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Abstract: We investigate the transformation of spatiotemporal optical signals using the Kretschmann
configuration with an additional dielectric layer, which can be referred to as the “generalized
Kretschmann setup”. We demonstrate that in the considered structure, it is possible to achieve
the condition of generating a reflected optical pulse containing a spatiotemporal optical vortex, which
appears to be impossible in the conventional Kretschmann configuration. High-quality generation
of spatiotemporal optical vortices using the investigated structure was confirmed by the results of
rigorous numerical simulations. The obtained results are promising for applications in analog optical
computing and optical information processing systems.
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1. Introduction

An optical vortex (OV) beam is a special type of optical beams comprising a zero
in the field amplitude and a discontinuity in the azimuthal phase. The most common
type of optical vortex beams corresponds to a beam with a phase singularity in the plane
perpendicular to the direction of beam propagation. Such a beam possesses orbital angular
momentum (OAM) and is characterized by a rotational flow of energy density around
the phase singularity. OAM beams and the methods of their generation using various
diffractive structures and metasurfaces have been extensively studied [1–9] and have many
promising applications, including optical trapping [5,6], super resolution microscopy [7],
and free-space telecommunications [8,9], among others.

Over the past few years, optical pulses possessing optical vortices in the spatiotemporal
domain (the so-called spatiotemporal optical vortices, STOVs) have become the subject of
intensive research [10–15]. It is believed that STOVs will give a new degree of freedom
for various applications of the OV beams in optical trapping and telecommunications.
However, the generation of STOVs remains one of the standing challenges. In [10,12,15,16],
for the generation of STOVs, complex optical setups are used, which include a spatial
light modulator (or a phase diffractive element), a diffraction grating, and several lenses
and mirrors.

In recent work [17], to generate an STOV, it was proposed that using a much simpler
and compact structure consisting of a subwavelength diffraction grating with an asymmet-
rical unit cell optically implementing the operation of spatiotemporal differentiation of the
incident pulse envelope in transmission (i.e., computing a sum of first-order spatial and
temporal derivatives of the envelope). In general, the transformation of an optical pulse
by a photonic structure can be described in terms of the theory of linear systems. In this
approach, the pulse transformation is considered as a transformation by a linear system, the
transfer function (TF) of which is proportional to the transmission (or reflection) coefficient
of the structure, depending on the angular and/or spatial frequency [18–21]. The TF of
an exact differentiator vanishes at the central angular and spatial frequencies; therefore, a
zero in the transmission or reflection spectrum of the diffractive structure is required for
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performing optical differentiation. As a rule, reflection (transmission) zeros arise due to the
resonant excitation of the eigenmodes of the structure; hence, resonant photonic structures,
including diffraction gratings (photonic crystal slabs) [18–20,22–24], multilayer structures,
and their integrated counterparts [21,25–29] are used for optical differentiation. In [17], the
spatiotemporal differentiation and the generation of an STOV are provided by tailoring the
geometry of the asymmetrical unit cell of the grating, ensuring the zero transmission at the
central pulse frequency and the required π/2 phase difference between the linear terms of
the Taylor series expansion of the grating transmission coefficient.

The grating-based differentiator in [17] provides the generation of STOVs in trans-
mission. The possibility of generating STOVs in reflection is also of considerable interest.
One of the simplest structures that can be used for spatiotemporal optical differentiation
in reflection is the so-called Kretschmann configuration, consisting of a dielectric prism
with a metal layer deposited on its surface [28,30]. This structure is lithography-free and,
therefore, is significantly simpler in terms of fabrication, as compared to the grating-based
differentiator in [17]. In the reflection spectrum of this structure, one can observe a resonant
reflection dip associated with the excitation of a surface plasmon polariton (SPP) at the
“outer” interface of the metal film. Note that a reflection zero in such a structure required
for implementing the differentiation operation can be achieved when the so-called critical
coupling condition is met [28].

In the present work, we investigate the generation of STOVs in a “generalized”
Kretschmann setup containing an additional dielectric layer deposited on the “outer”
side of the metal layer. The presented numerical simulation results show that the spatiotem-
poral differentiator based on the generalized Kretschmann setup enables the generation
of an STOV with high quality. At the same time, the condition of π/2 phase difference
between the coefficients at the first-order Taylor series terms of the TF, which is required
for the STOV generation, is, as it appears, not fulfilled in the conventional Kretschmann
setup without an additional dielectric layer.

