
Citation: Yang, X.; Luo, C.; Zhang, B.;

Qiu, B.; Zhang, R. Simulation and

Design of a PIC-Based Heterodyne

Optical Phase Locked Loop. Photonics

2023, 10, 336. https://doi.org/

10.3390/photonics10030336

Received: 16 February 2023

Revised: 15 March 2023

Accepted: 15 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Simulation and Design of a PIC-Based Heterodyne Optical
Phase Locked Loop
Xiu Yang 1,2,3,4 , Chanchan Luo 1,2,3,4, Ben Zhang 1,2,3,4, Bocang Qiu 5 and Ruiying Zhang 1,2,3,4,*

1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
2 Nano-Devices and Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics,

Chinese Academy of Sciences, Suzhou 215123, China
3 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics,

Chinese Academy of Sciences, Suzhou 215123, China
4 Division of Nanomaterials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
5 The School of Electronics and communication Engineering, Quanzhou University of Information Engineering,

Quanzhou 362000, China
* Correspondence: ryzhang2008@sinano.ac.cn

Abstract: In this paper, we report on our simulation and design of a photonic integrated circuits (PIC)-
based heterodyne optical phase-locked loop (OPLL). Our simulation reveals that the OPLL operation
can be in one of three states, i.e., absolutely stable, metastable, and unstable states, depending on
the relative position of the initial phase reversal point to the loop bandwidth. By systematically
optimizing all of the loop parameters involved, the loop bandwidth of 247.8 MHz and the residual
phase noise variance of 0.012 rad2 are theoretically obtained in such a PIC-OPLL system, which are
better than any reported counterparts. In addition, the lowest required power of the master laser is
also evaluated, assuming that the largest acceptable residual phase noise variance is 0.02 rad2, and it
is found that the lowest master laser power is −54 dBm in our current OPLL system, and this value
can be reduced to −56 dBm, providing that the summed linewidth is reduced to 10 kHz.

Keywords: photonic integrated circuits; heterodyne; optical phase-locked loop; simulation; design

1. Introduction

The OPLL is an active phase-sensitive loop system, which uses electrical negative
feedback control technology to establish a coherent link between the input optical signal
(master laser, ML) and its current-controlled optical oscillator (slave laser, SL) [1]. Based on
this specific characteristic, OPLLs can be utilized as a phase-sensitive filter or amplifier, and
are widely used in coherent optical communications [2], coherent optical measurements [3],
microwave photonics [4], and laser radar systems [5]. In accordance with its detection prin-
ciple, OPLLs can be classified into heterodyne OPLLs and homodyne OPLLs. Compared
with homodyne OPLLs, heterodyne OPLLs are more attractive in the above application
fields, since they are able to identify the frequency offset of the optical signals and have the
advantages of strong anti-interference and high-sensitivity detection also.

At present, two types of heterodyne OPLLs, including discrete space optics [6] and
PIC optics [7,8], have been developed. Tremendous attention has been paid to PIC-based
OPLLs, owing to their advantages of compact structure, short signal delay, convenient
packaging, and low power consumption [9,10].

Over the last few decades, several PIC-based heterodyne OPLLs have been designed
and demonstrated. Ristic et al designed an OPLL and revealed that the SL tuning sensitivity
was proportional to the bandwidth of the feedback loop [11]. Satyan et al. demonstrated
that the loop performances were affected by the loop delay and the SL’s frequency re-
sponse [12]. Bałakier et al. theoretically analyzed the relationship between the loop delay
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and the laser linewidth, and experimentally demonstrated an InP-based heterodyne PIC-
OPLL with phase noise of less than −100 dBc/Hz at 10 kHz offset from the carrier [13].
Overall, all of the OPLL literature has focused on the influence of the loop parameters, such
as the loop bandwidth and loop delay on the phase-locking performance [14–16]. There is
a lack of systematical optimizations of the loop parameters for the best loop performance.
Meanwhile, the required lowest ML power is also one of the most important parameters
for OPLL’s practical operations and applications, but this has been barely evaluated.

