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Abstract: The absorption and scattering of impurity particles in turbid water cause the target sig-
nal light to be attenuated and to produce backscattered light, resulting in the reduced quality of
underwater polarimetric imaging. As water turbidity increases, the effect of backscattered light
becomes greater, making polarization imaging in highly turbid water a challenge. Theory and exper-
iment show that the increase in the intensity of backscattered light leads to high noise gain in the
underwater active polarization imaging model. In order to enhance image contrast and suppress
noise gain in highly turbid water, we propose an underwater imaging enhancement method that
appropriately combines the non-physical and physical models. The method uses contrast limited
adaptive histogram equalization (CLAHE) for a certain number of cross-linear images (Imin) before
calculating their polarization enhancement images, and it constructs joint filtering (multi-frame
averaging and bilateral filtering) to suppress the high noise gain introduced by the imaging model
and CLAHE. The experimental results in highly turbid water validate the rationality and feasibility
of the proposed method, and the comparative processing results (52.7~98.6 NTU) outperform those
of the conventional non-physical and physical model methods. The method maintains the com-
plexity of the system and facilitates the application of conventional polarimetric imaging in harsher
underwater environments.

Keywords: underwater imaging; polarimetric imaging; high-turbidity water; histogram equalization

1. Introduction

The underwater environment contains a large number of impurity particles, and light
will be scattered and absorbed by the particles when propagating underwater, resulting
in a reduction in the quality of underwater imaging, mainly in the form of reduced image
brightness and loss of contrast. The turbidity in natural waters typically varies in the
range of a few dozen to a few tens of nephelometric turbidity units (NTU) [1,2], and water
is considered highly turbid when it is above 50 NTU [1]. Some underwater tasks [3–5]
(e.g., submarine microbial imaging, pipeline maintenance, and shipwreck rescue) can
rapidly increase the turbidity of the water and maintain it for a period of time due to the
particles that are stirred up when operating close to the bottom area. This significantly
reduces the effective distance of underwater imaging and severely hampers the execution
of underwater missions. In recent years, in order to improve the quality of underwater
imaging by reducing the effects of underwater backscattered light, different de-scattering
imaging methods have been pioneered and are mainly divided into non-physical and
physical model-based methods [6–9]. They provide strategies to address the different needs
of underwater imaging accordingly.

Among the non-physical methods, the contrast limited adaptive histogram equaliza-
tion (CLAHE) method is a common operation for underwater de-scattering [3,10]. Com-
pared to using conventional histogram equalization (HE) to improve the operation of the
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dynamic range of the greyscales in the raw image, CLAHE operates on small regions
of the image that are tiled, and it uses bilinear differences to reduce the effect of bound-
aries between the small regions, resulting in a more stable histogram equalization [11].
Thus, CLAHE can effectively enhance the contrast of the target signal light in the raw
image. Among the physical model-based methods, the underwater polarimetric imaging
model proposed by Schechner et al. is widely used for underwater imaging due to its
compactness, ease of piggybacking, and operation [5,6,12]. It also belongs to the category
of a time-sharing rotating polarization imaging system [3,13]. In order to obtain a better
de-scattering effect, many optimization measures have been developed around the Schech-
ner model, using, for example, optical correlation [14–16] and extrapolation fitting [17]
and finding feasibility intervals [18] to optimize the selection of relevant parameters, as
well as combining Mueller matrices [19,20] and computer algorithms [21–23] to suppress
the backscattered light. In highly turbid water, Liu et al. found that red light was more
effective than other wavelengths in suppressing scattering, and they combined this with
active polarization imaging to make the leap from “undetectable” to “detectable” [1]. At
the same time, Hu et al. cleverly applied the memory effect of circularly polarized light
to underwater polarization imaging and realized target detection in highly turbid water
through the combined action of linearly and circularly polarized light [24]. In contrast to
Liu’s and Hu’s methods of modulating the light source and increasing the complexity of
the imaging system, Li et al. used a histogram stretching operation with greyscale normal-
ized for a cross-linear image (Imin) and combined it with polarimetric imaging to achieve
experimental results in highly turbid water that were superior to those of the traditional
methods [25]. Considering the high backscattered light intensity [26] and high noise gain
characteristics in highly turbid water [6], the raw image will have overexposed regions due
to backscattered light enhancement, and CLAHE will be more limited in its processing. In
addition, normalized histogram stretching can weaken the contrast enhancement effect
of the target signal light under high noise conditions. Therefore, it is necessary to design
a method for polarization enhancement in highly turbid water without increasing the
complexity of the system.

