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Abstract: The optimal regime of three-photon resonant excitation of a helium atom via a femtosecond
ultraviolet (UV) pulse was discovered and numerically studied, at which the maximum power of
the third harmonic of the UV field is achieved in the spectrum of dipole acceleration (the second
time derivative of the induced dipole moment) of the atom. It is shown that the optimal frequency
of the UV field nearly coincides with the frequency of the three-photon transition |1s2)—11s2p),
taking into account its shift as a result of the dynamic Stark effect, and the intensity of the UV field
is dictated by the condition of maximizing the product of the populations of the |1s?) and |1s2p)
states, averaged over the time interval during which the UV field is non-zero. For the considered UV
field durations, from 10 to 100 cycles of the carrier frequency (from units to tens of femtoseconds),
the optimal intensity lies in the range from 10'* W/cm? to several units of 10'* W/cm?. Tt is shown
that with an optimal choice of the frequency and intensity of the UV field, the dynamics of excitation
of bound and continuum states, as well as the shape of the time envelope of the dipole acceleration
of the atom, weakly depend on the duration of the UV field envelope; only their time scale changes
significantly. In addition, under optimal conditions, the average power of the third harmonic signal in
the dipole acceleration spectrum is practically independent of the duration of the UV field envelope.

Keywords: harmonic generation; resonant multiphoton processes; atomic excitation and ionization;
non-perturbative interaction; vacuum ultraviolet

1. Introduction

The generation of coherent radiation in the vacuum ultraviolet (VUV) and X-ray ranges
is one of the topical problems of modern optics. On the one hand, interest in this problem
is due to the short period of field oscillations and the possibility of generating radiation
pulses of the shortest (attosecond) duration achievable today. On the other hand, the high
frequency of radiation, corresponding to the photon energy comparable to or exceeding
the ionization potential of an atom, makes it possible to implement regimes of light-matter
interaction that are unattainable in the optical range, such as single-photon excitation or
ionization of an atom from both the valence and core electronic shells, triggering Auger
decay or single-photon excitation of autoionization states [1-10]. At the same time, the
short wavelength of the radiation allows it to be focused into a spot with dimensions
significantly smaller than the wavelength of the field in the visible/infrared (IR) range and
thereby achieve record spatial resolution [11].

One of the main methods for generating coherent VUV /X-ray radiation is the high-
order harmonic generation (HHG) of an optical laser field in gases or solids [12,13]. Initially,
HHG was considered primarily as a method for generating a wide-band spectrum of
harmonics with photon energies significantly exceeding the ionization potential of an atom.
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In this case, HHG occurs in the regime of tunneling ionization of the atom and is the
result of a three-step process, including the release of an active electron, its acceleration
in the laser field, and subsequent recombination with the parent ion [14,15]. However, in
recent years, the generation of harmonics of moderate orders with photon energies lower
than or on the order of the ionization potential of the atom has also attracted considerable
interest [16-24]. In this case, HHG occurs in the process of multiphoton excitation and
multiphoton ionization of the atom and is largely due to transitions between bound states.
The advantages of this regime are the high efficiency of harmonic generation (compared to
the tunnel ionization regime) and less stringent requirements for the intensity of the laser
field. In this case, as a rule, the driver for harmonic generation is the field of the near or
mid-IR range, and the order of multiphoton resonances (if any) is somewhere around ten.

As in the above-mentioned studies, this work considers the generation of harmonics
under conditions of multiphoton excitation and multiphoton ionization of the atom. The
main attention is paid to the properties of the lowest-order (and most intense) harmonic of
the external field, namely the third harmonic. It is assumed that the fundamental frequency
lies in the ultraviolet range, and the multiphoton resonance is of low order (third). This
regime has significant advantages over the harmonic generation driven by the visible/IR
range field. Firstly, the role of multiphoton resonances increases, and the maximum
achievable efficiency of generation of below-threshold and near-threshold harmonics (with
photon energies lower than or on the order of the ionization potential of the atom) increases
as well. Secondly, with an increase in the fundamental frequency, the phase matching of
the driving field with the radiation of its harmonics improves, which makes it possible to
achieve a higher efficiency of harmonic generation in an extended medium (note, however,
that the analysis of macroscopic effects is beyond the scope of this study).

In the 1970s-1990s, a number of theoretical [25-29] and experimental [30-37] studies
were published on the generation of low-order (primarily third) harmonics of ultravio-
let radiation in gases. The theoretical models used in these studies were based on (a) a
phenomenological description of the nonlinear response of the medium (nonlinear suscep-
tibility formalism), (b) a solution of the Schrodinger equation or equations for the elements
of the density matrix for a two-, three-, or four-level system, and (c) on the perturbation
theory corresponding to the weak field approximation, as well as a combination of these
approaches. In the spectrum of the field and excitation amplitudes of stationary states (or
elements of the density matrix), only the lowest-order, often the first, second, and third
harmonics of the fundamental frequency, were taken into account.

In this work, the response of an atom to an external field is calculated without using
the above approximations: the non-perturbative regime of laser—matter interaction is
considered, and all possible harmonics of the fundamental frequency are taken into account
in the spectrum of the dipole response of the atom. The harmonic generation process is
analyzed using the example of helium atoms by solving the time-dependent Schrodinger
equation (TDSE) in a given femtosecond UV field and calculating the induced dipole
moment of the atom. Two approaches are used. The first involves the expansion of the wave
function in terms of a sufficiently large number of bound states of an unperturbed atom, as
well as continuum states into which electric dipole transitions from the bound states taken
into account are allowed. The second approach is to numerically solve the TDSE from the
first principles in a two-dimensional model using the effective one-electron potential.

The study is organized as follows. The description of the theoretical models used, and
an analysis of the results obtained are given in Sections 2 and 3, respectively. In Section 4,
the conclusions are given. A significant part of the analytics, as well as the parameters of
the models used, are included in the Appendices.
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2. Theoretical Model

The consideration in this article is based on the TDSE solution for a helium atom in a
given external field. In the electric dipole approximation, the TDSE has the form

i [¥(71 7)) = B0 d Eo]r(71 72, 0

- = . . — — .
where “I’( ri, v, t) > is the wave function, 71 and r; are the radius vectors of electrons

. e
in a helium atom, Hj is the Hamiltonian of an atom in the absence of a field, d is the dipole

moment operator, and E( t) is the external (in this case, UV) field. Here and below, atomic
units are used. It is noteworthy that for the considered wavelengths of the fundamental
frequency UV field, exceeding 100 nm, the dipole approximation is well satisfied [38].
Moreover, since the wavelengths of the emitted harmonics also greatly exceed the atomic
dimensions, the atom can be safely considered a point-like emitter [39]. In what follows,
we will assume that the UV field is linearly polarized along the z-axis and has the form

E(t) = ZoEuv f()sin(O), @

where ;0 is the unit vector along the z-axis, Eyjy and () are the amplitude and frequency of
the UV field, respectively, and f(t) is the trapezoidal envelope:

0, t<O,
t/(3T), 0<t<3T,
f(t) = 1, 3T <t< (Nosc +3)T, (3)
1-— (l’ — [Nosc + 3}T)/(3T), (Nosc +3)T <t< (Nosc + 6)T,
0, t > (Nosc +6)T,

where T = 27t/Q) is the UV field oscillation period. In accordance with Equations (2) and
(3), the UV field pulse has a constant amplitude in a time interval lasting N, field cycles,
while turning on and off the UV field is characterized by a linear increase (decrease) in its
amplitude over three field cycles. In what follows, the values N, = 10, 30, 50, 70, and 100
are considered (most figures are given for Nos, = 30). The choice of the trapezoidal envelope
allows one to simplify the interpretation of the results because this makes it possible to
analyze the response of an atom to an external field with a constant amplitude over most of
the time interval under consideration. In turn, this allows one to associate each combination
of frequency and intensity of the UV field with a fixed ionization rate of the atom and a
fixed dynamic Stark shift of energy levels (see Section 3). Note that the absolute duration
of the UV field envelope is inversely proportional to its carrier frequency Q).

