.09% 1.26 11.62 0.0893
Shuffv2_x1_5 98.23% 97.37% 97.89% 98.18% 2.48 24.07 0.0982
Shuffv2_x2_0 98.39% 97.93% 98.14% 98.21% 5.35 47.62 0.1176
Squeezent1_0 96.06% 86.83% 66.72% 95.97% 0.73 41.74 0.0734
Squeezent1_1 90.04% 93.47% 76.79% 92.29% 0.72 16.05 0.0697

GhostNet 96.22% 97.72% 97.60% 97.67% 3.90 14.26 0.0928
CondenseNetv2 93.87% 96.94% 95.02% 97.23% 7.26 169.0 -

Table 2 reveals that most of the lightweight networks by knowledge distillation have
higher detection accuracy than the lightweight networks trained alone. However, this is
not absolute. According to the Kolmogorov complexity, reducing the complexity of the
dataset can improve the accuracy of machine learning models [33,34]. So model accuracy
is determined by the complexity of the dataset and the training process. In particular, the
accuracy of the ResNet18 network for knowledge distillation is more significant. The result
is that the ResNet18 network is less different from the lightweight network, which is conve-
nient for obtaining the feature information passed between layers. The lightweight network
can obtain better distillation results. Therefore, the ResNet18 was selected as the teacher
network for knowledge distillation. In the selection of student networks, inference time is
the primary factor considering that the algorithm is to be deployed on a low-computing
GPU computing framework. Table 2 shows that the Squeezent1_1, Squeezent1_0, and
Shuffv2_x0_5 after knowledge distillation have good reasoning performance. Secondly,
we must consider the detection accuracy, parameter quantity, and calculation amount
factors. It can be found that Shuffv2_x0_5 has more advantages in these three parameters
through experimental comparison. Shuffv2_x0_5 accuracy increased by 1.75% compared to
Squeezent1_0 and 5.43% compared to Squeezent1_1. This analysis is because Shuffv2_x0_5
uses a residual network structure similar to ResNet18. In layperson’s terms, the main
module of the Shuffv2_x0_5 is the improved and lightweight design in the module of

Photonics 2023, 10, 459 9 of 17

ResNet18. At the same time, Shuffv2_x0_5 has a significant reduction in the number of
model parameters and calculations, which has better performance advantages. Therefore,
the Shuffv2_x0_5 network after knowledge distillation of ResNet18 was selected and de-
ployed as a photoelectric target detection network on the NVIDIA Jeston Nano. During the
training process, Shuffv2_x0_5 loss and accuracy after individual training and ResNet18
knowledge distillation are shown in Figure 5:

Photonics 2023, 10, x FOR PEER REVIEW 9 of 17

is determined by the complexity of the dataset and the training process. In particular, the
accuracy of the ResNet18 network for knowledge distillation is more significant. The re-
sult is that the ResNet18 network is less different from the lightweight network, which is
convenient for obtaining the feature information passed between layers. The lightweight
network can obtain better distillation results. Therefore, the ResNet18 was selected as the
teacher network for knowledge distillation. In the selection of student networks, inference
time is the primary factor considering that the algorithm is to be deployed on a low-com-
puting GPU computing framework. Table 2 shows that the Squeezent1_1, Squeezent1_0,
and Shuffv2_x0_5 after knowledge distillation have good reasoning performance. Sec-
ondly, we must consider the detection accuracy, parameter quantity, and calculation
amount factors. It can be found that Shuffv2_x0_5 has more advantages in these three
parameters through experimental comparison. Shuffv2_x0_5 accuracy increased by 1.75%
compared to Squeezent1_0 and 5.43% compared to Squeezent1_1. This analysis is because
Shuffv2_x0_5 uses a residual network structure similar to ResNet18. In layperson’s terms,
the main module of the Shuffv2_x0_5 is the improved and lightweight design in the mod-
ule of ResNet18. At the same time, Shuffv2_x0_5 has a significant reduction in the number
of model parameters and calculations, which has better performance advantages. There-
fore, the Shuffv2_x0_5 network after knowledge distillation of ResNet18 was selected and
deployed as a photoelectric target detection network on the NVIDIA Jeston Nano. During
the training process, Shuffv2_x0_5 loss and accuracy after individual training and Res-
Net18 knowledge distillation are shown in Figure 5:

(a) (b)

Figure 5. Knowledge distillation contrasts loss and accuracy in the process of model training: (a)
loss comparison chart, (b) accuracy comparison chart.