In this paper, a PIC-based heterodyne OPLL is systematically simulated and designed
using a series of physics models based on the transfer function analysis method. Our
simulation reveals that the OPLL operation can be in one of three states, i.e., absolutely
stable, metastable, and unstable states, depending on the relative position of the initial
phase reversal point to the loop bandwidth. Meanwhile, the optimization procedure of
the OPLL system involved in all loop parameters is demonstrated, through which the
PIC-OPLL with a loop bandwidth of 247.8 MHz and a residual phase noise variance
of 0.012 rad2 is theoretically obtained. Such performances are better than any reported
counterparts [17–19]. Furthermore, the required lowest ML power for the OPLL system
still meets the noise specification, which is also evaluated. It is found that the lowest ML
power of −54 dBm is required in our current OPLL system. However, it seems feasible to
further reduce the power level to as low as−56 dBm, providing that the summed linewidth
is reduced down to 10 kHz.

2. Models and Simulations

Our PIC-based heterodyne OPLL, which is mainly comprised of an optical path and its
feedback electrical path for phase stabilization, is schematically shown in Figure 1. The op-
tical path contains a distributed Bragg reflector (DBR) semiconductor laser, a 2 × 2 coupler,
and a pair of PDs. The feedback electrical path contains a limiting amplifier (LIA), an
analog mixer (MIX), and a first-order active proportional-integral loop filter.
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Figure 1. Schematic diagram of PIC-based heterodyne OPLL (PD: Photodetector, LIA: Limiting
amplifier, MIX: Mixer, R: Rear DBR mirror, Ph: Phase, G: Gain, F: Front DBR mirror, DBR: Distributed
Bragg Reflector).

Here, the DBR laser, which contains the front (rear) mirror section, gain section, and
phase section, is used as the SL [20,21]. When this OPLL is operated, we first adjust the
bias current of the front (rear) mirrors and gain section to ensure that the frequency offset
between the ML and the SL is small enough, as well as to have the required output power.
The PDs, which equally receive the optical signals from both the SL and the ML, then
generate a beat signal and convert it into an electrical error signal. Then, the electric error
signal, amplified by the LIA, and RF reference signal are mixed in the MIX, and the phase
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error signal is produced. Furthermore, the baseband phase error signal is generated after
filtering out the high-frequency components of the phase error signal by the loop filter.
Finally, such a baseband phase error signal is injected into the SL’s phase section to form
a feedback loop. During the operation, such instantaneous baseband phase error signal
continuously and finely adjusts the operation point of the phase section until the SL and
the ML reach synchronization.

Based on the above-described loop operation process, Figure 2 shows the block dia-
gram of our PIC-based heterodyne OPLL system, by which, a number of physical models
can be established. Moreover, we assume that once the OPLL is locked, it can be linearly
analyzed using approximation sin (x) ≈ x [22], so that all these models can be described
by the transfer function analysis method.
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Figure 2. The block diagram of our PIC-based heterodyne OPLL (the definition of each parameter
will be shown in paragraph 2 of Section 2.1).

2.1. Loop Frequency-Domain Model

The loop frequency-domain model, as a loop basic model, is used to numerically
simulate the relationships between the loop characteristics and loop parameters.

From Figure 2, considering the loop delay e−sτL and the residual phase φe(s) =
φML(s)− φSL(s)− φr(s), we can obtain the following open-loop transfer function:

GOL(s) =
φSL(s)
φe(s)

=
kPDkLIAkmixkLFkSLFLF(s)FSL(s)e−sτL

s
=

KFLF(s)FSL(s)e−sτL

s
(1)

where φML(s), φSL(s), φr(s), and φe(s) are the ML phase, the SL phase, the reference
phase, and the residual phase; kPD = 2RPD