As mentioned in the Introduction, the results of the calculations presented in this study
were obtained using two approaches to solving the TDSE for a helium atom irradiated with
a femtosecond pulse of an ultraviolet field.

The first approach is based on the expansion of the atomic wave function over a limited
(sufficiently large) basis of eigenfunctions corresponding to bound states and continuum
states into which electric dipole transitions from the considered bound states are allowed.
This expansion has the form

¢ (1 724)) = 3wl + 55 Z de b Dle), @

where |k) = ’zpk (71, 72) > is the spatial part of the wave function of the kth stationary

state, ay(f) is the temporal factor in the same wave function, which we will further call the
excitation amplitude of the state |k), 1 < k < Kmax, and b; (g, t) is the excitation amplitude
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of the continuum state |¢, /) with energy ¢ > 0 and orbital momentum /, 0 < I < Lax.
In further calculations, the expansion of the wave function takes into account the first 10
bound states of the helium atom (Kmax = 10), corresponding to the values of the principal
quantum number # = 1,2,3,4 and the projection of the orbital momentum of the atom onto
the field polarization direction m = 0 (electric dipole transitions from ground state into states
with m # 0 in a linearly polarized field are prohibited by selection rules). Namely, states
[1s2) = [1), |1s2s) = [2), |1s2p) = |3), |1s3s) = |4), [1s3p) = |5), |1s3d) = |6), |1s4s) = |7),
|1s4p) = [8), |1s4d) = |9), and |1s4f) = |10) are taken into account (for brevity, here and
below, the value of the projection of the orbital momentum of the atom m = 0 is not given
in the designation of states). Among the continuum states, those with orbital momentum
from 0 to Liax =4 (s-, p-, d-, f-, and g-waves) are taken into account. This set of states makes
it possible to quite accurately consider one-, two-, three-, four-, and five-photon transitions
from the ground to lower-bound states |1s2s) and |1s2p) (transitions to higher-lying states
are described with less accuracy). Note that the time dependences 4, (t) take into account
oscillations of the phase of the wave function at the natural frequencies of stationary states,
which in the atomic system of units are equal to E;, where Ej is the energy of the kth
stationary state in the absence of a field (state energies and other constants used are given
in Appendix A). Accordingly, depending on the ratio of the values of E; and (), evenin a
weak UV field limit, the excitation amplitudes can be fast or slow functions of time on the
scale of the UV field cycle.

Further, the excitation amplitudes of bound states are decomposed into harmonics of
the UV field:

Z ay () exp(—inQdt), (5)
n=—oo
where a; ,,(t) is the Fourier component of the excitation amplitude of the kth bound station-
ary state.

To take into account the multiphoton ionization of an atom from the bound states under
consideration, the approximation of the adiabatic exclusion of continuum states is used [40],
which primarily corresponds to not taking into account transitions between continuum
states. In addition, reverse transitions from continuum states to bound states are also not
considered. These approximations make it possible to express the excitation amplitudes
of continuum states e, [) through the Fourier components of the excitation amplitudes of
bound states a; ,,(t). Ultimately, a closed system of linear differential equations for ay ,, (t)
can be written, which takes into account the decrease in absolute values of ay ,, () as a result
of ionization. These equations have the form

da . 1 Raax
dlin = —[i(Ex — nQ) + viu ()], + 5 Z f(t EUVdsk (@501 = asn41), ©)

(2)

where d;’ is the projection of the dipole moment of the transition from state |s) to state
| k) on the z-axis, and 7, (t) is the ionization rate of the nth Fourier component of the kth
state. Using the residue theory, the following expression can be obtained for 7y ,,():

Tint) = FER 0 8 || 1B+ 0= 10, B+ (0~ 102)+

)
| (kI B + (n + 1)0,1)‘29(Ek +(n+1)0)|,

where d is the z-projection of the dipole moment operator, and () is the Heaviside unit
step function. The derivation of Equations (6) and (7) is given in Appendix B.

Equations (6) and (7) were solved numerically using the fourth order one-step explicit
Runge-Kutta method using the following initial conditions:

a1,0(0) =1 and ay,(0) =0 for any {k,n} # {1,0}, (8)
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which imply that before exposure to the UV field, the atom is in the ground state |1s?) with
energy Ej.

This approach is a simplified and less resource-intensive implementation of the SSEA
(state-specific expansion approach) method [41,42]. It makes it possible to quite accurately
describe the component of the dipole response of an atom to an external field that dominates
in the considered spectral range of below-threshold and near-threshold harmonics (see, for
example, [43]) and is caused by transitions between bound states,

Kmax
dup(t) = (F|d:|¥)y, = Y. d5 Y af, (D)asm(t) exp[—i(m — n)O]. ©)
k,s=1 n,m

In Formula (9), the index bb of the induced dipole moment of an atom indicates
transitions between bound states, the indices k and s number the stationary states taken into
account, and the indices n and m number their Fourier components. Note that within the
framework of this approach, the response of the atom due to transitions between continuum
states, as well as from continuum to bound states, is not taken into account.

As usual in strong-field physics, the response of an atom to an external field will be
characterized by dipole acceleration,

d2

T (F|d=[ ) - (10)

dyp (t) =
This approach allows one to analyze the contributions of certain stationary states to the
generation of harmonics and take into account the properties of a real multielectron atom
(through the energies of stationary states and the dipole moments of transitions between
them) by choosing the correct basis functions. For this purpose, in this study, we used the
spectroscopic characteristics of a three-dimensional two-electron helium atom, calculated
using the multi-configuration Hartree—-Fock method (see Appendix A). Their calculation
error does not exceed several percent relative to experimental data [44].
The second approach used in this article is to solve the TDSE from first principles
in a two-dimensional model of a one-electron atom with an effective potential U(x, z),
reproducing the binding energies of ground state |1s*) and lowest-excited bound states
|1s2s) and |1s2p):

192 102 i 0
75@*5@+5A2(t)*+u(x,2> ‘I{(X,Z,t), (11)

iQT(x, z,t) = e

ot

t
where A;(t) = ¢ [ E(t')dt’ is the vector potential of the UV field, c is the speed of light in
vacuum, and

1+ (1 + 8.125r)e 81257 0.6r°
U(x,z) = — ( ﬁ+0())1 +78+1074,r:\/x2+22. (12)

The energies of the lowest stationary states and the dipole moments of transitions
between them calculated in this model are given in Appendix A.

This approach has less accuracy in describing the dynamics of the localized part
of the atomic wave function but takes into account recombination and all possible tran-
sitions between states of the continuum. Accordingly, the dipole response of an atom
to an external field and the contribution from transitions between bound states contain
components due to transitions from continuum to bound states (recombination) and tran-
sitions between continuum states. The dipole acceleration of an atom is calculated using
Ehrenfest’s theorem:

A(t) = E(t) + / ‘I’*aa—lj‘lfdxdz, (13)

where integration is carried out over the entire computational domain.
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The purpose of this study is to analyze the physical mechanisms that ensure the
maximization of the third harmonic energy in the spectrum of the dipole acceleration of
the atom. Both approaches correspond to this goal and provide a qualitatively correct
description of the process under study.