4.2. Analysis of MSIOT Result
In this section, we conducted experiments and analyzed the effectiveness of the

MSIOT method in GPU computing frameworks with limited computing power. We used
the TensorRT engine for inference acceleration and analysis of its inference results. The
optimal lightweight network is Shuffv2_x0_5 (hereinafter referred to as ShuffNet) accord-
ing to experiment 4.1. We converted ShuffNet to a compatible ONNX file and completed
the construction of the engine file (hereinafter referred to as ShuffEng). Since the NVIDIA
Jetson Nano platform only supports F32 precision, the engine adopts the full precision
mode for inference. Figure 6 illustrates a comparative test of the photoelectric target de-
tection forward inference between ShuffNet and ShuffEng by CUDNN in GPU mode on
the NVIDIA Jetson Nano, and the true classified target is marked on the original image.

Figure 5. Knowledge distillation contrasts loss and accuracy in the process of model training: (a) loss
comparison chart, (b) accuracy comparison chart.

4.2. Analysis of MSIOT Result

In this section, we conducted experiments and analyzed the effectiveness of the
MSIOT method in GPU computing frameworks with limited computing power. We used
the TensorRT engine for inference acceleration and analysis of its inference results. The
optimal lightweight network is Shuffv2_x0_5 (hereinafter referred to as ShuffNet) according
to experiment 4.1. We converted ShuffNet to a compatible ONNX file and completed the
construction of the engine file (hereinafter referred to as ShuffEng). Since the NVIDIA
Jetson Nano platform only supports F32 precision, the engine adopts the full precision
mode for inference. Figure 6 illustrates a comparative test of the photoelectric target
detection forward inference between ShuffNet and ShuffEng by CUDNN in GPU mode on
the NVIDIA Jetson Nano, and the true classified target is marked on the original image.Photonics 2023, 10, x FOR PEER REVIEW 10 of 17

(a) (b) (c)

Figure 6. Photoelectric target detection forward inference comparison test: (a) active image, (b) in-
ference result of ShuffNet, and (c) inference result of ShuffEng.

We input 500 test sets of experiment 2.2 into ShuNet and ShuEng, respectively, for
photoelectric target binary classification tasks, and the confusion matrix is identical, as
shown in Figure 7:

Figure 7. Part of the test dataset photoelectric target binary classification confusion matrix.

Accuracy, precision, recall, and F1 score have always been essential detection indica-
tors for binary classification tasks. The above four parameters are used to evaluate the
detection results of ShuNet and ShuEng according to the confusion matrix, as shown in
Table 3.

Table 3. Detection rate and false alarm rate of different inference modes in multiple scenarios (unit: %).

Model Accuracy Precision Recall F1 Score
ShuffNet 94.2% 93.16% 95.4% 94.27%
ShuffEng 94.2% 93.16% 95.4% 94.27%

ShuffNet inference weight precision is 32 bits. ShuffEng inference full precision is
also 32 bits. It is fully verified through Table 3 that ShuffNet and ShuffEng have no impact
on the accuracy, precision, recall, and F1 score indicators of photoelectric target detection

Figure 6. Photoelectric target detection forward inference comparison test: (a) active image, (b)
inference result of ShuffNet, and (c) inference result of ShuffEng.

We input 500 test sets of experiment 2.2 into ShuNet and ShuEng, respectively, for
photoelectric target binary classification tasks, and the confusion matrix is identical, as
shown in Figure 7:

Photonics 2023, 10, 459 10 of 17

Photonics 2023, 10, x FOR PEER REVIEW 10 of 17

(a) (b) (c)

Figure 6. Photoelectric target detection forward inference comparison test: (a) active image, (b) in-
ference result of ShuffNet, and (c) inference result of ShuffEng.