In this paper, the problem of strong backscattering and the high noise gain of the
imaging model caused by it under high-turbidity conditions is discussed theoretically
and experimentally. Based on the presence of two influencing factors, we appropriately
combine the non-physical and the physical models and propose an active polarization
imaging method based on the CLAHE histogram equalization of the cross-linear image
and the joint noise suppression. CLAHE is used to equalize the intensity distribution
of the target signal light in Imin. Meanwhile, the polarization enhancement results are
processed using a combination of multi-frame averaging [27,28] and bilateral filtering [29]
to counteract the high noise gain generated by the imaging model and CLAHE. Only
a certain number of Imin need to be acquired in our method to achieve the multi-frame
averaging effect, and experimentally, we discuss the dependence of the noise suppression
effect on the number of averaged frames. Finally, real-world experiments in different
water samples with high turbidity are set up to verify the effectiveness and advantages of
our method.

2. Methodology
2.1. Underwater Polarization Imaging Model

Turbid water bodies contain a large number of impurities, including soluble substances
as well as insoluble particulate matter and microorganisms. The light shining on the object
in the turbid water is absorbed and scattered by the water molecules and impurities,
resulting in the received image degradation. The attenuation of the target signal light
intensity and the backscattered light covering the object result in a loss of contrast in the
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image. According to the underwater imaging model, the received image is the incoherent
sum of the target signal light and the backscattered light [6].

I(x, y) = S(x, y) + B(x, y) (1)

where S(x, y) denotes the target signal light, derived from the irradiance of the target
object. B(x, y) denotes the backscattered light. When S(x, y) propagates in the water, it is
affected by two interfering factors; one is the absorption of water molecules and impurities,
resulting in its intensity attenuation; the other is caused by the scattering of impurities
by the backscattered light B(x, y) superimposed on S(x, y), resulting in a reduction in
the image contrast, ultimately leading to a decline in imaging quality. Backscattered
light has the characteristics of partial polarization; so, rotating the analyzer before the
receiver will obtain the darkest (cross-linear) and brightest (co-linear) two orthogonal
polarization images, noted as Imin and Imax. According to Equation (1), Imin and Imax can be
expressed as: {

Imin(x, y) = Smin(x, y) + Bmin(x, y)
Imax(x, y) = Smax(x, y) + Bmax(x, y)

(2)

Smin(x, y) and Smax(x, y) denote the darkest and brightest target signal light in the
orthogonal polarization images, and Bmin(x, y) and Bmax(x, y) denote the darkest and
brightest backscattered light in the orthogonal polarization images. As partial polarization
light can be decomposed in two orthogonal directions, the total light intensity I(x, y) can
be expressed as:

I(x, y) = Imin(x, y) + Imax(x, y) (3)

According to the definition of the degree of polarization (DOP), the DOP of the target
signal light ptarg and the backscattered light pscat can be calculated from the corresponding
components in Imin(x, y) and Imax(x, y),{

ptarg = Smax−Smin
Smax+Smin

pscat =
Bmax−Bmin
Bmax+Bmin

(4)

The expressions for the target signal light and the backscattered light can be obtained
by combining Equations (1)–(4),{

S(x, y) = 1
pscat−ptarg

[Imin(1 + pscat)− Imax(1− pscat)]

B(x, y) = 1
pscat−ptarg

[
Imax

(
1− ptarg

)
− Imin

(
1 + ptarg

)] (5)

2.2. Noise Analysis of Polarization Imaging in High-Turbidity Water

There are three main components of the noise sources in the imaging process; these
are readout noise, dark current noise, and photon noise. Define gelectr as the number of
photogenerated electrons in the imaging system that cause a change per unit of gray level.
Therefore, the noise variance of the readout noise can be represented by ρ2/g2

electr, where
ρ is the standard deviation (STD) of the electronic readout noise of the imaging system.
Dark current noise is related to the exposure time of the imaging system, and its noise
variance is expressed by Dt/g2

electr, where D represents the magnitude of the dark current,
and t is the exposure time. Photon noise can be denoted as I(x, y)/gelectr, which is the
signal-related noise independent of the parameters and quality of the camera. Thus, for an
image, the noise variance of its pixel gray level is [6,30],

σ2
I = ρ2/g2

electr + Dt/g2
electr + I(x, y)/gelectr (6)

The underwater polarization imaging model relies on two polarization orthogonal sub-
images, Imin and Imax, which are considered as two statistically independent measurements
and are linearly related to S(x, y) and B(x, y) in Equation (5). Assuming that the noise
variances of Imin and Imax are σ2

min and σ2
max, respectively, and combining Equations (5) and



Photonics 2023, 10, 145 4 of 19

(6), we can obtain the following relationship between the noise variance of the target signal
light and the two polarization orthogonal sub-images,

σ2
S =

(
1+pscat

ptarg−pscat

)2(
ρ2/g2

electr + Dt/g2
electr + Imin(x, y)/gelectr

)
+
(

1−pscat
ptarg−pscat

)2(
ρ2/g2

electr + Dt/g2
electr + Imax(x, y)/gelectr

)
=
(

1+pscat
ptarg−pscat

)2
σ2

min +
(

1−pscat
ptarg−pscat

)2
σ2

max

(7)