3. Calculation Results

As was shown in [45], the approaches to solving the TDSE used in this study give
similar time dependences of the probability of ionization of a helium atom in a UV field
with an intensity I;;y = 10'* W/cm?. In the first approach, based on the expansion of the
wave function in terms of the basis of stationary states, the probability of ionization is

determined as
Kmax

Wl =1- Y |a (), (14)
k=1

whereas within the framework of the second approach, based on solving a two-dimensional
one-electron TDSE from first principles, it has the form

W) =1 [[ [¥(x,2) ] dxdz, (15)

ion
A

where the integration is carried out inside a square with side A = 100 a.u., in the center
of which the core of the He atom is located. In this case, the wave functions of bound
states with principal quantum numbers n = 1, 2, 3, 4 are completely contained within the
integration region.

As follows from Figure 1, the frequency dependences of the ionization probability are
also qualitatively similar. Figure 1 shows the probability of ionization of an atom at the
end of a UV field pulse with a peak intensity I;;y = 10'* W/cm? and a constant-amplitude
interval duration equal to 30 UV field cycles (Nysc = 30) as a function of its frequency. The
frequency of the UV field is scanned in a range 0.18 < () < 0.4 that covers resonances with
two-, three-, and four-photon transitions from the ground to excited bound states and
corresponds to the wavelength range of the UV field from 114 nm to 254 nm. The blue
curve shows the solution obtained based on expansion (4), and the red curve is based on
the two-dimensional one-electron model.

As follows from Figure 1, multiphoton resonances are reproduced in both models, but
their frequencies are slightly different. This is due to (a) the neglect of highly excited bound
states and the use of the adiabatic continuum exclusion approximation when expanding
the wave function in stationary states and (b) the difference in the dipole moments of
the transitions, as well as energies of highly excited bound states, in a two-dimensional
one-electron model from the corresponding parameters of a real helium atom. The best
agreement in the probability of atomic ionization is achieved for a three-photon transition
from state |1s%) to state |1s2p), as well as two- and four-photon transitions to state |1s2s),
which is explained by the highest accuracy of both models in describing these transitions.
The accuracy of the approach based on the expansion of the wave function in stationary
states is due to the low probability of transitions from ground state |1s2> to disregarded
intermediate states with n > 5 during the three-photon excitation of state |1s2p) or the
two/four-photon excitation of state |152s) in a real helium atom. At the same time, the
two-dimensional model of the helium atom is constructed in such a way as to reproduce the
energies of states |1s?), |1s2s), and |1s2p) with few percent accuracy. The dipole moments
of transitions between them are reproduced with lower, but still reasonable accuracy of tens
of percent (see Appendix A). Taken together with the fact that the three-photon transition
to state |1s2p) predominantly occurs through state |1s2s), while the two- and four-photon
transitions to state |1s2s) occur through state |1s2p), this determines the accuracy of the
two-dimensional model in describing these transitions.
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Figure 1. Dependence of the probability of ionization of a helium atom at time t = 50T on the
frequency of the UV field with a peak intensity Iy = 10'* W/cm?. The blue solid curve corresponds

to the solution obtained by expanding the atomic wave function in stationary states, Wi(ollz (t =50T),
and the red dotted curve corresponds to the solution of the two-dimensional one-electron TDSE

2)

from first principles W,
indicate the frequencies of multiphoton transitions between unperturbed bound states of the atom.

(t = 50T). The vertical axis uses a logarithmic scale. Vertical dashed lines

In this case, multiphoton resonances of odd order are marked in black, and resonances of even order
are marked in green.

Let us consider in more detail the region of resonances with three-photon transitions
from state |152> to the p- and f-states taken into account, 0.25 < (2 < 0.3, which corresponds
to the wavelength range of the UV field from 153 nm to 183 nm. Figure 2 shows the
dependence of the probability of ionization of an atom at the end of a UV field pulse on
its frequency and peak intensity, calculated by expanding the atomic wave function over
stationary states. Similar to Figure 1, this figure is given for UV field pulses with a constant
amplitude interval duration equal to 30 carrier cycles (Nysc = 30). Note that the blue curve
in Figure 1 in the frequency range 0.25 < () < 0.3 represents a cross-section of Figure 2 for
an intensity value of 10! W/cm?. The Keldysh parameter in Figure 2 varies from 1.99
(Q=0.3, Iyy = 101 W/cm?) to 23.9 (Q = 0.25, Iyy = 10'® W/cm?); hence, the ionization
regime is multiphoton.

As follows from Figure 2, (i) the highest probability of ionization is achieved in
the vicinity of the frequencies of three-photon transitions, (ii) the absolute maximum
corresponds to the vicinity of the transition |1s2)—|1s2p) frequency; with increasing field
intensity, (iii) the probability of ionization increases, and (iv) the resonances broaden and
shift in frequency.

Next, we will focus on the resonance with the three-photon transition |1s%)~11s2p),
which is characterized by the highest probability of atomic ionization and is most accurately
described within the framework of the models used. For each fixed intensity of the UV field,
we determine the resonance frequency using the method of multiphoton photoionization
spectroscopy [46] based on the position of the maximum probability of atomic ionization in
the vicinity of the frequency of the three-photon transition between the unperturbed states
11s%) and 11s2p). The dependence of the transition frequency on the UV field intensity
obtained in this way is shown in Figure 2 by a black solid curve.

An increase in the probability of atomic ionization with increasing UV field intensity
is accompanied by real and virtual excitation of bound states. As a consequence, the
response of the atom to the UV field (dipole acceleration) is enriched in harmonics of
the fundamental frequency. Figure 3 shows the dependence of the energy concentrated
in the spectral component of the dipole acceleration of an atom (10) at the frequency of
the third harmonic of the UV field (the method for calculating this quantity is described
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in Appendix C) on its frequency and intensity. Calculations were made for the duration
of the interval of constant amplitude in the UV field envelope equal to 30 carrier cycles
(Nosc = 30)-

0.3

Frequency of the
UV field, €2 (atomic units)

0.26

0.25 e
1013 10]4 1C|]5

Intensity of the UV field, IUV (W/cmz)

Figure 2. Probability of ionization of a helium atom (in a logarithmic scale) after exposure to a UV
field pulse depending on its intensity and frequency in the vicinity of three-photon resonances. The
dotted lines indicate the frequencies of three-photon transitions between unperturbed atomic states;
here, black color corresponds to the transition | 1s?)—11s2p), green is for the transition |1s2)—1s3p),
whereas blue is for the transitions |1s2)—|1sdp) and |1s?)—11s4f) (on the scale of the figure they
coincide). The solid black curve indicates the frequency of the three-photon transition | 1s2)— | 1s2p)
in the UV field. The logarithmic scale is used for the horizontal axis. The solution is obtained by
expanding the atomic wave function in stationary states.