We input 500 test sets of experiment 2.2 into ShuNet and ShuEng, respectively, for
photoelectric target binary classification tasks, and the confusion matrix is identical, as
shown in Figure 7:

Figure 7. Part of the test dataset photoelectric target binary classification confusion matrix.

Accuracy, precision, recall, and F1 score have always been essential detection indica-
tors for binary classification tasks. The above four parameters are used to evaluate the
detection results of ShuNet and ShuEng according to the confusion matrix, as shown in
Table 3.

Table 3. Detection rate and false alarm rate of different inference modes in multiple scenarios (unit: %).

Model Accuracy Precision Recall F1 Score
ShuffNet 94.2% 93.16% 95.4% 94.27%
ShuffEng 94.2% 93.16% 95.4% 94.27%

ShuffNet inference weight precision is 32 bits. ShuffEng inference full precision is
also 32 bits. It is fully verified through Table 3 that ShuffNet and ShuffEng have no impact
on the accuracy, precision, recall, and F1 score indicators of photoelectric target detection

Figure 7. Part of the test dataset photoelectric target binary classification confusion matrix.

Accuracy, precision, recall, and F1 score have always been essential detection indicators
for binary classification tasks. The above four parameters are used to evaluate the detection
results of ShuNet and ShuEng according to the confusion matrix, as shown in Table 3.

Table 3. Detection rate and false alarm rate of different inference modes in multiple scenarios
(unit: %).

Model Accuracy Precision Recall F1 Score

ShuffNet 94.2% 93.16% 95.4% 94.27%
ShuffEng 94.2% 93.16% 95.4% 94.27%

ShuffNet inference weight precision is 32 bits. ShuffEng inference full precision is also
32 bits. It is fully verified through Table 3 that ShuffNet and ShuffEng have no impact on
the accuracy, precision, recall, and F1 score indicators of photoelectric target detection when
the inference weight type is the same and only affects the inference speed of the model.
Next, we explored the inference time of ShuffNet and ShuffEng on the NVIDIA Jeston Nano
hardware platform. We selected 500 test sets of different specifications for inference, and
the average inference time of each 10 times was recorded as data. The inference times for
different sizes (20 × 20, 40 × 40, 60 × 60, 80 × 80, 100 × 100, 120 × 120) input to ShuffNet
and ShuffEng are shown in Figure 8:

The speedup ratio of different sizes (20 × 20, 40 × 40, 60 × 60, 80 × 80, 100 × 100, 120
× 120) input to ShuffNet and ShuffEng is shown in Table 4:

Table 4. ShuffEng inference time speedup ratio for different input sizes.

Input Size 20 × 20 40 × 40 60 × 60 80 × 80 100 × 100 120 × 120
Speedup

Ratio 7.2323 6.1883 6.9185 5.7292 6.2322 4.3423

Photonics 2023, 10, 459 11 of 17

Photonics 2023, 10, x FOR PEER REVIEW 11 of 17

when the inference weight type is the same and only affects the inference speed of the
model. Next, we explored the inference time of ShuffNet and ShuffEng on the NVIDIA
Jeston Nano hardware platform. We selected 500 test sets of different specifications for
inference, and the average inference time of each 10 times was recorded as data. The in-
ference times for different sizes (20 × 20, 40 × 40, 60 × 60, 80 × 80, 100 × 100, 120 × 120) input
to ShuffNet and ShuffEng are shown in Figure 8:

Figure 8. Inference time input to ShuffNet and ShuffEng with different sizes.

The speedup ratio of different sizes (20 × 20, 40 × 40, 60 × 60, 80 × 80, 100 × 100, 120 ×
120) input to ShuffNet and ShuffEng is shown in Table 4:

Figure 8. Inference time input to ShuffNet and ShuffEng with different sizes.