For Equation (7), we consider it in two cases; first, we assume that the non-signal-
related noise is dominant in the imaging process; that is, when σ2

min = σ2
max = σ2

0 , the noise
variance of the target signal light becomes of the form,

σ2
S =

(
1+pscat

ptarg−pscat

)2
σ2

0 +
(

1−pscat
ptarg−pscat

)2
σ2

0

= 2σ2
0

[
1+p2

scat

(ptarg−pscat)
2

] (8)

From Equation (8), it can be seen that the noise in the target signal light gains constantly,
and the magnitude of the noise variance is related to pscat and ∆p (∆p = pscat − ptarg, the
difference between pscat and ptarg). The variation of the noise amplification σS/σ0 in the
target signal light with pscat and ptarg is shown in Figure 1a. It can be seen that when
the DOP of the backscattered light is pscat = 0 and the DOP of the target signal light is
ptarg = 1, the noise amplification of the target signal light reaches the minimum value
of
√

2. However, when the two DOPs gradually approach, that is, ∆p→ 0 , the noise is
continuously increased. Figure 1b,c show the changes in pscat, ptarg, and ∆p measured in
the experiment with the increasing water turbidity and the increasing imaging distance,
respectively. pscat and ptarg are calculated according to the DOP definition after pre-labeling
the target and the background regions in the experiment. It can be seen that in the imaging
process of the increasing turbidity and distance of the water, the value of ptarg has a tendency
to gradually approach pscat; so, ∆p gradually decreases, which leads to the continuous
increase in the noise amplification rate in the recovered target signal light.
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Figure 1. (a) Variation of noise amplification of target signal light with pscat and ptarg; (b) variation
trend of pscat, ptarg, and ∆p with increasing turbidity of the water; (c) variation trend of pscat, ptarg,
and ∆p with increasing imaging distance in the water with turbidity of 34.0 NTU.

Next, we consider the practical case where the photon noise is not negligible, i.e.,
σmin 6= σmax. From the expression for S(x, y) in Equation (5), it is clear that the contribution
of ptarg to S(x, y) is a scaling factor that adjusts the global intensity. Here, we assume that
ptarg = 0 [6], in which case Equation (5) can be simplified to,{

S(x, y) = 1
pscat

[Imin(x, y)(1 + pscat)− Imax(x, y)(1− pscat)]

B(x, y) = 1
pscat

[Imax(x, y)− Imin(x, y)]
(9)
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According to Equation (9), it is obtained that{
Imin(x, y) = 1

2 [B(x, y)(1− pscat) + S(x, y)]
Imax(x, y) = 1

2 [B(x, y)(1 + pscat) + S(x, y)]
(10)

Through Equations (10) and (7), the noise variance expression of S(x, y) with respect
to the target signal light and backscattered light can be obtained,

σ2
S =

1
p2

scat

{[
2
(

ρ2/g2
electr + Dt/g2

electr

)
+

S(x, y)
gelectr

](
1 + p2

scat

)
+

B(x, y)
gelectr

(
1− p2

scat

)}
(11)

From Equation (11), we can see that the noise variance of the target signal light S(x, y)
is related to the intensity of the backscattered light B(x, y). Therefore, it is beneficial
to reduce the intensity of the backscattered light appropriately in the actual scene to
improve the signal-to-noise ratio (SNR) of the target signal light. Figure 2 shows the raw
images, Imin and Imax, acquired under different high-turbidity environments and the DOP
distribution maps calculated using Equation (4). In fact, as the turbidity of the water
increases, the content of impurity particles in the medium continues to rise, resulting in
an increased probability of the photons interacting with the impurity particles. It can be
seen from the raw images and the Imax in Figure 2 that the backscattered light saturates
the receiver response to light intensity when a certain turbidity is reached. In addition, as
the turbidity increases, the large-sized particles in the water will also increase, resulting
in an increase in the scattering coefficient of the medium, and the photons gradually lose
their initial polarization state [26]. Consequently, the intensity of the backscattered light in
Imin increases, as shown in Imin in Figure 2. At the same time, the DOP of the backscattered
light decreases, as shown in the DOP distribution maps in Figure 2.
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The noise analysis of the underwater polarization imaging model shows that there are
two main sources of noise in highly turbid water; one is the change in the DOP, and the other
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is the increase in the intensity of the backscattered light. Together, they cause a reduction in
the SNR of the recovered image in a highly turbid environment. In addition, it can be seen
from Imin in Figure 2 that the depolarization phenomenon of the backscattered light in the
highly turbid water makes the target signal in Imin gradually submerge in the backscattered
light. Therefore, in order to improve the quality of polarization differential imaging in
highly turbid water, two aspects need to be addressed; one is contrast enhancement, and
the other is noise suppression.