037

=
to
3

Frequency of the
UV field, €2 (atomic units)
=]
o

o
o
Ch

10

Intensity of the UV field, IUV (W/cmz)

Figure 3. Dependence (in a logarithmic scale) of the third harmonic energy in the spectrum of the
dipole acceleration of a helium atom on the intensity and frequency of the UV field in the vicinity
of three-photon resonances. The dotted lines indicate the frequencies of three-photon transitions
between unperturbed states of the atom; here, black color corresponds to the |1s2)—11s2p) transition,
green is for the |1s2)—11s3p) transition, whereas blue is for the |1s?)—|1sdp) and |1s%)—I1s4f)
transitions (on the scale of the figure they coincide). The solid black curve indicates the frequency of
the three-photon transition | 1s?)—11s2p) in the UV field. The cyan dashed curve corresponds to the
dependence of the UV field frequency on its intensity, which maximizes the third harmonic energy in
the dipole acceleration spectrum. The logarithmic scale is used for the horizontal axis. The solution is
obtained by expanding the atomic wave function in stationary states.
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Two remarks should be made here. The energy (time-integrated square of the ampli-
tude) of the third harmonic in the dipole acceleration spectrum was chosen as the parameter
under study rather than its peak power spectral density or peak intensity. This is because,
under certain conditions, the spectral and time dependences of the harmonic signal may
have several maxima of comparable amplitude. In particular, this case is observed under
conditions of Rabi oscillations between the resonant states of a multiphoton transition [47].
The second remark concerns the free-induction decay. Under conditions of three-photon
resonance, the excited state |1s2p) of the atom, coupled with a dipole-allowed transition
with the ground state |1s?), is effectively populated. As a result, after the end of the UV
field pulse, the atom continues to emit at the frequency of transition |1s2)—11s2p), close to
the third harmonic frequency (however, slightly different from it in the absence of a field).
This radiation corresponds to free-induction decay (for details, see [48,49]). In order to
separate it from the third harmonic radiation, the dipole acceleration of the atom, calculated
using Formula (10) or (13), is multiplied by a temporary mask, which is non-zero only in
the presence of a UV field (for more details, see Appendix C).

Similar to Figure 2, the dotted lines in Figure 3 indicate the frequencies of three-
photon transitions to unperturbed states of the atom, and the solid black curve indicates the
resonance frequency of the three-photon transition |1s?)—11s2p) in the UV field, determined
by the maximum probability of ionization. The UV field frequency that maximizes the third
harmonic energy in the dipole acceleration spectrum for a given field intensity is plotted in
Figure 3 with the dashed cyan curve. As follows from Figure 3, the maximum energy of
the third harmonic in the dipole acceleration spectrum is achieved at a UV field intensity
Igv =2 x 10 W/cm? and a frequency () = 0.2644 a.u. This frequency is in close proximity
to the resonant frequency, Oyes = 0.2638 a.u., of the three-photon transition to the |1s2p) state
in the presence of a UV field of given intensity (in this case, the detuning from resonance
is about 1/3 of the half-width of the resonance curve in the frequency dependence of the
probability of ionization of an atom). For the specified optimal parameters, the probability
of ionization at the end of the UV field pulse is approximately 24%.

As the UV field intensity decreases, the third harmonic energy (Figure 3) and, in
particular, the probability of atomic ionization (Figure 2) quickly decreases. In this case, the
frequency that maximizes the harmonic energy practically coincides with the frequency of
the resonant three-photon transition |1s2)—11s2p) in the UV field. At the same time, for
a UV field intensity exceeding the optimal value I;;y = 2 x 10'* W/cm?, the value of the
maximum achievable energy of the third harmonic decreases, while the detuning of the
optimal (for a given intensity) frequency of the UV field from the frequency of the three-
photon resonance with the |1s?)—11s2p) transition increases. With a further increase in the
intensity of the UV field, the frequency that maximizes the energy of the third harmonic in
the spectrum of the dipole acceleration of the atom shifts to the region of resonances with
the transitions |1s2)—11s3p), 11s2)—11sdp), and |1s?)~1s4f), while the harmonic energy
continues to decrease.

To explain this dependence, let us analyze additional figures. Figure 4 shows the
frequency dependence of the power spectral density (the square of the modulus of the
spectral amplitude (see Appendix C) of the dipole acceleration of an atom under condi-
tions that maximize the energy of the third harmonic for Nys. = 30. The red curve shows
the solution of Equations (6) and (7), corresponding to the expansion of the wave func-
tion in terms of the basis of stationary states (4). In this case, the third harmonic energy
reaches a maximum at I;;y = 2 x 10 W/cm? and Q = 0.2644 a.u, see Figure 3. The black
curve is obtained based on model (11) and (12). In this case, the optimum shifts towards
higher UV field intensity, and the maximum is achieved at I;;y = 4 x 104 W/cm? and
) =0.2730 a.u. The increase in the optimal intensity value in the two-dimensional model is
most likely due to the lower probability of multiphoton excitation and the ionization of the
atom, see Figure 1. Similar to Figure 3, in this case, the optimal frequency of the UV field,
Q = 0.2730 a.u., turns out to be close to the resonance frequency of the |1s%)-11s2p)
transition in the UV field, which for I;;y = 4 x 10* W/cm? in the two-dimensional
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model is Ores = 0.2720 a.u. Several conclusions can be drawn from Figure 4. Firstly,
the dipole acceleration of an atom is multi-frequency. In addition to the fundamental
frequency of the UV field and its third harmonic, the atomic response contains harmon-
ics of higher orders, up to the 13th one. Secondly, for the chosen UV field parameters,
the third harmonic in the dipole acceleration spectrum is dominant. In the solution of
Equations (6) and (7), it is approximately 90 times more intense than the fifth harmonic,
three orders of magnitude more intense than the signal at the fundamental frequency of the
UV field, and four orders of magnitude more intense than the seventh harmonic. Thus, the
contribution of the third harmonic to the spectrum of dipole acceleration is decisive. Third,
as shown in the inset of Figure 4, under the conditions considered, the third harmonic
is the only below-threshold harmonic; its frequency is comparable to the frequencies of
single-photon transitions to all excited bound states of the atom and the threshold of its
photoionization. The fifth and higher harmonics in the case under consideration are above
the threshold. Fourthly, as shown in the inset of Figure 4, due to the small ponderomo-
tive energy of a free electron in the UV field, U, ~ 0.02 a.u. << (), the contribution of
Corkum’s mechanism of harmonic generation [14,15] under the conditions in consideration
is insignificant. In addition, I, + U, ~ I, (where I, = 0.9036 a.u. is the ionization potential
of an unperturbed atom), and the shift of the energy boundary of the continuum due to the
dynamic Stark effect [50] does not play a noticeable role. The fifth and final conclusion from
Figure 4 is the qualitative agreement between the dipole acceleration spectra at the third,
fifth, and, with less accuracy, the seventh harmonics, calculated (i) using a stationary-state
basis and (ii) in a two-dimensional one-electron model of the helium atom, with appro-
priate (optimal in each model) UV field parameters. The differences in the shape of the
spectral lines of higher harmonics are apparently due to the limited basis of the stationary
states considered in the expansion (4). In this case (for the seventh and higher harmonics),
two-dimensional one-electron TDSE appears to give a more physical result.