2. Theoretical Description of the Generation of a Spatiotemporal Optical Vortex

Let us first consider the transformation of a two-dimensional optical pulse by a lay-
ered diffractive structure in reflection. Let the incident pulse have a central frequency
ω = ω0 and impinge on the structure at an angle of incidence θ0 (Figure 1). We denote
by G(kx,inc, ωinc), the spatiotemporal spectrum of the incident pulse envelope Einc(xinc, t)
defined in the coordinate system (xinc, zinc) associated with the incident pulse. This spec-
trum represents the amplitudes of the plane waves constituting the pulse and having the
spatial frequencies (transverse wave vector components) kx,inc (in the coordinate system
(xinc, zinc)) and the angular frequencies ωinc + ω0 [29]. When the pulse is reflected from
the structure, the plane wave amplitudes G(kx,inc, ωinc) are multiplied by the reflection
coefficient of this structure R(kx, ωinc + ω0), where kx denotes the in-plane component
(x component) of the wave vector of the plane wave in the “global” coordinate system (x, z)
(see Figure 1):

kx = kx,inc cos θ0 − kz,inc sin θ0 = kx,inc cos θ0 + sin θ0

√(
ωinc + ω0

v

)2
− k2

x,inc, (1)

where v is the phase velocity in the superstrate region. Using the theory of linear sys-
tems, it can be easily shown that the transformation of the spatiotemporal envelope
Einc(xinc, t)→ Erefl(xrefl, t) of the incident pulse occurring upon its reflection from the
structure (see Figure 1) can be described as the transformation of the signal Einc(xinc, t) by
a linear system having the following transfer function [29]:

Hst(kx,inc, ωinc) = R(kx, ωinc + ω0) = R

kx,inc cos θ0 + sin θ0

√(
ωinc + ω0

v

)2
− k2

x,inc, ωinc + ω0

. (2)
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Figure 1. Geometry of the investigated structure consisting of a prism with refractive index npr, a
metal layer with refractive index nm and thickness hm, and a dielectric layer with refractive index nd

and thickness hd surrounded by a medium with refractive index ns and a schematic depiction of the
spatiotemporal transformation of a pulse with the envelope Einc, obliquely incident at the angle θ0 to
a reflected pulse with the envelope Erefl possessing an STOV.

If a diffractive structure possesses a reflection zero at kx = kx,0 and ω = ω0 (i.e., at
kx,inc = 0 and ωinc = 0), the TF of Equation (2) can be written as [29,30]:

Hst(kx,inc, ωinc) = cx,1kx,inc + ct,1ωinc + O[k2
x,inc + ω2

inc]. (3)

The linear terms in the right-hand side of Equation (3) are proportional to the TFs of
exact differentiators with respect to a spatial variable (Hid,s(kx,inc) = ikx,inc) and to time
(Hid,t(ωinc) = −iωinc). Therefore, the structure with the TF of Equation (3) performs the
computation of the following first-order spatiotemporal differential operator [29]:

Erefl(xinc, t) = −icx,1
∂Einc(xinc, t)

∂xinc
+ ict,1

∂Einc(xinc, t)
∂t

. (4)

Let us now consider the generation of a spatiotemporal OV. Following [17], we suppose
that the incident optical pulse has a Gaussian envelope in the coordinate system (xinc, zinc)
associated with it (see Figure 1):

Einc(xinc, t) = exp(−x2
inc/σ2

x − t2/σ2
t ). (5)

Note that in this case, the envelope spectrum is also described by a Gaussian func-
tion [29]:

G(kx,inc, ωinc) =
σxσt

4π
exp

(
−

σ2
x k2

x,inc

4
−

σ2
t ω2

inc
4

)
. (6)

Substituting Equation (5) into Equation (4), we obtain:

Erefl(xinc, t) = 2i
(

cx,1

σ2
x

xinc −
ct,1

σ2
t

t
)

exp

(
−

x2
inc
σ2

x
− t2

σ2
t

)
. (7)