2.3. CLAHE-Based Cross-Linear Image Histogram Equalization and Joint Noise Suppression

According to the analysis in the previous section, the polarization enhancement
effect of the target signal light in highly turbid water is affected by two aspects; one is
the increased backscattered light intensity, and the other is the high noise gain with the
increase in turbidity. Aiming at these two effects, we propose an underwater polarization
differential imaging enhancement method based on CLAHE-based cross-linear image
histogram equalization and joint noise suppression to improve the imaging quality. Figure 3
shows the processing flowchart of the entire method.
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First, adjust the analyzer in front of the receiver to a co-linear state and capture a
co-linear image Imax. Then, adjust the analyzer to the cross-linear state and continuously
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capture N cross-linear images Imin,i(i = 1, 2, . . . , N). Using the captured Imax and Imin,i=1,
and according to the definition of the DOP, the DOP distribution map can be obtained,

p(x, y) =
Imax(x, y)− Imin,i=1(x, y)
Imax(x, y) + Imin,i=1(x, y)

(12)

Meanwhile, the pscat and ptarg required for the polarization differential processing can
be obtained according to Equation (4).

As the grayscale of the image in the turbid water is compressed to a very narrow
range, especially when the water turbidity increases, the intensity of the backscattered
light on the target signal light increases. This results in a grayscale overexposed area in
the Imax image and the attenuation of the target signal light intensity in the Imin image,
ultimately causing further compression of the gray space of the captured image. To mitigate
the extent to which the image grayscale is compressed, a grayscale histogram equalization
of Imin,i(i = 1, 2, . . . , N) is performed by using CLAHE to obtain the adjusted grayscale
Ipro
min,i(i = 1, 2, . . . , N),

Ipro
min,i(i = 1, 2, . . . , N) = CLAHE[Imin,i(i = 1, 2, . . . , N)] (13)

It is worth noting that the Imax image acquired in highly turbid water contains a large
number of grayscale overexposed areas, which is not conducive to the grayscale histogram
equalization operation. Therefore, only Imin,i(i = 1, 2, . . . , N) needs to be processed during
the actual processing. The DOP distribution map p(x, y) reflects the polarization rela-
tionship between two polarization orthogonal images and contains the information on
the target and the backscattered light. To preserve the polarization relationship [25], the
processed Ipro

max can be obtained using Equation (12),

Ipro
max(x, y) =

1 + p(x, y)
1− p(x, y)

Ipro
min,i=1(x, y) (14)

Based on the already obtained Ipro
min,1, Ipro

max, pscat, and ptarg, the recovered target signal
light can be obtained by using Equation (5). However, due to the high-turbidity conditions,
the difference between the two DOPs gradually decreases, which reduces the effect of the
common-mode suppression and leads to the poor recovery of the target signal light. To
improve the image enhancement result, the values of pscat and ptarg are adjusted by setting

ε1 ∈
[
0, 1

pscat

]
and ε2 ∈

[
0, 1

ptarg

]
. The values of the two DOPs are optimal at this time when

the values of ε1 and ε2 are taken so that the grayscale histogram of the recovered image
S(x, y) is the most uniform, i.e., poptimum

scat = ε
optimum
scat pscat and poptimum

targ = ε
optimum
targ ptarg.

With the known results given above, Equation (5) can be used to calculate the
N processed target signal light results obtained from Ipro

min,i(i = 1, 2, . . . , N), as follows:

Si(i = 1, 2, . . . , N) = 1
poptimum

scat −poptimum
targ

[
Ipro
min,i(i = 1, 2, . . . , N)

(
1 + poptimum

scat

)
−Ipro

max

(
1− poptimum

scat

)] (15)

The N Si(i = 1, 2, . . . , N) obtained by using Equation (15) are then used with CLAHE
to perform histogram equalization; so, there are,

Spro
i (i = 1, 2, . . . , N) = CLAHE[Si(i = 1, 2, . . . , N)] (16)
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Next, in order to reduce the gained noise in the target signal light, the N histogram
equalized Spro

i (i = 1, 2, . . . , N) is subjected to multi-frame averaging processing, and then,
bilateral filtering is used,

BF
(

Spro
average

)
= BF

(
N

∑
i=1

Spro
i

/
N

)
(17)

Here, BF(·) denotes the bilateral filtering operation, and BF
(

Spro
average

)
is the result

of polarization enhancement by equalizing the histogram of the cross-linear polarization
image and combining the noise suppression processing.