Wigoiga |t

s —l8aa W2

Wit Wis? 5183 :.1":_,_*184‘1"
1s*—1s2p p Wig2 3 1sdp

w Wis2 143 W PR
wllgzﬁllqglg% 1o’ 1s8s Wil —lsds Ip + 3‘17{);,

Spectral density of the
dipole acceleration (arb. units)

1
1 3 5 7 9 11 13 15 17 19
Normalized frequency, w/(2

Figure 4. Frequency dependence of the power spectral density of dipole acceleration under conditions
that maximize the third harmonic energy. The red curve corresponds to the solution of the system of
Equations (6) and (7) at Nosc = 30, Iyjy =2 x 1014 W/cm?, and Q = 0.2644 a.u. The black curve was
obtained based on model (11) and (12) with Ns = 30, Ijy = 4 x 10* W/cm?, and Q) = 0.2730 a.u. The
inset shows the vicinity of the third harmonic frequency; the vertical blue lines indicate the frequencies
of single-photon (both dipole-allowed and dipole-forbidden) transitions into the unperturbed bound
states taken into account, the vertical black line indicates the ionization potential I, of the atom in the
absence of a UV field, and the vertical green line indicates the plateau boundary in the spectrum of
harmonics due to Corkum’s mechanism, I, + 3.17 x U, where U, is the ponderomotive energy of
the electron (see [14,15]). The frequency values in the inset to the figure correspond to model (6) and
(7) (see Appendix A, Table Al). The logarithmic scale is used for the vertical axis.
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Next, we will analyze the role of various stationary states in the generation of harmon-
ics. When using the expansion of the wave function in stationary states and the adiabatic
continuum exclusion approximation, the dipole acceleration of the atom is determined by
the excitation amplitudes of bound states (9) and (10). The excitation amplitude spectra of
the states taken into account for Ny = 30 (see (3)) and the optimal UV field parameters,
Iuv =2 x 10 W/cm? and Q) = 0.2644 a.u., are shown in Figure 5. The horizontal axis
shows the excitation frequency of the atom, measured from the unperturbed frequency
of the ground state |1s?). As follows from Figure 5, the states |1s?), 11s2s), and |1s2p),
shown in Figure 5a, have the largest excitation amplitudes, while the remaining states,
Figure 5b, are excited noticeably weaker. In accordance with Equation (9), the complex
amplitude of the dipole moment of an atom at the third harmonic frequency is deter-

mined by the sum of the products d£i>a,’; . (t)as 43(t) over all considered states s and k of

opposite parity and over the Fourier components of the excitation amplitudes of these
states n and #n + 3. As can be seen from Figure 5a, in the conditions under consideration
of the even parity states, the Oth Fourier component of the excitation amplitude of the
state 11s?), a1, has the largest amplitude. Of the odd parity states, this is the case for
the 3rd Fourier component of the excitation amplitude of the state 11s2p), a3 3, oscillating
at a frequency close to the frequency of the single-photon transition |1s?)—11s2p). Ac-
cordingly, the dominant contribution to the amplitude of the third harmonic of the UV
field frequency in the spectrum of the induced dipole moment of the atom is made by

the product dgzl)u’f/o(t)aglg(t). In this case, the dipole acceleration of the atom at the third

harmonic frequency is proportional to deézl)aio(t)ag,ﬁ(t), while its energy turns out to

2 2 2 )

J 111(’0(1'){13,30)‘ dt = Qﬂdé’?’ Ik |a1,0(t)|2|a3/3(t)| dt, where
integration is carried out over the time interval at which the UV field is different from zero
(see Appendix C). On the other hand, due to the dominant contribution of the Fourier
components a7 o and a3 3 to the excitation amplitudes of the states |1s?) and |1s2p), re-

be proportional to 04’d§zl)

spectively, the approximate equality is valid: [ |a1(t) az3(t) |2dt ~ |a1|*|as|*tyy, where
|a1]?|a3|* denotes the time-averaged product of the populations of the states |1s?) and
| 1s2p), while Ty &~ NoscT is the duration of the UV field pulse. The resulting equality is
easy to interpret; namely, the energy of the third harmonic reaches its maximum under
the conditions of the most effective excitation of the coherent superposition of states |1s?)
and |1s2p).

This statement is illustrated in Figure 6. The upper part of the figure (Figure 6a)

shows the time-averaged populations of bound states, |ak|2, and the total population

of continuum states, 1 — ¥ |a;|?, as a function of the UV field intensity. In Figure 6,
k

Nosc = 30 (see (3)), and the frequency of the UV field for each intensity is chosen equal to

the frequency of the three-photon transition |1s?)—11s2p) in the field taking into account

the dynamic Stark effect (see the black solid curve in Figure 2). The lower part of the figure
(Figure 6b) shows (i) the time-averaged product of the populations of the states |1s?) and

1152p), |ay|* |a152p |2 — |ay|*|a3|?, and (ii) the energy of the third harmonic in the spectrum
of the dipole acceleration of the atom as a function of the intensity of the UV field. As
can be seen from Figure 6b, up to the dimension factor, these two dependences practically
coincide. Thus, to maximize the third harmonic energy;, it is necessary to most effectively
excite the | 1s2p) state without excessively depleting the |1s?) state.

This conclusion allows us to explain the dependence of the frequency that maximizes
the energy of the third harmonic in the spectrum of the dipole acceleration of an atom on
the intensity of the UV field in Figure 3. In a relatively weak field, the depletion of the

| 1s%) state is not significant (see Figure 6a), and the optimum is achieved at maximum
excitation of the |1s2p) state, i.e., when adjusting the frequency of the UV field to three-
photon resonance. At the optimal UV field intensity, I;jy = 2 x 10'* W/cm?, a balance
is achieved between excitation of the 11s2p) state and depletion of the |1s?) state, in
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this case, the optimal frequency of the UV field remains in the immediate vicinity of the
resonant transition frequency. With a further increase in the intensity of the UV field
during resonant excitation of the |1s?)—1s2p) transition, both the populations of bound
states and the third harmonic energy decrease as a result of the ionization of the atom (see
Figure 6a). Accordingly, the optimal frequency of the UV field in Figure 3 moves away
from the resonant one, which makes it possible to reduce the probability of ionization
and, thereby, maintain a noticeable population of the |1s?) and |1s2p) states. These
conclusions are confirmed in Figure 7, showing the frequency dependencies of (i) the energy
of the third harmonic in the dipole acceleration spectrum and (ii) the atomic ionization
probability for three different values of the UV field intensity: Iy = 8 x 103 W/cm?,
Iyy =2 x 10" W/cm?, and Ijy = 5 x 10'* W/cm?. While in a relatively weak UV field,
the shape and position of maxima of the dependencies (i) and (ii) almost coincide, with
growing UV field intensity, the difference in these dependencies increases, and for the
highest considered intensity, the maximum in ionization probability coincides with a local
minimum in the third harmonic energy.
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Figure 5. Absolute values of the Fourier transform of the excitation amplitudes of bound states in a
UV field with Nysc =30, I;jy =2 % 10 W/cm?, and Q = 0.2644 a.u. In (a), the black, blue, and red
curves show the excitation amplitudes of the | 1sz>, I1s2s), and |1s2p) states, respectively. In (b),
the excitation amplitudes of the remaining states taken into account, 11s3s), 11s3p), 11s3d), |1s4s),
|1s4p), 11s4d), and |1s4f), are shown in different colors. All values are calculated for a time interval
within which the UV field is non-zero (similar to Formula (A20) in Appendix C). The logarithmic
scale is used for the vertical axes. The solution is obtained by expanding the atomic wave function in
stationary states.
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Figure 6. (a) Dependences of the populations of the states | 1s%) (black curve), |1s2s) (blue curve),
and |1s2p) (red curve), the total population of the remaining bound states taken into account with
n =3 and n = 4 (green curve), as well as the total population of continuum states (cyan curve),
averaged over the duration of the UV field pulse, on the intensity of the UV field under conditions of
the resonant three-photon excitation of the |1s2p) state. (b) Left axis, blue color: dependence of the
product of the populations of the 11s?) and |1s2p) states averaged over the duration of the UV field
pulse on the intensity of the UV field under conditions of the three-photon excitation of the |1s2p)
state; right axis, red color: similar dependence of the energy of the third harmonic of the UV field in
the dipole acceleration spectrum. The asterisks indicate the calculated values; the dashed lines are
obtained by interpolating them with a spline. The logarithmic scale is used for the horizontal axes.
The solution is obtained by expanding the atomic wave function in stationary states.