From Equation (7), it follows that if ψ = arg(cx,1/ct,1) = ±π/2 and |ct,1σx|/|cx,1σt| = 1,
then in normalized coordinates x̃ = xrefl/σx, t̃ = t/σt, the spatiotemporal profile of the
reflected pulse envelope contains an OV:

Erefl(x̃, t̃) = 2i
cx,1

σx
(x̃± it̃) exp(−x̃2 − t̃2). (8)

3. Geometry of the Generalized Kretschmann Setup and the Zero Reflection Condition

Figure 1 shows a schematic illustration of the considered generalized Kretschmann
setup consisting of a prism with refractive index npr, a metal layer with thickness hm and
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refractive index nm, and a dielectric layer with thickness hd and refractive index nd. The
structure is surrounded by a medium with refractive index ns.

To describe the optical properties of the structure, let us consider a plane wave with
unit amplitude, free-space wavelength λ, and a fixed linear polarization (for the examples
considered below, TM-polarization) impinging on the structure at an angle of incidence
θ0. We assume that the incidence angle meets the inequality θ0 ≥ θmin = arcsin(nmed/npr),
i.e., the wave undergoes total internal reflection at the bottom interface of the structure.
In this case, the reflection coefficient at this interface has the form ρ = eiϕ, so that |ρ| = 1.
Using the multiple-wave interference model, the reflection coefficient of the structure can
be easily obtained as [31]:

R(hm, hd, λ, θ0) =
r1 − e2ikzhd eiϕ(r1r2 − t2)

1− r2eiϕe2ikzhd
, (9)

where r1 = r1(hm, λ, θ0) and r2 = r2(hm, λ, θ0) are the complex reflection coefficients of the
metal layer for waves incident on this layer from above (from the prism) and from below
(from the dielectric layer), respectively, t = t(hm, λ, θ0) is the complex transmission coeffi-

cient of the metal layer, kz(λ, θ0) =
√
(k0nd)

2 − k2
x is the magnitude of the z component of

the wave vector inside the dielectric layer, and k0 = 2π/λ is the wave number.
Following [31], one can see that the reflection coefficient defined by Equation (9) can

strictly vanish. This can be achieved by a proper choice of the thicknesses of the metal
(hm) and dielectric (hd) layers. By equating the numerator of the reflection coefficient of
Equation (9) to zero, we obtain:

r1

r1r2 − t2 = e2ikzhd eiϕ. (10)

Consider the left-hand side of Equation (10) as a function of the thickness of the metal
layer hm:

f (hm) =
r1(hm)

r1(hm)r2(hm)− t2(hm)
. (11)

As follows from Equations (10) and (11), the necessary condition for achieving a
zero reflection imposed on the thickness of the metal layer, hm, is | f (hm)| = 1. Con-
sidering the limiting cases hm → 0 and hm → ∞ , at which | f (0)| = |r1(0)| < 1 and
| f (∞)| = |1/r2(∞)| > 1, respectively, one can conclude that a solution of the equation
| f (hm)| = 1 always exists [27]. Next, by equating the arguments of the left-hand and
right-hand sides of Equation (10), we get an expression for the thickness of the dielectric
layer hd, providing zero reflection at the found thickness of the metal layer hm:

hd =
1

2kz
(2πn + arg f (hm,1)), n ∈ N. (12)

4. Results and Discussion
4.1. Numerical Investigation of the Generalized Kretschmann Setup with a Reflection Zero

Using the zero reflection conditions derived above, we calculated the structures with
the following parameters. As the materials of the metal and dielectric layers, gold (Au) and
silicon dioxide (SiO2) were considered, respectively. The prism material was assumed to
be BK7 glass, and the refractive index of the surrounding medium was set to ns = 1. The
refractive indices for the other materials (Au, SiO2, BK7) were taken from [32]. Here, and in
what follows, the wavelength dispersion of the refractive indices was taken into account
for all materials. Figure 2a,b show the calculated thicknesses of the metal (Figure 2a)
and dielectric (Figure 2b) layers of the structure providing zero reflection for the given
values of wavelength λ0 and angle of incidence θ0 (see Equations (10)–(12)). Note that
in the considered case, the minimum value of the angle of incidence θ0, providing total
internal reflection at the bottom interface of the structure, is θmin = 41.09◦. Figure 2c
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shows the phase (argument) difference ψ = arg(cx,1/ct,1) of the expansion coefficients of
the TF of Equation (3), rigorously calculated for each of these structures for the incident
TM-polarized waves. To calculate this phase difference, we used the following approach.
According to Equation (2), the TF is proportional to the complex reflection coefficient of the
structure, which was calculated for the structures corresponding to each point in Figure 2c
(i.e., for each pair of layer thicknesses hm and hd obtained from the data presented in
Figure 2a,b, respectively) using an in-house implementation of the enhanced transmittance
matrix approach [33]. Then, the coefficients cx,1 and ct,1 were calculated from the TF using
the numerical differentiation formulas. It can be seen from Figure 2c that in the given
parameter space (λ0, θ0), there exists a line (the white dashed line in Figure 2c), along which
the ratio ψ = arg(cx,1/ct,1) satisfies the condition for the STOV generation ψ = π/2.