3. Real-World Experiment and Results
3.1. Experimental Setup

The experimental setup is shown in Figure 4, showing the schematic diagram and
a photograph of the experimental setup, respectively. The emitting end of the imaging
system is composed of a white LED light source (Supfire, X90, China, wavelength in
the visible range) and a rotatable linear polarizer (Sigma, USP-30C0.4–38, Japan). The
illumination beam is transformed into a stable output of linearly polarized light after
passing through the polarizer. The experimental environment is a glass water tank of
60 cm (length)× 35 cm (width)× 40 cm (height), and the liquid level during the experiment
is 25 cm. Milk is mainly divided into skimmed milk, semi-skimmed milk, and whole milk,
which contain casein molecules (size 0.04 ∼ 0.3 µm) and fat globules (size 1 ∼ 20 µm)
of different sizes [14,31]. The scattering types of the milk are mainly divided into Mie
scattering and Rayleigh scattering, which is similar to the scattering type of seawater.
As the scattering coefficient of the same volume of skimmed milk is smaller [31], which
facilitates the preparation of water with different turbidities, the experiment uses skimmed
milk to simulate different underwater turbid environments. The illumination beam passes
through the medium to the target object (the target is 20 cm away from the wall of the
water tank at the transmitting end) and is reflected and finally reaches the receiving end
of the imaging system. The receiving end consists of a rotatable analyzer (Sigma, USP-
30C0.4–38, Japan) and a monochrome charge-coupled device (CCD) camera (Daheng Optics,
R-125–30UM, China, wavelength response range 400 ∼ 1000 nm). During the acquisition
process, we rotate the analyzer to acquire a co-linear polarization image and multiple
cross-linear images, respectively. The acquisition time interval of the multi-frame images is
10 ms, and the image size is 964 (width) × 1292 (height) pixels.
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3.2. Rationality and Feasibility Analysis of the Processing Flow

To verify the rationality and feasibility of the processing process in the proposed
method, we added 200 mL of skimmed milk to the water tank; the turbidity of the wa-
ter was 84.5 NTU. The analysis in Section 2.2 shows that as the turbidity of the water
increases the backscattered light is continuously enhanced, which makes a large over-
exposure area in Imax. With the existing histogram equalization operation, it would be
difficult to achieve a better processing effect. Therefore, our method chooses to perform the
histogram equalization operation on Imin. At the same time, the continuous acquisition of
Imin in a short period of time ensures the statistical characteristics of the noise distribution.
Additionally, the DOP distribution map p(x, y) in the whole scene can be considered as
stable; so, we acquired 1 frame of Imax and 200 frames of Imin (with an acquisition interval
of 10 ms).

According to the processing flow, the CLAHE operation is first performed on the
captured Imin. CLAHE itself belongs to the classical approach to dealing with de-scattering
in the non-physical model [3,10], and here, we combine it appropriately with the classical
physical de-scattering model. CLAEH is a variant of the adaptive histogram equalization
(AHE) algorithm. Compared with AHE, its contrast amplification is limited, which can
better preserve the overall contrast distribution of the raw image and effectively reduce the
noise amplification problem [11]. However, the additional noise introduced by CLAHE
still needs to be considered. Figure 5a,d show the raw intensity image and the normalized
grayscale histogram of Imin. Figure 5b,e show the results and the normalized grayscale
histogram of Imin after processing using Li’s method [25], and Figure 5c,f show the results of
the Imin processing using CLAHE [11]. From Figure 5, it can be seen that both Li’s method
and the CLAHE method improve the contrast of the target signal in the image compared to
the raw intensity of Imin. The grayscale distribution ranges of the two methods are basically
the same, but the grayscale distribution after CLAHE processing is more uniform.
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Figure 5. (a) is the raw intensity image Imin; (b) is the result of processing (a) using Li’s method [25];
(c) is the result of processing (a) using CLAHE [11]; (d) is the normalized grayscale histogram of (a);
(e) is the normalized grayscale histogram of (b); (f) is the normalized grayscale histogram of (c); (g) is
the grayscale value row indexes of the extreme points in (b); (h) is (b) the grayscale normalization
result after removing the extreme point; (i) is the normalized grayscale histogram of (h).
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It is worth noting that the image acquired in the highly turbid water contains a large
amount of noise, which may cause some grayscale extreme points in the image. Therefore,
the histogram stretching operation for the grayscale normalization of Imin using Li’s method
will be disturbed. Figure 5g shows the row indexes of the grayscale values in Figure 5b that
are through the minimum (green line) and the maximum (red line), and the presence of these
extreme value points will interfere with the grayscale normalization effect of Li’s method.
Therefore, we remove the extreme value points and then normalize to obtain Figure 5h,
and the grayscale histogram is shown in Figure 5i. It can be seen that the grayscale
distribution of the region to the right of the black dashed line in Figure 5i is higher than
that in Figure 5d, which proves that removing the extreme points is effective for enhancing
the image brightness. However, the removal of the extreme points is relatively troublesome
and uncertain in the actual processing, which is not conducive to the automation of the
processing process. Therefore, we use CLAHE to improve the contrast of the target signal
light in Imin in the highly turbid water scene. It should be emphasized that the original
scene of the DOP distribution map p(x, y), which contains the polarization information
of the water, was calculated before processing Imin; so, it will not change the polarization
relationship between Ipro

min and Ipro
max [25].