√
PMLPSLPr is the PD gain; RPD is the PD

responsivity, PML, PSL, and Pr are the ML power, the SL power, and the reference power,
respectively, kLIA, kmix, kLF, and kSL are the LIA gain, the MIX gain, the loop filter gain, and
the SL phase tuning sensitivity, respectively; FLF(s) and FSL(s) are the loop filter transfer
function and the SL frequency modulation response, respectively. Therein, kSL and FSL(s)
can be calculated with the SL rate equation [23,24]. Furthermore, the loop gain is defined
as K = kPDkLIAkmixkLFkSL, and the loop filter transfer function is described as [25]

FLF(s) =
1 + τ2s

τ1s
(2)

where τ1 and τ2 are loop filter time constants.
Combining Equations (1) and (2), the closed-loop transfer function can be expressed

as [25]

HCL(s) =
φSL(s)
φML(s)

=
GOL(s)

1 + GOL(s)
=

KFLF(s)FSL(s)e−sτL

s + KFLF(s)FSL(s)e−sτL
(3)

2.2. Loop Maximum Load Capacity Model

The loop maximum load capacity model is introduced to mark a boundary between
the locked and unlocked OPLLs, with which the maximum tolerable loop delay and the
maximum summed linewidth of lasers are calculated.
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The maximum tolerable loop delay of this OPLL can be written as [26]

ωnτL <

PV 2ζarctan

ζ2·
(

1 +
(

1 + (4ζ)−4
) 1

2
) 1

2


ζ2·
(

1 +
(

1 + (4ζ)−4
) 1

2
) 1

2
(4)

where PV is the principal value of the arctan function, ωn and ζ are the loop natural
frequency and the damping factor, respectively [26]

ωn =

√
K
τ1

, ζ =
ωnτ2

2
(5)

Then, the maximum summed linewidth of lasers is given by [27]

δ fm =
π

BPN

 2

ln
(

4TavBSN
π

) − eBSN
RPDPML

 (6)

where Tav is the cycle slip time, BPN and BSN are the loop phase noise bandwidth and the
shot noise bandwidth, respectively [27]

BPN =
∫ ∞

0

|1− HCL( f )|2

f 2 d f , BSN =
∫ ∞

0
|HCL( f )|2d f (7)

2.3. Loop Phase Noise Model

The loop phase noise model is used to evaluate the phase tracking ability of the SL
to the input ML signal, which can be described by the loop residual phase noise variance.
Using the Wiener-Sinchinl theorem [28], the residual phase noise variance σ2

φe
can be

obtained by integrating the residual phase noise power spectral density Sφe( f ) in the
frequency domain

σ2
φe =

∫ +∞

−∞
Sφe( f )d f (8)

Here, it is assumed that the noise introduced by electronic components and the noise
induced by carriers injected into the OPLL is negligible. Therefore, the residual phase noise
power spectral density Sφe( f ) is given by

Sφe( f ) =
[
SML( f ) + S f r

SL( f )
]
·|1− HCL(s)|2 + SPD( f )·|HCL(s)|2 (9)

where SML( f ), S f r
SL( f ), and SPD( f ) are the ML phase noise, the SL phase noise in the free-

running state, and the PD shot noise, respectively, which can be expressed as

SML( f ) =
∆ fML

2π f 2 , S f r
SL( f ) =

∆ fSL
2π f 2 , SPD( f ) =

e(PML + PSL)

RPDPMLPSL
(10)

where ∆ fML and ∆ fSL are the spectral FWHM (the full width at half of the maximum)
linewidth for the ML and the SL, respectively.

In addition, to simulate this PIC-based heterodyne OPLL based on the described above
physical models, the loop parameters of the optical path [28] and the electrical path [22] for
each component in our design are listed in Table 1.
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Table 1. OPLL design parameters.