Next, using the expansion of the wave function in terms of the basis of stationary
states, we study the dependence of the conditions that maximize the energy of the third
harmonic in the spectrum of the dipole acceleration of an atom on the duration of the
constant amplitude interval in the UV field envelope (parameter N, see (3)). Figure 8
for three values of Nys. = 10, 30, and 100 shows the dependences of (i) the frequencies of
the resonant three-photon transition |1s?)—11s2p) and (ii) the frequencies of the UV field
that maximize the energy of the third harmonic in the dipole acceleration spectrum on the
intensity of the UV field.
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Figure 7. Frequency dependencies of (i) the energy of the third harmonic in the dipole acceleration
spectrum (solid curves, left vertical axis) and (ii) the atomic ionization probability (dashed curves,
right vertical axis) for three different intensities of the UV field: I;;y = 8 x 10'® W/cm? (blue color),
the optimal value Ijjy =2 X 1014 W/cm? (red color), and I;jy = 5 x 101* W/cm? (black color). The
logarithmic scale is used for the vertical axes. The solution is obtained by expanding the atomic wave
function in stationary states.
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Figure 8. Dependence of the frequency of the three-photon transition |1s%)~11s2p) on the intensity
of the UV field (solid curves); dependence of the UV field frequency, which maximizes the energy
of the third harmonic in the spectrum of the dipole acceleration of an atom, on the field intensity
(dashed curves). Black color corresponds to Nysc = 10, red color is for Nosc = 30, and blue color is for
Nose = 100. The black asterisk, red cross, and blue circle indicate combinations of UV field intensity
and frequency at which the absolute maximum energy of the third harmonic in the dipole acceleration
spectrum is achieved for Ny = 10, 30, and 100, respectively. The inset enlarges the area in the vicinity
of the optimal UV field parameters. The logarithmic scale is used for the horizontal axis. The solution
is obtained by expanding the atomic wave function in stationary states.

The resonance frequencies of the three-photon transition |1s?)—11s2p) for different
durations of the UV field envelope practically coincide, which is due to the short estab-
lishing time of the dynamic Stark effect [50]. Some difference in the transition frequency
is observed for the shortest pulse (Nys. = 10) and is explained by the fact that the total
duration of the intervals of turning on and off the UV field (3 + 3 = 6 carrier cycles) in this
case is comparable to the duration of the constant amplitude interval (10 carrier cycles).
Accordingly, the time-average intensity of the UV field turns out to be noticeably lower
than the peak intensity, and the Stark effect at the same peak intensity is weaker than for
UV field pulses with a longer duration of the constant amplitude interval. At the same
time, jumps in the position of the resonance frequency in the longest pulse (Nysc = 100) with
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an intensity of the order of 10> W/cm? are explained by the extremely high, exceeding
99.99%, probability of single ionization of the atom and the unreliability of the algorithm
for determining the resonance frequency under such conditions.

The dependences of the UV field frequencies that maximize the third harmonic energy
differ more significantly for different durations of the UV field envelope. At a fixed intensity,
with an increasing duration of the UV field pulse, the optimal detuning from the resonance
frequency increases. At the same time, the optimal intensity of the UV field decreases
with increasing envelope duration; namely, for Ny, =10, 30, and 100, the optimal values
are Iyjy = 3.5 x 10 W/em?, 2 x 104 W/cm?, and 10'* W/cm?, respectively. To interpret
these data, let us turn to Figure 9, which shows the time dependences of the populations
of states |1s?), 11s2s), and |1s2p), as well as the total population of more highly excited
bound states and the total population of states of the continuum (a,c) and electron dipole
acceleration as a function of time (b,d). Figure 9a,b correspond to the UV field pulse of
the shortest duration considered, Nysc = 10, while Figure 9¢,d are plotted for the case of
Nose = 100.
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Figure 9. (a,c) Time dependences of the populations of states | 152) (black curve), 11s2s) (blue curve),

|1s2p) (red curve), the total population of the remaining bound states taken into account (green
curve), and the total population of continuum states (cyan curve). (b,d) Time dependences of the
dipole acceleration (left axis, red curve) and the envelope (in amplitude) of the UV pulse (right axis,
black broken curve). (a,b) are plotted for Ny = 10, Iyjy = 3.5 X 10 W/cm?2, and Q = 0.2658, and
(c,d) for Ny =100, Iy = 10 W/cm?, and Q = 0.2628. The solution is obtained by expanding the
atomic wave function in stationary states.

As can be seen from a comparison of Figure 9b,d, for the considered UV field pa-
rameters, which are optimal for each envelope duration, (i) the time dependences of the
dipole acceleration in the interval of the constant amplitude of the UV field are similar
to each other, and (ii) the peak amplitude of the dipole acceleration is approximately the
same. Similar conclusions follow from Figure 9a,c, namely, with an optimal choice of UV
field parameters, the dynamics of excitation of stationary states weakly depend on the
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duration of the field envelope, and only the time scale of the process changes significantly
(proportional to the duration of the UV field pulse). Under optimal conditions, at the end
of the UV pulse, the atom goes into the resonant state |1s2p) with a noticeable probability
of about 20-30%, ionizes with a comparable probability, and remains in the ground state
| 1s?) with a probability of about 40-50%. Accordingly, the optimal parameters of the UV
field are those that, for different envelope durations, provide the same (optimal) character
of excitation of the atom during its interaction with the field. Thus, an increase in the
optimal intensity of the UV field with a decrease in the duration of its envelope is caused
by the need to provide the same (optimal) degree of excitation of the atom in a shorter
interaction time.

At the same time, at a fixed intensity of the UV field, the excitation and ionization
of the atom increase or decrease as the frequency of the UV field approaches or moves
away from the frequency of the three-photon resonance with the |1s?)—11s2p) transition.
Accordingly, with increasing duration of the UV field envelope at a fixed intensity, the
optimal detuning of the field frequency from resonance increases, and with decreasing
duration, and vice versa, it decreases. Note that some differences in the degree of excitation
and ionization of an atom for different durations of the envelope (and, accordingly, different
intensities) of the UV field (see Figure 9a,c) are due to differences in the dependences of (i)
excitation probabilities and (ii) probabilities of ionization of an atom on the strength of the
UV field.