The reason for using the multi-frame averaging method as the first step of joint noise
reduction is twofold: the first reason is that after the CLAHE process not only is the
contrast of the target signal light improved, but also the noise in the image is gained,
causing the overall peak signal-to-noise ratio (PSNR) of the image to decrease. Figure 6b,d
show the results obtained using Li’s method and the Spro

1 obtained using our method,
respectively, where Figure 6a shows the target image in clear water. Figure 6c,e show the
spatial frequency spectrum of Figure 6b,d, respectively. It can be seen from the PSNR
and the spectrogram that the noise amplification in the results containing the CLAHE
processing step is significantly higher than that of Li’s method.
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Figure 6. (a) is the target image in clear water; (b) is the result of Li’s method [25]; (c) is the spatial
frequency spectrum of (b); (d) is the Spro

1 obtained by our method; (e) is the spatial frequency spectrum
of (d).

The second reason is that the polarization differential imaging itself belongs to the
time-sharing rotating polarization imaging system [3,13], and the polarization images in
the different directions are obtained by rotating the analyzer placed in front of the receiver.
Hence, the imaging process itself does not exclude the noise suppression operation of
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the multi-frame averaging. At the same time, the method of multi-frame averaging has
been widely used in reducing imaging noise [27,28]. In addition, multi-frame averaging
preserves the high-frequency details of the image well and maintains the sharpness of
the image compared to the methods that directly use low-pass filtering (such as Gaussian
low-pass filtering [32]). It is worth noting that in our method, only a certain number of
images Imin need to be continuously acquired to achieve the multi-frame averaging effect.
We therefore choose multi-frame averaging as the first step in joint noise suppression.
However, multi-frame averaging has certain limitations in the improvement of the image
SNR. The SNR of N images after multi-frame averaging is,

IN
SNR =

√
N

I · ηQE√
I · ηQE + IRON

2 + D · t
(18)

Here, I denotes the image signal, ηQE denotes the quantum efficiency of the optical
signal, IRON denotes the readout noise, and D is the dark current, and the dark current
noise is time-dependent. According to Equation (18), it can be known that the SNR can
be improved by

√
N times when the multi-frame averaging operation is performed on

N images. However, as N increases, the SNR increases more and more slowly. Figure 7a,b
show the results of the images acquired in clear water and with different noises artificially
added (a) Gaussian random noise with mean µ = 0 and variance σ2 = 0.02 and (b) Gaussian
random noise with mean µ = 0 and variance σ2 = 0.2). Figure 7c shows the PSNR curves
after averaging over different numbers of frames, with the maximum number of frames
averaged at 200. It can be seen that the PSNR rises slowly after N reaches the value of
50. Figure 7d,e show the multi-frame averaging results of two images with different noise
intensities added for N = 50. Figure 7f–h show the results obtained from the actual
experiment, which are consistent with the simulation results, and the improvement of the
PSNR tends to be stable after the value of N reaches 50. Comparing the enlarged part
(green dashed area) in Figure 7f,h, it can be seen that the noise of the image is significantly
suppressed. Therefore, the result of N = 50 is used in the multi-frame averaging operation
in the following experiments.
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Figure 7. (a) and (b) are the results of artificially adding different random noises to the target image
captured in clear water; (c) PSNR curves of the average results of different numbers of multiple
frames in two cases; (d) and (e) are the multi-frame averaged results when N = 50 in two cases;
(f) Spro

1 is obtained by processing the images captured in 84.5NTU turbid water; (g) PSNR curve after
multi-frame averaging of different numbers of Spro

i ; (h) the results of Spro
i after multi-frame averaging

when N = 50.
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For the SNR analysis of multi-frame averaging, it is known that the ability of multi-
frame averaging to suppress noise is limited. Bilateral filtering has the effect of double
filtering, which can suppress noise on the one hand and preserve the edge strength of the
object well on the other hand [29,33]. Therefore, the bilateral filtering operation is used
as the last step of joint noise suppression. Figure 8 shows the polarization enhancement
results after comparing the different processing methods; Figure 8a is the raw image
intensity; Figure 8b is the processing result of Li’s method [25]; and Figure 8c is the
processing result using Liu’s method [32]. Figure 8d–f are the results of Spro

1 , 50 frames of

Spro
i multi-frame averaging Spro

average, and the result BF
(

Spro
average

)
after bilateral filtering on

Spro
average, respectively. It can be seen from the enlarged part in Figure 8f that the joint noise

suppression method can effectively reduce the interference of noise and improve the clarity
of the target signal. Figure 8g shows the pixel grayscale row index curves of the raw image
intensity and the different processing methods, and the indexed pixel range is the yellow
dashed line in Figure 8b. It can be seen from Figure 8g that our method better maintains
the intensity distribution of the target signal and restores the details of the target signal
compared to other methods.
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3.3. Results in Different High-Turbidity Water Samples