Photonics 2023, 10, x FOR PEER REVIEW 5 of 9 
 

 

(10), we get an expression for the thickness of the dielectric layer dh , providing zero re-
flection at the found thickness of the metal layer mh : 

( )( )= + ∈d m,1
1 2 arg ,  .

2 z

h πn f h n
k

 (12)

4. Results and Discussion 
4.1. Numerical Investigation of the Generalized Kretschmann Setup with a Reflection Zero 

Using the zero reflection conditions derived above, we calculated the structures with 
the following parameters. As the materials of the metal and dielectric layers, gold (Au) 
and silicon dioxide (SiO2) were considered, respectively. The prism material was assumed 
to be BK7 glass, and the refractive index of the surrounding medium was set to =s 1n . 
The refractive indices for the other materials (Au, SiO2, BK7) were taken from [32]. Here, 
and in what follows, the wavelength dispersion of the refractive indices was taken into 
account for all materials. Figure 2a,b show the calculated thicknesses of the metal (Figure 
2a) and dielectric (Figure 2b) layers of the structure providing zero reflection for the given 
values of wavelength 0λ  and angle of incidence 0θ  (see Equations (10)–(12)). Note that 
in the considered case, the minimum value of the angle of incidence 0θ , providing total 
internal reflection at the bottom interface of the structure, is = °min 41.09θ . Figure 2c 
shows the phase (argument) difference = ,1 ,1arg( )x tψ c c  of the expansion coefficients of 
the TF of Equation (3), rigorously calculated for each of these structures for the incident 
TM-polarized waves. To calculate this phase difference, we used the following approach. 
According to Equation (2), the TF is proportional to the complex reflection coefficient of 
the structure, which was calculated for the structures corresponding to each point in Fig-
ure 2c (i.e., for each pair of layer thicknesses mh  and dh  obtained from the data pre-
sented in Figure 2a,b, respectively) using an in-house implementation of the enhanced 
transmittance matrix approach [33]. Then, the coefficients ,1xc  and ,1tc  were calculated 
from the TF using the numerical differentiation formulas. It can be seen from Figure 2c 
that in the given parameter space ( 0 0,λ θ ), there exists a line (the white dashed line in 
Figure 2c), along which the ratio = ,1 ,1arg( )x tψ c c  satisfies the condition for the STOV 

generation = 2ψ π . 

 
Figure 2. Thicknesses of the metal (a) and dielectric (b) layers (along the white dotted line in (b), the 
dielectric layer thickness vanishes) of the structure as a function of wavelength and angle of inci-
dence, at which zero reflection is achieved; (c) Argument difference = ,1 ,1arg( )x tψ c c  (white dashed 
line shows the points, at which = / 2ψ π ). Bold black dots correspond to the parameters of the ex-
ample considered in subsection 4.2. 

It is important to note that Figure 2b,c show the impossibility of achieving the condi-
tion of the STOV generation by the structure with the considered parameters 

Figure 2. Thicknesses of the metal (a) and dielectric (b) layers (along the white dotted line in (b), the
dielectric layer thickness vanishes) of the structure as a function of wavelength and angle of incidence,
at which zero reflection is achieved; (c) Argument difference ψ = arg(cx,1/ct,1) (white dashed line
shows the points, at which ψ = π/2 ). Bold black dots correspond to the parameters of the example
considered in Section 4.2.