Figure 8 and Table 4 demonstrate a significant increase in ShuffEng inference time
compared to ShuffNet. The increase in the input size increases the inference time of the
model. According to different input sizes, the inference time acceleration ratio can reach
4.3–7.2 ×, significantly improving the inference performance of deep learning models
deployed in low-computing GPU computing frameworks. However, in the real-time
detection of photoelectric targets, the number of detection areas of different frame images
differs due to the possibility of multiple targets in the same image.

Multiple detection regions in the image are input into the network model simultane-
ously. The difference in the number of detection regions will lead to a significant difference
in the inference time between the nth and the n–1 frame images. It can occur because of
excessive waiting time caused by the data copy. To solve this problem, we used multi-
stream to tuning TensorRT and conduct comparative experiments. We selected 500 test sets
for inference time comparison during the experiment and recorded the average of every
10 inference times as one dataset to further narrow the error of single inference time. We
recorded host to device data copy (Copy-HtoD), device to host data copy (Copy-DtoH),

Photonics 2023, 10, 459 12 of 17

TensorRT runtime, and MSIOT (Ours) runtime. The inference time of TensorRT and MSIOT
during photoelectric targets real-time detection is shown in Figure 9.

Photonics 2023, 10, x FOR PEER REVIEW 12 of 17

Table 4. ShuffEng inference time speedup ratio for different input sizes.

Input Size 20 × 20 40 × 40 60 × 60 80 × 80 100 × 100 120 × 120
Speedup Ratio 7.2323 6.1883 6.9185 5.7292 6.2322 4.3423

Figure 8 and Table 4 demonstrate a significant increase in ShuffEng inference time
compared to ShuffNet. The increase in the input size increases the inference time of the
model. According to different input sizes, the inference time acceleration ratio can reach
4.3–7.2 ×, significantly improving the inference performance of deep learning models de-
ployed in low-computing GPU computing frameworks. However, in the real-time detec-
tion of photoelectric targets, the number of detection areas of different frame images dif-
fers due to the possibility of multiple targets in the same image.

Multiple detection regions in the image are input into the network model simultane-
ously. The difference in the number of detection regions will lead to a significant differ-
ence in the inference time between the nth and the n–1 frame images. It can occur because
of excessive waiting time caused by the data copy. To solve this problem, we used multi-
stream to tuning TensorRT and conduct comparative experiments. We selected 500 test
sets for inference time comparison during the experiment and recorded the average of
every 10 inference times as one dataset to further narrow the error of single inference time.
We recorded host to device data copy (Copy-HtoD), device to host data copy (Copy-
DtoH), TensorRT runtime, and MSIOT (Ours) runtime. The inference time of TensorRT
and MSIOT during photoelectric targets real-time detection is shown in Figure 9.

Photonics 2023, 10, x FOR PEER REVIEW 13 of 17

Figure 9. Inference time comparison between TensorRT and MSIOT during photoelectric targets
real-time detection.

Figure 9 shows that MSIOT has better inference performance. MSIOT is 9.3% faster
than TensorRT, and the inference time is more stable. The reasons for the improvement of
inference speed are mainly reflected in the following two aspects:
1. Copy-HtoD and Copy-DtoH cannot be avoided when using GPUs for inference. Fig-

ure 7 shows that Copy-HtoD and Copy-DtoH occupy a relatively small amount of
time, but the time occupancy of data replication in each inference will have a non-
negligible time cost. Theoretically, MSIOT saves n–1 times Copy-HtoD and Copy-
DtoH in the n times inference process compared to TensorRT. MSIOT can better cope
with multiple inference tasks of photoelectric targets real-time detection.

2. MSIOT uses multiple threads within the same CUDA to perform calculations simul-
taneously by calling CUDA cores in a more complete way than TensorRT, improving
the hardware performance utilization and stabilizing the inference speed in perform-
ing photoelectric targets detection task.
This paper proposes a MSIOT inference acceleration method. It improves the infer-

ence speed of photoelectric target detection without affecting accuracy. Its single inference
time is stable between 0.6–0.8 ms. This method has practical engineering application
value.