In conclusion of this section, we note that the energy concentrated in the third harmonic
of the dipole acceleration of an atom varies approximately in proportion to the duration of
the constant amplitude interval in the UV field envelope, see Figure 10. This means that in
the conditions under consideration, the average power concentrated in the third harmonic
in the spectrum of dipole acceleration of the atom does not depend on the duration of
the UV field envelope. Note, however, that with the shortening of the UV field pulse
envelope, to achieve the same atomic response power at the third harmonic frequency, an
increase (proportional to the optimal intensity value, see Figure 8) in UV radiation power
is required.
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Figure 10. Dependence of the energy concentrated in the third harmonic of the fundamental frequency
in the dipole acceleration spectrum on the duration (in units of the oscillation period) of the constant
amplitude interval in the UV field envelope (3). Asterisks are the results of a numerical calculation
based on the system of Equations (6) and (7); the energy corresponding to different Ny is 1.098 a.u.
for Nysc = 10, 4.122 a.u. for Nys. = 30, 7.13 a.u. for Nosc = 50, 10.05 a.u. for Nys. = 70, and 14.03 a.u. for
Nosc = 100. The dashed line is the result of linear interpolation. The solution is obtained by expanding
the atomic wave function in stationary states.
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(i) The optimal parameters of the UV field, (ii) the population of states at the end of
the UV field pulse with optimal intensity and frequency, and (iii) the power of the dipole
acceleration of an atom at the third harmonic frequency in a UV field as functions of N
are given in Appendix D.

4. Conclusions

This study analyzes the conditions under which the energy of the third harmonic of
the UV field in the dipole acceleration spectrum (the second time derivative of the induced
dipole moment) for a helium atom reaches a maximum. The frequency range of the UV field
is addressed, which includes resonances with three-photon transitions from the ground to
excited bound states of the atom. It is shown that the optimal frequency of the UV field
practically coincides with the frequency of the three-photon transition |1s?)—11s2p) taking
into account its shift due to the dynamic Stark effect. In this case, the highest energy of the
third harmonic is achieved under conditions of maximizing the time-averaged (over the
duration of the UV field pulse) product of the populations of the states |1s?) and | 1s2p).
For the considered UV field pulses with a constant amplitude interval duration from 10 to
100 periods of field oscillations (which, for different frequencies of the UV field, corresponds
to from 5 to 60 femtoseconds), the optimal UV field intensity ranges from 10'* W/cm? to
several units of 10'* W/cm?. Under optimal conditions, at the end of the UV pulse, the
atom is excited to the resonant state |1s2p) with a probability of about 20-30%, ionized
with a comparable probability, and remains in the ground state |1s?) with a probability
of about 40-50%. It is shown that with an optimal choice of the frequency and intensity
of the UV field, the dynamics of excitation of bound and continuum states, as well as the
shape of the time envelope of the dipole acceleration of the atom, weakly depend on the
duration of the UV field envelope; only their time scale changes significantly. In addition,
the average power of the third harmonic signal in the dipole acceleration spectrum is also
practically independent of the duration of the UV field envelope. Thus, the optimal regime
of the resonant three-photon excitation of the helium atom, which maximizes the energy of
the third harmonic of the UV field in its spectrum of dipole acceleration, has been found
and numerically investigated.
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Appendix A. Main Parameters of the Models Used

The energies of bound states taken into account in the expansion of wavefunction (4)
are summarized in Table A1l. While solving Equations (6) and (7), we used the spectroscopic
characteristics of a three-dimensional two-electron helium atom, calculated using the multi-
configuration Hartree-Fock approach.
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Table Al. The energies of bound states taken into account in the expansion of wavefunction (4).

The first and second columns show the state number and the state notation, respectively. The third

and fourth columns show the state energies, calculated by the multi-configuration Hartree—Fock

approach and used while solving Equations (6) and (7) (third column), and within the single-electron

two-dimensional model of a helium atom (11) and (12) (fourth column). The fifth column shows the

differences between the values in the fourth and third columns.

E E, (D) E.CQD)_E

State Number State Notation (AtomicnUnits) (Atomnic Units) (At(fmic Un'ilts)
1 ]152> —0.9036 —0.9034 0.0002
2 |1s2s) —0.1435 —0.1442 —0.0007
3 |1s2p) —0.1224 —0.1276 —0.0052
4 |1s3s) —0.0606 —0.0607 —0.0001
5 |1s3p) —0.0547 —0.0564 —0.0017
6 |1s34d) —0.0555 —0.0647 —0.0092
7 |1s4s) —0.0333 —0.0334 —0.0001
8 |1s4p) —0.0309 —0.0316 —0.0007
9 |1s4d) —0.0312 —0.0350 —0.0038
10 |1s4f) —0.0313 —0.0366 —0.0053

The dipole moments of transitions between the considered states, calculated using the
multi-configuration Hartree-Fock approach, are given by the matrix:

—0.3953

2.9401

0

—1.0635

0

2.5508

—0.3734

0

0.8901

0

0

0
—1.0635

0

7.1828

0

0
—1.6045

0

0

—0.1961
—0.9439
0
7.1828
0
—5.2823
—2.6373
0
4.1360
0

0
0
2.5508

—5.2823
0
0
0.5703
0
—5.1899

0 —0.1235 0 0

0 —0.4754 0 0
—0.3734 0 0.8901 0

0 —1.6045 0 0
—2.6373 0 4.1360 0

0 0.5703 0 —5.1899

0 13.1144 0 0
13.1144 0 —10.8203 0

0 —10.8203 0 8.1058

0 0 8.1058 0

(A)

The squared values of dipole moments of transitions from the bound states to the
continuum states as functions of energy of the continuum state, ¢, are shown in Figure Al.

In turn, the single-electron two-dimensional model of a helium atom (11) and (12) gives
the following matrix of dipole moments of transitions between the lowest bound states:

0.2555

—3.4102

0
1.3916
0
2.5114
0.5131
0
0.6679
0

0

0
1.3916
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0
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0
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0
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0
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0

0
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0
0

0.0793 0
0.4722 0
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1.8924 0
0 4.7147
—0.0215 0
—15.7657 0
0 —8.8112
—8.8112 0

0 6.7985

—4.5513

S g1 ©O O o oo

0
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Figure A1. The dependencies of squared dipole moments of transitions from the bound states taken

into account to the corresponding continuum states as functions of energy of the continuum state,

e. Panel (a) corresponds to the |1s?) state, panel (b) corresponds to the bound states with principal

quantum number # = 2, and panels (c,d) correspond to # = 3 and n = 4, respectively.

The difference in absolute values of the dipole moments, calculated by solving the
single-electron two-dimensional TDSE and via the multi-configuration Hartree-Fock ap-

proach, is given by the matrix:

0 0 —0.0442 0 0
0 0 —0.0032 0 0
—0.0394 0.1397 0 —0.2222 0
0 0 0.2879 0 0
—1.0780 0.5841 0 0.5787 0 (A3)
0 0 —0.5488 0 —0.6386
0 0 2.6513 0 0
—0.5488 2.6513 0 —2.0091 0
0 0 —2.0091 0 —1.3073
—0.6386 0 0 —1.3073 0

The corresponding difference in phases of the dipole moments is characterized by

0 —0.1398 0 —0.07

0 0.4701 0 0.0305
0.4701 0 0.3281 0

0 0.3281 0 1.3607
0.0305 0 1.3607 0

0 —0.03%4 0 —1.0780

0 0.1397 0 0.5841

—0.0032 0 0.2879 0

0 —0.2222 0 0.5787

0 0 0 0
the matrix:

arg (dézD)> - arg(

>

z
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Appendix B. Solving TDSE by Decomposing the Atomic Wave Function into Stationary
States: Basic Equations

Substitution of the expansion of the wave function (4) into TDSE (1) and taking
the scalar products to the considered stationary states results in the following system
of equations:

z;tk :Ekak+ZE( ) o a5+2fds E(t)(k|dz|e, )by (e, t), k =1,...,Kmax,

i g _ by (e, 1) +2E< )e 1l p)ay, [ =0,1,..., Lmax,

(A5)

where the sums over s, [, and p include terms corresponding to dipole-allowed transi-
tions between the considered stationary states of the helium atom, while the influence of
transitions between the continuum states on their excitation amplitudes is neglected.

