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Abstract: The aspheric surface is a commonly used method to improve the imaging quality of the
fisheye lens, but it is difficult to determine the position and initial value. Based on the wave aberration
theory of the plane-symmetric optical system, a method of using an aspheric surface to design a
fisheye lens is proposed, which can quickly determine the appropriate aspheric surface to improve
the imaging performance. First, the wave aberration of each optical surface of the fisheye lens is
calculated and its aberration characteristics are analyzed. Then, a numerical evaluation function is
reported based on the aberration distribution of the fisheye lens on the image plane. According to
the functional relationship between the evaluation function and the aspheric coefficient, the position
of the aspheric surface and the initial value of the aspheric coefficient can be calculated. Finally, the
adaptive and normalized real-coded genetic algorithm is used as the evaluation function to optimize
the fisheye lens using an aspheric surface. The proposed method can provide an effective solution for
designing a fisheye lens using an aspheric surface.

Keywords: fisheye lens design; wave aberration theory; plane-symmetric optical system; aspheric
surface; aberrations balance

1. Introduction

In fisheye lens system design, spherical surfaces are the most common because of their
simple expressions and easier fabrication. But the parameter optimization of a spherical
surface only considers the radius of curvature. The aspheric surface needs to determine the
radius of the vertex, the quadratic cone coefficient, and other parameters, which makes the
aspheric surface have more freedom for parameter optimization than the spherical surface.
Thus, using aspheric surfaces can easily correct the optical system aberration and improve
the imaging performance [1–6]. However, the processing, inspection, and commissioning of
aspheric surfaces are more complicated than spherical surfaces, making the manufacturing
cost of optical systems significantly higher [7,8]. To balance the advantages, this paper uses
an aspheric surface for a fisheye lens. Reasonable determining position and initial value of
the aspheric surface will be significant for improving imaging quality [9].

In the design of the fisheye lens, there are few reports to determine the optimal
position and initial value of the aspheric surface. At present, the position of the aspheric
surface is usually determined based on experience without theoretical guidance. The
fisheye lens usually has a field angle of 180◦ or even large, and they belong to the plane-
symmetric optical systems [10,11]. The Seidel aberration theory cannot be used in aberration
analysis. In recent years, Lu et al. have developed an aberration theory of plane-symmetric
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optical systems by applying the wave aberration method [10], which can analyze the
relationship between structural parameters, including aspheric coefficients, and the imaging
performance of a fisheye lens. This theory provides a theoretical basis for determining the
position and initial value of the aspheric surface. Based on the theory of plane-symmetric
optical systems, we report a method to determine the optimal aspheric position in a fisheye
lens and solve for its aspheric coefficient.

The paper is organized as follows: Section 2 introduces the wave aberration theory of
plane-symmetric optical systems of an ultrawide-angle optical system. Section 3 describes
the calculation method of wave aberration distribution of a single optical plane in a fisheye
lens. In Section 4, we define an evaluation function based on the aberrations distribution on
the image plane, then determine the sensitive aspheric surfaces and corresponding aspheric
coefficients in the fisheye lens system. In Section 5, the method is verified by optimizing
a fisheye lens, and compared with the original fisheye lens using the MTF (modulation
transfer function) curve. Section 6 summarizes the full text.