OPLL Parameters Symbol Value Units

optical path

ML linewidth ∆ fML 100 kHz
ML initial power PML −10 dBm

SL initial linewidth ∆ fSL 10 MHz
SL phase tuning sensitivity kSL 2.496 × 106 GHz/A

SL initial power PSL 0 dBm
RF reference signal power Pr 6.98 dBm

PD responsivity RPD 0.85 A/W

electrical path

LIA gain kLIA 100 -
MIX gain kmix 10 -

loop filter gain kLF 10 -

loop filter time constant τ1 7.49 × 10−10 s
τ2 7.49 × 10−9 s

overall OPLL cycle slip time Tav 1000 s

3. Results and Discussion
3.1. Loop Stability Analysis

The loop stability is the precondition for the OPLL proper operation, which is analyzed
via the open-loop amplitude/phase-frequency response and is characterized by the gain
margin and the phase margin. Figure 3 shows such an open-loop amplitude/phase-
frequency response. As it is shown, the phase margin is 49◦ at 46.6 MHz (corresponding to
the amplitude response of 0 dB), and the gain margin is 7.3 dB at 235.68 MHz (corresponding
to the phase response of −π). Both the gain margin and the phase margin above safely
ensure our OPLL works in a stable status, since a feedback loop’s operation conditions can
be judged using the Baud criterion, which states that a feedback loop is generally stable;
providing that the gain margin is more than 6 dB, the phase margin is somewhere between
45~60◦ [29].
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3.2. Loop Bandwidth Characteristics

The loop bandwidth can be described by the response of phase noise in the frequency
domain when it is in the closed-loop state. Figure 4 shows the initial closed-loop ampli-
tude/phase frequency response, from which one can see that the initial loop bandwidth is
116 MHz. This is only 10 times wider than the initial summed linewidth of 10 MHz, and is
far from enough to meet the high bandwidth requirement.
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The loop bandwidth is determined by the loop gain and loop delay once FLF(s) and
FSL(s) are fixed, as seen in Equation (3). Therefore, to further improve the loop bandwidth,
the influence of the loop gain and delay on the loop bandwidth are investigated, and the
results are shown in Figures 5 and 6, respectively. To clearly describe the dependence of the
loop gain on the loop bandwidth, a parameter Kcr, which is called the loop critical gain and
is proportional to the loop gain, is introduced and calculated using the OPLL characteristic
Equation (11) [30].

1 + GOL(s) = 0 (11)

Figure 5a plots the influence of the loop gain on the closed-loop amplitude-frequency
response. Clearly, when the loop gain increases from 0.5 Kcr to 5 Kcr, the relaxation
oscillation frequency monotonically increases, and the loop bandwidth gradually widens
accordingly. When the loop gain varies from 3 Kcr to 5 Kcr, the amplitude-frequency
response exhibits a strong overshoot and double-frequency jitter. Meanwhile, Figure 5b
shows the influence of the loop gain on the closed-loop phase-frequency response, which
exhibits the same initial phase reversal frequency of 247.5 MHz when the loop gain increases
from 0.5 Kcr to 4 Kcr, but no initial phase reversal point once the loop gain is higher
than 4 Kcr.

To appreciate the effects of the loop gain on the closed-loop amplitude/phase fre-
quency response, several characteristic parameters, including the amplitude of relaxation
oscillation, loop bandwidth, and phase reversal point, are extracted from Figure 5a,b,
and the results are shown in Figure 5c. By looking at the relationship between the initial
phase reversal frequency point and the loop bandwidth, one can divide the loop gain axis
(Figure 5c) into three operation regimes. In regime I, the initial phase reversal point is
always larger than the loop bandwidth, where its phase lag can be completely compensated
by the phase margin, which results, in this case, to the loop being in an absolutely stable
state. In regime II, when the loop gain varies from 1.5 Kcr to 4 Kcr, the loop bandwidth
increases from 247.8 MHz to 465 MHz, which results in the initial phase reversal point
remaining within the loop bandwidth, so that this OPLL is in a metastable state and the
loop stability becomes increasingly deteriorated with the widened difference between the
loop bandwidth and the initial phase reversal point. In regime III, when the loop gain
exceeds 4 Kcr, one can see that although the loop bandwidth continuously increases, the
initial phase reversal point no longer exists, which indicates that this OPLL is in an unstable
state due to the phase margin not being enough to compensate for the phase lag. From the
above analysis, it is found that the optimal loop gain is 1.5 Kcr, where the maximum loop
bandwidth is 247.8 MHz. Obviously, this value is expanded by 2.14 times after the loop
gain optimization, compared to the initial loop bandwidth.
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Figure 5. The effects of the loop gain on the loop bandwidth (a) the closed-loop amplitude-frequency
response; (b) the closed-loop phase-frequency response; (c) the influence of the loop gain on the
amplitude of relaxation oscillation, loop bandwidth, and initial phase reversal frequency point;
(d) the influence of the loop gain on the maximum summed linewidth and the maximum tolerable
loop delay.