In the experiment, the raw target image in clear water was first acquired as a reference
image for calculating the PSNR. Then, 120 mL of skimmed milk was added to the water
tank, at which time the initial turbidity of the medium in the water tank was 52.7 NTU, and
the images were acquired. Then, the volume of skimmed milk was continuously increased,
and the corresponding images were acquired until 240 mL of skimmed milk was added
and the water turbidity was 98.6 NTU (120 mL, 160 mL, 200 mL, 220 mL, and 240 mL,
corresponding to the turbidity of 52.7 NTU, 68.9 NTU, 84.5 NTU, 92.5NTU, and 98.6 NTU,
respectively). The first column in Figure 9 shows the intensity of the raw image, and it
can be found that as the turbidity of the water increases the intensity of the backscattered
light will rise rapidly and generate a large area of grayscale overexposure area. The target
object information in the raw image gradually decreases with the increase in turbidity until
it is completely lost. This also reflects the necessity of improving the imaging quality of
the target objects in high-turbidity underwater scenes. The second and fourth columns
in Figure 9 show the processing results using Schechner’s method, Li’s method, and the
CLAHE method, respectively, and the fifth column is the processing result of our method.
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Under the high-turbidity conditions, the signal light in Imin decreases rapidly, and the
results of Schechner’s method are low in grayscale value, and the image is dark overall. Li’s
method and the CLAHE method have adjusted the image grayscale histogram so that the
grayscale is more uniform. However, as the intensity of the backscattered light increases
and the noise of the imaging process continues to gain, the intensity of the target signal
recovered by Li’s method decreases significantly with the increase in turbidity. CLAHE is
a histogram equalization operation for the raw intensity image, and the CLAHE method
will gradually fail when the backscattered light intensity exceeds the dynamic range of
the CCD. Our method takes into account the high backscattered light intensity and the
low SNR characteristics of the imaging process in highly turbid water and uses CLAHE
for cross-linear image processing combined with joint noise suppression for polarization
enhancement of the target signal. In contrast, as can be seen from the results in the fifth
column of Figure 9, although the recovery of the target signal decreases with the increasing
turbidity, our processing results outperform the conventional method under the same
turbidity conditions.
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To quantify the effect of the proposed method on the improvement of the recovered
image contrast and noise suppression, the pixel coordinates of the yellow dashed line in
Figure 9 are used as the indexing range to compare the differences in grayscale values
between the raw image intensity and the results of the different methods of processing, as
shown in the last column of Figure 9. The results of the image grayscale indexing under the
different turbidity conditions are also shown. It can be seen from the grayscale indexing
results that the backscattered light has a significant effect on the intensity of the raw image
(purple line) and the CLAHE processing method (orange line). In addition, the lower signal
light intensity makes the results recovered by Schechner’s method (green line) have a low
contrast. Where the blue line indicates the results of Li’s method and the red line indicates
our results, it can be seen that the red line has the best depiction effect on the details of the
object under different turbidity conditions. Moreover, it can be verified from the degree of
fluctuation of the curves that noise in the imaging results of the highly turbid water has a
significant impact on the imaging quality. In order to objectively evaluate the effect of the
image quality improvement, we use image entropy and PSNR to evaluate the effect of the
different methods of processing, and the corresponding results are shown in Table 1.

Table 1. Quantitative comparisons of the recovered images in Figure 9.

Raw Schechner’s Li’s CLAHE Ours

52.7NTU
PSNR(dB) 8.90 6.49 13.73 a 10.43 17.33
Entropy 1.69 1.62 2.04 2.05 2.27

68.9NTU
PSNR(dB) 6.61 5.95 11.41 8.87 16.14
Entropy 1.68 1.24 1.34 1.96 2.21

84.5NTU
PSNR(dB) 5.05 5.64 11.18 5.63 13.05
Entropy 1.09 1.05 1.18 1.17 2.00

92.5NTU
PSNR(dB) 4.73 5.58 10.66 4.99 11.12
Entropy 0.48 1.05 1.21 0.66 1.87

98.6NTU
PSNR(dB) 4.63 5.56 10.71 4.68 10.22
Entropy 0.12 0.99 1.24 0.19 1.75

a For each evaluation metric, the best results are marked in bold red, and the second best results are marked in
blue with underlining.

It can be seen in Table 1 that the image entropy value obtained by the proposed method
is the highest under the different turbidity conditions; the PSNR is not as good as Li’s
method under the condition of 98.6 NTU, but it is also at the second best value and the
difference is not significant. The effectiveness of our method is verified by the quantized
results; the PSNR can be improved by a maximum of about 2.6 times (84.5 NTU), and the
image entropy can be improved by a maximum of about 14.6 times (98.6 NTU) compared
to the raw image.