4.3. System Experimental Verification
In order to verify the effectiveness and robustness of the above method in actual in-

door scenarios, this chapter integrates a photoelectric target rapid detection system and
carries out experimental system verification. We pre-placed 1–2 pinhole cameras in dif-
ferent indoor scenarios. We hid a pinhole camera in the corner of a complex interior or in
an object that is difficult to identify by the human eye alone. The following experiments
were carried out for the following four scenarios, with distances ranging from 3–10 m, as
shown in Figure 10:

Figure 9. Inference time comparison between TensorRT and MSIOT during photoelectric targets
real-time detection.

Figure 9 shows that MSIOT has better inference performance. MSIOT is 9.3% faster
than TensorRT, and the inference time is more stable. The reasons for the improvement of
inference speed are mainly reflected in the following two aspects:

1. Copy-HtoD and Copy-DtoH cannot be avoided when using GPUs for inference.
Figure 7 shows that Copy-HtoD and Copy-DtoH occupy a relatively small amount
of time, but the time occupancy of data replication in each inference will have a
non-negligible time cost. Theoretically, MSIOT saves n–1 times Copy-HtoD and Copy-
DtoH in the n times inference process compared to TensorRT. MSIOT can better cope
with multiple inference tasks of photoelectric targets real-time detection.

2. MSIOT uses multiple threads within the same CUDA to perform calculations simulta-
neously by calling CUDA cores in a more complete way than TensorRT, improving the

Photonics 2023, 10, 459 13 of 17

hardware performance utilization and stabilizing the inference speed in performing
photoelectric targets detection task.

This paper proposes a MSIOT inference acceleration method. It improves the inference
speed of photoelectric target detection without affecting accuracy. Its single inference time
is stable between 0.6–0.8 ms. This method has practical engineering application value.

4.3. System Experimental Verification

In order to verify the effectiveness and robustness of the above method in actual indoor
scenarios, this chapter integrates a photoelectric target rapid detection system and carries
out experimental system verification. We pre-placed 1–2 pinhole cameras in different
indoor scenarios. We hid a pinhole camera in the corner of a complex interior or in an
object that is difficult to identify by the human eye alone. The following experiments were
carried out for the following four scenarios, with distances ranging from 3–10 m, as shown
in Figure 10:

Photonics 2023, 10, x FOR PEER REVIEW 14 of 17

Figure 10. Four different indoor experimental scenarios.

Scenario 1 is a laboratory scenario where two pinhole cameras are hidden; Scenario
2 is a conference room scenario hiding a 1.0 mm diameter pinhole camera on a book; Sce-
nario 3 simulates a 1.5 mm diameter pinhole camera installed in a handbag to shoot the
field of view ahead; Scenario 4 is a scenario where a 1.0 mm diameter pinhole camera is
hidden in a bookcase with human interference factors. The above four scenarios are chal-
lenging to find by naked eye inspection alone, and the detection results of the photoelec-
tric target rapid detection system are shown in Figure 11:

Figure 11. The system detects the image.

Figure 10. Four different indoor experimental scenarios.

Scenario 1 is a laboratory scenario where two pinhole cameras are hidden; Scenario 2
is a conference room scenario hiding a 1.0 mm diameter pinhole camera on a book; Scenario
3 simulates a 1.5 mm diameter pinhole camera installed in a handbag to shoot the field of
view ahead; Scenario 4 is a scenario where a 1.0 mm diameter pinhole camera is hidden
in a bookcase with human interference factors. The above four scenarios are challenging
to find by naked eye inspection alone, and the detection results of the photoelectric target
rapid detection system are shown in Figure 11:

Photonics 2023, 10, 459 14 of 17

Photonics 2023, 10, x FOR PEER REVIEW 14 of 17

Figure 10. Four different indoor experimental scenarios.