In addition, Figure 5d reveals the influence of the loop gain on the loop maximum
load capacity. It shows a tolerance delay of 3.33 ns and a maximum summed linewidth of
31.29 MHz at the optimal loop gain of 1.5 Kcr, both of which provides a basic operation
limit for the current OPLL in the following optimization design.

As mentioned above, Figure 6 is used to investigate the effects of the loop delay on
the loop bandwidth with the optimal loop gain. In detail, Figure 6a shows the close-loop
amplitude frequency response at the different loop delays. As it is shown, when the loop
delay is less than 1 ns, the loop bandwidth increases with the loop delay, and there is
no observable relaxation oscillation phenomenon. When the loop delay is in the range
between 1.0–2.5 ns, not only does the relaxation oscillation frequency shift to the left,
which directly results in a narrowing of the loop bandwidth, but the relaxation oscillation
amplitude increases and the double-frequency jitter appears. When the loop delay further
increases from 2.5 ns to 3.33 ns, the relaxation oscillation frequency is further left-shifted,
and the relaxation oscillation amplitude gradually decreases, but the double-frequency
jitter becomes strong. Figure 6b shows the closed-loop phase frequency response at the
different loop delays. As it is shown, when the loop delay is in-between 0.1–2.5 ns, the
initial phase reversal point is gradually left-shifted with the loop delay increase, and when
the loop delay reaches 2.5 ns or more, there is no initial phase reversal point observed.
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Again, the relative characteristic parameters are extracted from Figure 6a,b and the
results are presented in Figure 6c. One can see that the initial phase reverse point mono-
tonically decreases with the increase in the loop delay, and the loop bandwidth reaches its
peak value of 247.5 MHz when the loop delay is 1 ns. Same as that shown in Figure 5c,
three regimes can be divided by comparing the initial phase reversal frequency point with
the loop bandwidth, and conclusions are exactly the same as those made in the previous
section, i.e., in regime I, the OPLL is in an absolutely stable state because the initial phase
reverse point is higher than the loop bandwidth. In regime II, this OPLL is in a metastable
state and its instability becomes increasingly more sensitive with the larger difference
between the initial phase reverse point and the loop bandwidth. In regime III, when the
loop delay is more than 2.5 ns, there is no initial phase reversal point, as shown in Figure 6b,
and the OPLL system is in an unstable state.

From the simulations shown above, one can see that the optimal loop delay is 1 ns,
at which both the absolute stable operation state and the maximum loop bandwidth of
247.5 MHz are attained.
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3.3. Loop Phase Noise Characteristics

The ultimate aim of the OPLL is to suppress the phase noise and further improve the
signal-to-noise ratio of the input signal, and its noise behavior can be described by the
residual phase noise power spectrum Sφe( f ) and residual phase noise variance σ2