It is important to note that Figure 2b,c show the impossibility of achieving the condition
of the STOV generation by the structure with the considered parameters corresponding
to the conventional Kretschmann configuration. Indeed, the conventional Kretschmann
configuration corresponds to the vanishing thickness of the additional dielectric layer
(hd = 0). This condition is shown by the white dotted line in Figure 2b. From the
comparison of Figure 2b,c, it is clear that the curves corresponding to the conditions
hd = 0 and ψ = π/2 do not intersect in the parameter space. In addition, it is worth
mentioning that the further analysis of the conventional Kretschmann setup (not presented
here for the sake of brevity) performed with other metals (Ag, Al, Cu) demonstrated that
the STOV generation condition ψ = ±π/2 also cannot be achieved. At the same time, the
introduction of the additional dielectric layer might make it possible to achieve the required
±π/2 phase difference (however, the use of different materials of the prism and/or the
dielectric layer may be required). For example, if copper (Cu) is used as the material of the
metal layer, STOV generation conditions can be fulfilled for certain wavelengths from the
violet, green, and yellow parts of the visible spectrum provided that SF11 and Al2O3 are
used as the materials of the prism and dielectric layer, respectively.

4.2. Numerical Demonstration of the STOV Generation

Let us demonstrate the generation of a spatiotemporal OV by the investigated structure.
According to Figure 2c, we chose a structure providing zero reflection and the required
argument difference ψ = π/2 at λ0 = 500 nm and θ0 = 68.66◦ for the incident TM-
polarized wave (the corresponding point is shown with bold black dots in Figure 2a–c; in
Figure 2c, this point is lying on the dashed white curve corresponding to the condition
ψ = π/2). At this point, the thicknesses of the metal and dielectric layers of the structure
amount to 27.2 nm and 41.7 nm, respectively. At the specified central wavelength λ0, the
refractive indices of the materials used in the calculations are npr = 1.5214 (BK7 glass),
nm = 0.9707 + 1.8562i (Au), and nd = 1.4623 (SiO2).
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Figure 3a,b show the amplitude (absolute value) and phase (argument) of the TF of
the specified structure. As was mentioned above, the TF is proportional to the reflection
coefficient of the structure and was calculated using the enhanced transmittance matrix
approach [33]. In the vicinity of the reflection zero, the obtained TF is well described by
the “main” (linear) part of Equation (3) at cx,1 = 0.11× e3.32i and ct,1 = 0.43× e(3.32−π/2)i.
These coefficients were found by fitting using the central finite-difference formulas. The
white dashed circle in Figure 3a shows the 1/e2 level of the spectrum of the incident
spatiotemporal Gaussian pulse of Equations (5) and (6) with σx = 50 µm and σt = 200 fs
used in the further simulations.
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Figure 3. (a) Amplitude (absolute value) and (b) phase (argument) of the TF of the designed structure.
White dashed circle shows the 1/e2 level of the incident pulse spectrum.

Figure 4a,b show the amplitude and phase of the spatiotemporal envelope of the pulse
reflected from the structure. The reflected pulse envelope was calculated numerically using
the rigorous linear system approach [29], describing the transformation of the incident
spatiotemporal optical signal by a linear system with the TF of Figure 3. For the sake of
comparison, Figure 4c,d shows the amplitude and phase of the “model” spatiotemporal
envelope of Equation (7) calculated at the cx,1 and ct,1 values presented above. It is impor-
tant to note that in the considered case, the normalized RMS deviation of the rigorously
computed envelope (Figure 4a) from the model one (Figure 4c) is only 0.9%, which indicates
the high quality of the STOV generation.
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5. Conclusions

In the present work, we demonstrated the possibility of high-quality generation of
spatiotemporal optical pulses possessing a phase singularity in the spatiotemporal domain
(a spatiotemporal optical vortex) using the generalized Kretschmann setup containing an
additional dielectric layer. From the presented results, it follows that the dielectric layer
enables achieving conditions of the STOV generation, which, at least for the considered
example, cannot be fulfilled in the case of the conventional Kretschmann geometry. The
results of rigorous numerical simulations demonstrate the capability of generating a high-
quality spatiotemporal optical vortex in reflection (the normalized root-mean-square error
of the rigorously computed envelope from the model STOV does not exceed 1%). The
obtained results may find use in the design of systems for analog optical computing and
optical data processing.
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