The limitations of image histogram equalization operating on a large number of
overexposed regions can be seen from the CLAHE processing results in Figure 9. Our
method applies it to the cross-linear image Imin and combines it with joint noise suppression
to obtain better results than using CLAHE directly. However, the interaction probability
between the photons and particles increases due to the rise in large-size particles in the
highly turbid water, causing the photons to gradually lose their initial polarization state
and become randomly polarized [26]. This eventually manifests itself as an increase in
the intensity of the backscattered light in Imin, which is also detrimental to the operation
of CLAHE. To illustrate the applicability of the proposed method, peak-to-correlation
energy (PCE) was used to evaluate the correlation between the polarization orthogonal
sub-images as the turbidity increased [15,16,34]. Figure 10 shows the PCE curves calculated
by Imin and Imax under the different turbidity conditions. It can be found that the intensity
of the backscattered light in Imin and Imax gradually increases as the turbidity increases,
leading to a gradual decrease in the correlation between them. The effect of the histogram
equalization of Imin using CLAHE is thus weakened because the target signal light is
gradually submerged in the background. In addition, the effect of CLAHE is also related to
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its setting of the number of tiles (NT) and the clip limit (CL). Therefore, in order to improve
the applicability of this method in more complex environments, the optimization of NT
and CL [35] and the means of signal enhancement under low-light conditions [36] can be
combined to increase the signal proportion in Imin so as to achieve better imaging quality.
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4. Discussion

Underwater imaging enhancement methods based on non-physical and physical
models have been widely used in dealing with turbid media. However, as the turbidity
increases, especially in highly turbid water, the processing effect of the traditional methods
becomes limited. Therefore, it is necessary to optimize the imaging system [1,24] or
combine different algorithms [5,25,37] to improve the imaging quality. We theoretically
and experimentally analyzed the influence of highly turbid water on the underwater
active polarization imaging model and showed that the increase in the backscattered light
intensity and the high noise gain of the imaging model mainly affect the imaging quality.
Inspired by the normalized histogram stretching of Imin by Li’s method, we proposed
an active polarization imaging processing method combining non-physical and physical
models. Our method uses CLAHE to process a certain number of Imin and then performs
polarization enhancement and uses joint filtering noise suppression (multi-frame averaging
and bilateral filtering) on the polarization enhancement results to reduce the high noise gain
generated by the imaging model and CLAHE. The quantitative results of the experiments
verify that our method is suitable for polarization imaging in highly turbid water.

Underwater active polarization imaging takes into account the DOP of target sig-
nal light ptarg; so, we compared the experimental results of a high-DOP (HDOP) object.
Figure 11 shows the experimental results of two metal blades glued to a metal plate. From
the results, it is clear that our method is capable of handling the HDOP object. However,
the HDOP object and the backscattered light both have a certain degree of polarization-
maintaining ability; so, the overexposed area produced by the backscattered light leads to a
distortion of the restoration result of the corresponding area, as shown by the red dotted
line in Figure 11.
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Our method is implemented on the basis of the non-physical model (CLAHE) and
the physical model (underwater active polarization imaging) and borrows the processing
idea from Li’s method. Therefore, we compare their processing results in Figure 9. To
compare our result more fully, we show the results of the classic and the effective dark
channel prior (DCP) [7,38] and retinex [39,40] methods in computer vision in Figure 12.
Due to the active illumination and with the increasing turbidity, the backscattered light
produces inhomogeneity and causes a large number of overexposed areas, which affects
the processing effectiveness of the DCP and retinex.
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While our method uses only classical processing methods from non-physical and
physical models, it is effective to cross them reasonably to form a new processing
method to achieve target imaging in harsh underwater environments. In future work,
the development from “detectable” to “better detectable” can be achieved by setting
up more suitable light sources (e.g., red light [1] or circularly polarized light illumina-
tion [24], etc.) and combining more advanced computational methods (e.g., computer
vision [7,38–40] or machine learning [41,42], etc.).
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5. Conclusions

In this paper, it is recognized through theoretical and experimental analysis that
the influence of backscattered light on underwater active polarization imaging becomes
more and more obvious as the turbidity increases, especially in the case of highly
turbid water (>50 NTU). It is mainly reflected in two aspects: one is the increase
in backscattered light intensity, and the other is the decrease in ∆p. Together, they
produce a processing result with a significantly lower contrast and high noise gain. We
proposed an active polarization imaging method based on the CLAHE of cross-linear
images and joint noise suppression (multi-frame averaging and bilateral filtering). The
experimental results in the different high-turbidity water samples (52.7 ∼ 98.6 NTU)
show that our recovery is better than the conventional methods. The PSNR and entropy
of our method are improvements of up to 2.6 times and 14.6 times compared to the
raw image. This method, which appropriately combines non-physical and physical
methods [25], facilitates the application of underwater active polarization imaging in
harsher environments without changing the complexity of the system.
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