φe
, which

are completely dependent on the loop gain, loop delay, summed linewidth of lasers, and
laser power injected into the PDs. The influence of the first three parameters on the phase
noise behavior is shown in Figure 7. As shown in Figure 7a–c, when the OPLL is in the
free-running state, the residual phase noise intensity follows the 1/f variation law and is
independent of any loop parameters in the whole frequency domain. However, when it is
in a locked state, the residual phase noise spectrum dramatically changes. Indeed, in the
low-frequency range (1–100 kHz), the residual phase noise intensity is reduced down to
−132 dBc/Hz, which is the evidence of noise suppression and independent of any loop
parameters. In the mid-frequency range (from 100 kHz to the noise relaxation oscillation
frequency), the loop residual phase noise becomes sensitive to the variations in the all
parameters above. It is observed that higher loop gain, shorter loop delay, and narrower
summed linewidth will lead to lower noise intensity in this frequency domain. When the
operating frequency is above the noise relaxation oscillation frequency, the loop residual
phase noise intensity has little dependence on the loop gain and delay, but can still be
affected by the summed linewidth; the narrower the summed linewidth, the lower the
residual phase noise is. This is an indication that the reduction of the SL’s linewidth is
required for the PIC-OPLL to suppress the phase noise because the SL linewidth is the
dominant term in the summed linewidth.

To further clearly evaluate the influence of the loop parameters on the loop noise
behavior and achieve the optimal ones, the residual phase noise variances are calculated
using Equation (8) and plotted in Figure 7d. First, we optimize the loop gain. As can be
seen, the minimum residual phase noise variance is 0.007 rad2 when the loop gain is 5 Kcr,
which is only 1/36.6 of the maximum value. This seems to suggest that the optimal loop
gain should be 5 Kcr rather than the 1.5 Kcr calculated in the previous section. Obviously,
we need to carry out further analysis to understand the effect of the loop gain on the
system performance. Since the loop phase noise performance is actually determined by its
signal-noise-ratio (SNR), which is in turn directly relates to the ratio of the noise bandwidth
to the natural frequency BL/ωn for an OPLL system (the lower BL/ωn, the better SNR) and
its effect can be modeled using Equation (12) [31], we are able to evaluate the effect of the
loop gain on the noise performance by examining the relationship between BL/ωn and the
loop gain (see Figure 7e).

BL
ωn

=
1
2

(
ζ +

1
4ζ

)
(12)

As shown in Figure 7e, the minimum value of BL/ωn is 0.5, where the loop gain is
0.3 Kcr, which means that the optimal loop gain is 0.3 Kcr in terms of the SNR for this
OPLL. However, it is a bit disappointing that the loop bandwidth, corresponding to such
loop gain, is only 78 MHz, which cannot meet the requirement of a wide loop bandwidth.
Nonetheless, a trade-off can be made between the loop bandwidth and SNR by choosing
the loop gain of 1.5 Kcr, at which, BL/ωn is 0.61, which is only slightly higher than that at
the loop gain of 0.3 Kcr, but is considerably smaller than that at the loop gain of 5 Kcr.

In addition, Figure 7d also shows the dependence of the residual phase noise variance
on the loop delay when the loop gain is 1.5 Kcr. Even though the residual phase noise
variance gets worse with the increase in the loop delay up to 2.5 ns, fortunately, such
performance deterioration is slow before the loop delay reaches 1 ns. Taking into account
the effect of the loop delay on the loop bandwidth, as well as on the relaxation oscillation
overshooting, we choose 1 ns as the optimal loop delay in our OPLL system, where, the
residual phase noise variance is 0.06 rad2. Finally, we shall proceed to determine the
optimized summed linewidth based on the optimal loop gain and delay. It is clearly seen
that the residual phase noise variance increases with the summed linewidth, and further
referring to Figure 7c, the residual phase noise over the whole frequency domain is always
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less than that at a free-running state when the summed linewidth is not wider than 3 MHz.
Therefore, the optimized range of the summed linewidth should be narrower than 3 MHz.
Under these optimized conditions, the residual noise variance value is only 0.018 rad2,
even in the worst scenarios, which is comparable to the performance reported in [15].
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In addition to the above-discussed parameters, the influence of the laser power injected
into the PDs on the noise performance is also investigated and the results are shown in
Figure 8. Figure 8a shows the residual phase noise spectra of the OPLL system with the
different ML power when the other parameters are fixed. As it can be seen, the lower the
ML power, the higher the residual phase noise. From this relationship, one can see that to
ensure the noise level below the specific value, there should be a lowest ML power for each
individual OPLL system.
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Figure 8. The influence of the laser power on the loop phase noise characteristics (a) the residual
phase noise spectra with the different ML and same SL power; (b) the dependence of the residual
phase noise variance on the loop delay, summed linewidth, and ML power; (c) the constrained
relationships between these parameters with the residual phase noise variance of 0.02 rad2.