The solution of equations for b (e, t) has a form

t
et) = —iY (e,1|d.|p) / E(#)ay(t)e“Ddt', 1=0,1,..., Lo, (A6)
v o

where it is taken into account that b; (¢, = —o0) = 0. Putting (A6) into Equation (A5) for
ax(t) and neglecting the transitions between the bound states through the continuum states,
one obtains the following system of integro-differential equations for the amplitudes of
excitation of the bound states:

iTk = —zEkak—z):E( ) Zfde E(t ‘ Y (k|d|e, 1) ‘ f E(t)ap(¢)eet' =Dy,
k=1,... K.

(A7)

Let us consider the integral over time #/, included in the third term on the right-hand
side of (A7),

t
L(f) = / E()ap (1) =D ar’ (A8)

Further, let us use the expansion:

()

a(t) =) g (£)e (Etnt (A9)

n=—oo
and suppose that dj ,(t) are the slowly varying functions on the time scale of (Q)) ~1 Then,

putting (A9) and (2) in (A8), one obtains

(o) . t . /
I(t) = Egilv y e i[Ex+(n—1)Q]t f f(t/)ﬁk,n(tl)ez[e—Ekf(nfl)Q](t B¢ —

n=-—oo

; (A10)

e—i[Ex+(n+1)QJt f f(t/)ﬁkn(t/)ei[SEk(”+1)Q](t,t)dt/].

The integral in Equation (A10) can be represented as
t . Na (i pile—Ep—(n—1)Q) (¢ —t) |t
. “E—(n— _ )y, (¢ k

f f(t/)ﬂk,n(t,)el[g Ex—(n—1)QJ(t' =) ¢/ — f( )akli[(s—)ék—(n—l)()] .
- ; 4 e (A11)

d ()i (¢ ] ole—E—(n=1)0] (¢ —t)d/

- f dar " Tie—E—(n—1)Q) £



Photonics 2023, 10, 1387 21 of 25

Since the product f(#')ay ,(t') is a slowly varying function of time, we neglect the
second term in (A11); see [38]. Thus, I;(t) takes the form

7Euv Ef

n—=—oo

l e—i[Ex+(n=1)QJt e—i[Ex+(n+1)Qlt

ile—Ex—(n—1)Q] ife—Ex— (n—l—l)Q]]' (A12)

Substituting (A12) in (A7), after some transformations, one obtains

UG = —iBay —ip E()d?a, - L [ (O + 20, (1) i (e Bty

y [,YI(C;) (t)eiZUt ’YIEJ;) (t)e—izs zt} ﬁk,n(t)e_i(Ek+n(2)t/ (A13)
Nn=—00 4 ,
k=1,...,Knax,

o0 k|d |£ !
(i) Euvf2 / ‘

The integral over energy e in (A14) can be calculated via residue theory. Thus, (A14)
takes the form

2 2
1 (1) = ”E%f(t)z ‘ (k|d.[Ex + (n +£1)Q,1) ‘ZG(Ek +(n+1)Q).  (Al5)
1

Next, let us use an expansion

[e0]

a(t) = Y ag,(t)e ", (A16)

n=—oo

where a , (t) = dy , (t) exp(—iExt). Substituting (A16) in (A13) and equating the terms with
the same 7 in the exponential functions exp(—in{t), we obtain a system of equations for
Ak n (t):

dukn

e — —[i(Ey — Q) + v n(H)]ag , + zzf<wuwm%%n1—am+n+

- +
-ﬂ%%@%mﬁW%Q@%wzk—hnmeWZFWWL

(A17)

where vy, (t) = 'y,g;) (1) + 715;1) (t) (with the substitution of (A15), one obtains Equation (7)).

The last two terms on the right-hand side of Equation (A17) correspond to the transitions
from the kth bound state through the continuum states to the same state. Neglecting these
transitions, we finally obtain the system of Equation (6).

Appendix C. Calculation of the Power Spectral Density of the Dipole Acceleration of an
Atom and the Energy of the 3rd Harmonic in Its Spectrum

In order to calculate the power spectral density of the dipole acceleration of an atom
within the time interval in which the UV field is non-zero, we used a time mask of the
following form

sin?(Z45), 0 <t <3T,

1, 3T <t< (Nosc+3)

1—sm2(2%), (Nose +3)T < t < (Nose +6)T,
0, t > (Nosc +6)T

Mask(t) = (A18)

with smooth turning on and off and the duration of the interval at which the mask differs
from zero is equal to the duration of the UV field pulse. Thus, the frequency dependence of
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the power spectral density of the dipole acceleration of an atom within the duration of an
UV field pulse was calculated using the formula:

Spp(w) = [Spp(w)[%, (A19)
where .
Sap(w) = / dps () Mask (t) exp(—iwt)dt (A20)

is the dipole acceleration spectrum calculated within the duration of the UV field pulse.
The Fourier transforms of the excitation amplitudes of bound states in the UV field, shown
in Figure 5, were calculated in the same way (similarly to (A20)).

To calculate the energy of the third (N = 3) harmonic in the dipole acceleration spectrum
within the UV field pulse, the spectrum sgp(w) was multiplied by a spectral filter of

the form:
0,0<w<(N-1)Q,
sin? ($4=0012), (N-1)0 < w < (N-05)0,
fulw)=4 1, (N-05)Q <w < (N+05)Q, (A21)

1—sin? (§55299), (N+05)0 < w < (N+1)0,
0, (N+1)Q < w < oo.

Then, the time dependence of the complex amplitude of the dipole acceleration at
the frequency of the third (N = 3) harmonic of the UV field was calculated via the inverse
Fourier transform of the product Sgg(w) fy(w). Finally, the energy contained in the third
harmonic of the dipole acceleration within the duration of the UV field pulse was calculated
using the formula

[ee) o0 2
__ ) i |
@ —_/ dt - Mask(t) 2”_/ dw - Sgp(w) iy (w) exp (iwt)]| . (A22)

Appendix D. Dependencies of the Optimal Parameters of the UV Field, Populations of
States, and Power of Dipole Acceleration at the Frequency of the Third Harmonic of the
UV Field on the Dimensionless Duration of the Constant Amplitude Interval in the UV

Field Envelope Nosc
w10 5
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Figure A2. The dependencies of the optimal values of (a) peak intensity and (b) frequency of the
UV field on the duration (in units of the oscillation period) of the constant amplitude interval in the
UV field envelope, Nos (3). The coincidence of the optimal values of intensity and frequency of the
UV field for Ny = 50 and Nysc = 70 is explained by the insufficiently small intensity step used in
the optimization (see Figure 3). The solution is obtained by expanding the atomic wave function in
stationary states.
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Figure A3. The populations of the states | 152) (black asterisks), | 152s) (blue asterisks), and | 1s2p) (red
asterisks), as well as the total population of the considered states of the continuum (cyan asterisks)
at the end of the UV field pulse with optimal intensity and frequency (at the moment of time
t = (Nosc + 6)T), as functions of the duration (in units of the oscillation period) of the constant
amplitude interval in the UV field envelope, Nysc (3).
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Figure A4. Peak (blue asterisks) and average (black asterisks) values of the squared dipole acceleration
of an atom at the third harmonic frequency in a UV field with optimal intensity and frequency as
functions of the duration (in units of the oscillation period) of the constant amplitude interval in the
UV field envelope, Nysc (3).
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