Scenario 1 is a laboratory scenario where two pinhole cameras are hidden; Scenario
2 is a conference room scenario hiding a 1.0 mm diameter pinhole camera on a book; Sce-
nario 3 simulates a 1.5 mm diameter pinhole camera installed in a handbag to shoot the
field of view ahead; Scenario 4 is a scenario where a 1.0 mm diameter pinhole camera is
hidden in a bookcase with human interference factors. The above four scenarios are chal-
lenging to find by naked eye inspection alone, and the detection results of the photoelec-
tric target rapid detection system are shown in Figure 11:

Figure 11. The system detects the image. Figure 11. The system detects the image.

The real-time detection results of the equipment are shown in Figure 12, and they are
all real-time detection.

Photonics 2023, 10, x FOR PEER REVIEW 15 of 17

The real-time detection results of the equipment are shown in Figure 12, and they are
all real-time detection.

Figure 12. The system detects the results in real time.

The equipment can accurately detect pinhole cameras in different indoor environ-
ments through the above real-time detection results. It can still detect in real time with
reasonable accuracy under human interference factors, proving the equipment’s effective-
ness and the superiority of surpassing manual troubleshooting.

While verifying the system effectiveness of the above experiments, the detection time
of each scenario was counted, and the average detection time of the four scenarios was 30
ms, 24 ms, 33 ms, and 22 ms, respectively.

Scenario 3 is more complex than the Scenario 2 background. The background in Sce-
nario 2 is only miscellaneous objects and some books. The background of Scenario 3 con-
tains many bright metal objects, such as instruments, stools, and connecting wires. These
items have specific pseudo-target characteristics. After analysis, the length of detection
time depends on the number of candidate regions input. The more bright radiation in the
background, the more complex the background, resulting in a sharp increase in candidate
regions so that the discrimination time becomes longer.

We counted the detection time in 10 different indoor scenarios, and according to the
1-s video composed of 24 frames, each detection time’s average detection time is less than
42 ms during the actual detection process to ensure the real-time detection video. After
statistics, the average detection time of the system for ten different indoor scenarios is 32
ms, and the performance of similar methods is compared, as shown in Table 5.

Figure 12. The system detects the results in real time.

The equipment can accurately detect pinhole cameras in different indoor environments
through the above real-time detection results. It can still detect in real time with reasonable
accuracy under human interference factors, proving the equipment’s effectiveness and the
superiority of surpassing manual troubleshooting.

While verifying the system effectiveness of the above experiments, the detection time
of each scenario was counted, and the average detection time of the four scenarios was 30
ms, 24 ms, 33 ms, and 22 ms, respectively.

Photonics 2023, 10, 459 15 of 17

Scenario 3 is more complex than the Scenario 2 background. The background in
Scenario 2 is only miscellaneous objects and some books. The background of Scenario 3
contains many bright metal objects, such as instruments, stools, and connecting wires. These
items have specific pseudo-target characteristics. After analysis, the length of detection
time depends on the number of candidate regions input. The more bright radiation in the
background, the more complex the background, resulting in a sharp increase in candidate
regions so that the discrimination time becomes longer.

We counted the detection time in 10 different indoor scenarios, and according to the
1-s video composed of 24 frames, each detection time’s average detection time is less than
42 ms during the actual detection process to ensure the real-time detection video. After
statistics, the average detection time of the system for ten different indoor scenarios is 32
ms, and the performance of similar methods is compared, as shown in Table 5.

Table 5. Comparison of TP, recall, and average time with different methods.

Method TP Recall Average Time

Ke [15] - 75.5% 5.36 s
Liu [15] 466 (500) 93.2% 166 ms

Huang [15] 189 (200) 94.5% 104 ms
MSIOT(Ours) 477(500) 95.4% 32 ms

From Table 5, it can be concluded that MSIOT is better than the method proposed
by Ke [15] and Liu [15] in terms of recall, which is the same as the YOLOv3-4L method
proposed by Huang [15]. The MSIOT model compression and acceleration are much shorter
in detection time than the other three methods. MSIOT can prove the system detection
function’s superior processing speed and real-time performance.