To further comprehensively evaluate the role that the ML power played in the noise
performance for our OPLL system, the dependence of the residual phase noise variance on
the loop delay, the summed linewidth, and the ML power is shown in Figure 8b, which
clearly reveals that the residual phase noise variance is dominated by the ML power, though
it is still affected by the other two parameters too. When the ML power is −50 dBm, a
residual phase noise variance of 0.012 rad2 is observed at the summed linewidth of 1MHz
and the loop delay of 1 ns, which is even better than the best results to date [28]. However,
when the ML power is −60 dBm, the calculated lowest residual phase noise variance is
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0.034 rad2, which is much higher than the reported one [28], even though the loop delay of
0.1 ns is selected.

Although the phase noise level can be readily improved by raising the ML power level,
it is desirable to evaluate the lowest possible power level of the ML, at which the OPLL
can still produce the required noise performance. Since the phase noise level has to be
below a specified criterion for the OPLL systems to be beneficial in real applications, in our
simulation, it is assumed that this criterion for residual phase noise variance is 0.02 rad2,
which is a specified noise level for OPLL systems [28,32]. Owing to the fact that the noise
level is affected by a number of parameters, including the SL power, the ML power, the
summed spectral linewidth, as well as the loop delay, it is necessary to understand the
constraints between these parameters and evaluate the lowest possible ML power for the
given noise criterion; such constrained relationships can be seen in Figure 8c. As shown
in this figure, the system can reach the noise criterion for the ML power of no less than
−54 dBm when the SL power is at least −35 dBm and the summed linewidth is no wider
than 1 MHz, both of which can be realized by the current OPLL system. However, when
the ML power is less than −54 dBm, even though the summed linewidth is 1 MHz and the
SL power increases up to 0 dBm or more, the residual phase noise variance still exceeds
this noise criterion, as the inset plot shows. In spite of this, it is still possible to meet the
system noise criterion for the ML power as low as −56 dBm, providing that the summed
linewidth is 10 kHz and the SL power is at least 0 dBm, which could be realized by the
future PIC-OPLL configuration. Therefore, the lowest ML power of−54 dBm and−56 dBm
are expectantly attained in the current and future PIC-OPLL systems, respectively.

4. Conclusions

In summary, the simulation and design of a PIC-based heterodyne OPLL were demon-
strated. The influences of the loop parameters on the loop performances, such as loop
stability, closed-loop bandwidth, and phase noise characteristics, were systematically inves-
tigated. Our simulation revealed that the OPLL operation could be in one of three states,
i.e., stable, metastable, and unstable states, depending on the relative position of the initial
phase reversal point to the loop bandwidth. By systematically optimizing all parameters
involved, such as the loop gain and delay, the summed linewidth, as well as laser powers,
we were able to show that a loop bandwidth of 247.8 MHz and a residual phase noise
variance of 0.012 rad2 were attainable, which was even better than the best result reported
thus far. In addition, the lowest required power of the ML laser was also evaluated by
assuming the largest acceptable residual phase noise variance was 0.02 rad2. It was found
that an ML power of at least −54 dBm is required for the current PIC-OPLL system, and
that it was possible to reduce the ML power down to as low as −56 dBm, provided the
summed linewidth was reduced to 10 kHz. It is believed this simulation work is beneficial
to future experimental demonstration.
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