5. Conclusions

We propose a MSIOT photoelectric target detection inference acceleration method,
which solves the problem of slow running time and poor real-time performance of deep
learning network models deployed in low-computing power GPU computing frameworks.
MSIOT is optimized through multi-stream by combining knowledge distillation and Ten-
sorRT accelerated reasoning. Extensive experimental results demonstrate that MSIOT
effectively improves the prediction accuracy of the lightweight network model, and the
inference speed of the model can be further improved on the basis of TensorRT. The en-
tire process effectively reduces the computing power requirements of neural networks
deployed in GPU computing frameworks, which is significant for designing a real-time
photoelectric target detection system. The disadvantage of the method is that the hardware
part is not accelerated enough and can be further improved in the future according to the
hardware characteristics.

Author Contributions: Conceptualization, Y.Z. and H.G.; methodology, L.Z.; software, S.Z.; valida-
tion, L.Z. and S.Z.; formal analysis, S.Z.; investigation, S.Z.; resources, L.Z.; data curation, L.Z., S.M.
and Y.C.; writing—original draft preparation, S.Z.; writing—review and editing, S.Z. and L.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Due to privacy reasons, datasets are not publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huayan, S.; Laixian, Z.; Yanzhong, Z.; Yonghui, Z. Progress of Free-Space Optical Communication Technology Based on

Modulating Retro-Reflector. Laser Optoelectron. Prog. 2013, 50, 040004. [CrossRef]
2. Laixian, Z.; Hua-yan, S.; Guihua, F.; Yanzhong, Z.; Yonghui, Z. Progress in free space optical communication technology based on

cat-eye modulating retro-reflector. Chin. J. Opt. Appl. Opt. 2013, 6, 681–691.

https://doi.org/10.3788/LOP50.040004

Photonics 2023, 10, 459 16 of 17

3. Mieremet, A.-L.; Schleijpen, R.-M.-A.; Pouchelle, P.-N. Modeling the detection of optical sights using retroreflection. Proc. SPIE
2008, 6950, 69500.

4. Auclair, M.; Sheng, Y.; Fortin, J. Identification of Targeting Optical Systems by Multiwavelength Retroreflection. Opt. Eng. 2013,
52, 54301. [CrossRef]

5. Anna, G.; Goudail, F.; Dolfi, D. General state contrast imaging: An optimized polarimetric imaging modality insensitive to spatial
intensity fluctuations. Opt. Soc. Am. A 2012, 29, 892–900. [CrossRef] [PubMed]

6. Sjöqvist, L.; Grönwall, C.; Henriksson, M.; Jonsson, P.; Steinvall, O. Atmospheric turbulence effects in single-photon counting
time-of-flight range profiling. Technol. Opt. Countermeas. V. SPIE 2008, 7115, 118–129.

7. Zhou, B.; Liu, B.; Wu, D. Research on echo energy of ‘cat-eye’target based on laser’s character of polarization. In Proceedings of the
2011 International Conference on Electronics and Optoelectronics, Dalian, China, 29–31 July 2011; Volume 2, pp. V2-302–V2-305.

8. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of
the Neural Information Processing Systems Conference, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

9. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Neural Information

Processing Systems Conference, Barcelona, Spain, 5–10 December 2016; pp. 770–778.
11. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
12. Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. In Proceedings of the British Machine

Vision Conference, Newcastle, UK, 3–6 September 2018.
13. Wang, X.; Jun, Z.; Wang, S. The Cat-Eye Effect Target Recognition Method Based on Visual Attention. Chin. J. Electron. 2019, 28,

1080–1086. [CrossRef]
14. Zhang, S.; Zhang, L.; Sun, H.; Guo, H. Photoelectric Target Detection Algorithm Based on NVIDIA Jeston Nano. Sensors 2022,

22, 7053. [CrossRef] [PubMed]
15. Ke, X. Research on Hidden Camera Detection and Recognization Method Based on Machine Vision; Huazhong University of Science and

Technology: Wuhan, China, 2019.
16. Liu, C.; Zhao, C.M.; Zhang, H.Y.; Zhang, Z.; Zhai, Y.; Zhang, Y. Design of an Active Laser Mini-Camera Detection System using

CNN. IEEE Photonics J. 2019, 11, 1. [CrossRef]
17. Huang, J.H.; Zhang, H.Y.; Wang, L.; Zhang, Z.; Zhao, C. Improved YOLOv3 Model for miniature camera detection. Opt. Laser

Technol. 2021, 142, 107133. [CrossRef]
18. Narayanan, D.; Santhanam, K.; Phanishayee, A.; Zaharia, M. Accelerating deep learning workloads through efficient multi-model

execution. NeurIPS Workshop Syst. Mach. Learn. 2018, 20, 1.
19. Tokui, S.; Okuta, R.; Akiba, T.; Niitani, Y.; Ogawa, T.; Saito, S.; Yamazaki Vincent, H. Chainer: A deep learning framework for

accelerating the research cycle. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2002–2011.

20. NVIDIA Tesla V100 GPU Architecture. Available online: https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf (accessed on 14 June 2021).

21. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv.org. Available online: https://arxiv.org/
abs/1503.02531 (accessed on 3 May 2021).

22. NVIDIA A100 Tensor Core GPU Architecture. Available online: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/nvidia-ampere-architecture-whitepaper.pdf (accessed on 24 June 2022).

23. NVIDIA TensorRT. Available online: https://developer.nvidia.com/tensorrt (accessed on 21 October 2020).
24. Lijun, Z.; Yu, L.; Lu, B.; Fei, L.; Yawei, W. Using TensorRT for deep learning and inference applications. J. Appl. Opt. 2020, 41,

337–341. [CrossRef]
25. Kwon, W.; Yu, G.I.; Jeong, E.; Chun, B.G. Nimble: Lightweight and parallel gpu task scheduling for deep learning. Adv. Neural Inf.

Process. Syst. 2020, 33, 8343–8354.
26. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cudnn: Efficient primitives for deep

learning. arXiv 2014, arXiv:1410.0759.
27. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015.
28. ONNX: Open neural network exchange. Available online: https://github.com/onnx/onnx (accessed on 15 February 2021).
29. Ningning, M.A.; Xiangyu, Z.; Haitao, Z.; Sun, J. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In

Proceedings of the Computer Vision-ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 116–131. [CrossRef]
30. Iandola, F.N.; Song, H.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2022, arXiv:1602.07360.
31. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589.
32. Yang, L.; Jiang, H.; Cai, R.; Wang, Y.; Song, S.; Huang, G.; Tian, Q. Condensenet v2: Sparse feature reactivation for deep networks.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 3569–3578.

https://doi.org/10.1117/1.OE.52.5.054301
https://doi.org/10.1364/JOSAA.29.000892
https://www.ncbi.nlm.nih.gov/pubmed/22673418
https://doi.org/10.1049/cje.2019.06.027
https://doi.org/10.3390/s22187053
https://www.ncbi.nlm.nih.gov/pubmed/36146402
https://doi.org/10.1109/JPHOT.2019.2957521
https://doi.org/10.1016/j.optlastec.2021.107133
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/tensorrt
https://doi.org/10.5768/JAO202041.0202007
https://github.com/onnx/onnx
https://doi.org/10.1007/978-3-030-01264-9_8

Photonics 2023, 10, 459 17 of 17

33. Bolon-Canedo, V.; Remeseiro, B. Feature selection in image analysis: A survey. Artif. Intell. Rev. 2020, 53, 2905–2931. [CrossRef]
34. Kabir, H.; Garg, N. Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements.

Sci. Rep. 2023, 13, 1497. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10462-019-09750-3
https://doi.org/10.1038/s41598-023-28763-1
https://www.ncbi.nlm.nih.gov/pubmed/36707657

	Introduction
	Materials
	Dataset
	Experimental Environment

	Methods
	Knowledge Distillation
	TensorRT Acceleration
	Multi-Stream Mode

	Results
	Analysis of Knowledge Distillation Results
	Analysis of MSIOT Result
	System Experimental Verification

	Conclusions
	References