2. Wave Aberration Theory of the Plane-Symmetric Optical System
2.1. The Chief Ray Transfer Equation

The fisheye lens usually has a very large field angle and no longer approximates a
paraxial ray. The tracing of a chief ray should use the exact geometrical relationships
of trigonometric tracing formulae of a meridian oblique-incident ray. Figure 1 shows a
transmission schematic diagram of an off-axis chief ray in the meridian plane. It shows a
chief ray AiOiOi+1Oi+2 with initial field angle ωi−1 to be refracted by one mirror (k = i)
and then refracted by two optical surfaces (k = i + 1, k = i + 2). The chief ray passes
through optical media with refractive indices nk, and it impinges optical surface k at Ok
and intersects the optical axis at Mk. ωk means the field angle which is included between
the chief ray and the optical axis. The sign of the field angle is identical to the chief ray of
the normal in the optical surface. αk means the angle of incidence, and βk means the angle
of reflection or refraction. The sign is identical to the sign of the chief ray to the normal of
the optical surface. Γk and ρk are the meridional and sagittal curvature radii of the optical
surface k at Ok. The distance from the optical surface k to k + 1 is DkDk+1 = dk. Their signs
are positive on the right side of the optical surface. On the left side, they are negative.
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Figure 1. The diagram shows a chief ray AiOiOi+1Oi+2 passing through a reflecting and two
refracting optical surfaces. The chief ray passes through the media of refractive indices ni−1, ni, ni+1,
and ni+2 in turn. It impinges optical surface k at Ok and intersects the optical axis at Mk. ωk means
the field angle. αk and βk mean the angle of incidence and reflection or refraction of optical surface k.
The optical surfaces are assumed to be quadrics of revolution. The Γk and ρk are the meridional and
sagittal curvature radius of the optical surface k at Ok. The spacing between the optical surface k and
k + 1 is DkDk+1 = dk.
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From Figure 1, the parameters of the chief ray at any optical surface can be calculated
with its transfer equation [12]:

sin αi+1 =
Γi+1 + di − Γi

ρi+1
sin ωi +

ρi
ρi+1

sin βi, (1)

ωi = ωi−1 + βi − αi = ω0 +
i

∑
i=1

(βi − αi), (2)

βi+1 = sin−1
(

ni
ni+1

sin αi+1

)
. (3)

2.2. Transformation of Figure Equation Coordinate System

To apply the plane-symmetric aberration theory [13,14] for calculating the wave
aberration of an off-axis point object, we first need to take the coordinate system xyz as
the coordinate origin O, whose origin O is an intersection of the chief ray and the optical
surface, as shown in Figure 2. It shows a chief ray is reflected by a quadric of revolution.
The z axis is the normal to the surface and the x axis is along the tangent direction in the
meridional plane. θ is the angle between normal at O and the optical axis.
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Figure 2. The diagram shows a chief ray reflected by a quadric of revolution. The coordinate system
of xyz. The coordinate system x′y′z′ with O′ as the origin is transformed into a coordinate system
xyz, whose origin is at the intersection point of the chief ray to the optical surface O. θ is the angle
between the normal at O and the optical axis.

From Figure 2, the expression of the quadrics of revolution in the coordinate system of
x′y′z′ is expressed as

x′2 + y′2 = a1z′ + a2z′2, a1 = 2R0, (4)

where R0 is the curvature radius of the optical surface at point O′, R0 = C1O′ = −Γ1. a2 is
a constant that determines the type of quadric of revolution. a2 > 0, a2 = 0, −1 < a2 < 0,
a2 = −1 and a2 < −1 in Equation (4) represent the quadratic curve as a hyperboloid, a
paraboloid, a prolate ellipsoid, a sphere, and an oblate ellipsoid, respectively.

k represents aspheric characteristics in Zemax. The functional relationship between a2
and k is

a2 = −1− k. (5)
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The transformation relation from the coordinate systems of x′y′z′ to xyz is

x′ = x cos θ + z sin θ + x∗0 ,

y′ = y,

z′ = −x sin θ + z cos θ + z∗0 .

 (6)

Substituting Equation (6) into Equation (4), we can get the figure equation of the optical
surface in the coordinate system of xyz; then, its fourth-order Taylor series expansion is

z = c2,0x2 + c0,2y2 + c3,0x3 + c1,2xy2 + c4,0x4 + c0,4y4 + c2,2x2y2, (7)

where ci,j is the figure coefficient [12],

c2,0 = − a2
1

B3 , c2,2 = − 2
B7

(
a2

1C2 + 8A2x∗20
)
,

c0,2 = − 1
B , c4,0 = − a2

1(a2
1C2+16A2x∗20 )

B9 ,

c0,4 = −C2

B5 , c3,0 = − 4Aa2
1x∗0

B6 ,

c1,2 = − 4Ax∗0
B4 ,

(8)

with
A = (1 + a2)

√
4a2x∗0 + a2

1,

B = ±
√

4x∗20 (1 + a2) + a2
1,

C =
√

4x∗20 − a2
(
4a2x∗20 + a2

1
)
.

(9)

From Figure 2, the parameters of Γ1 and ρ1 can be derived as

Γ1 = −C1O′ = z∗0 −
x∗0

tan θ = a1
2 + (1 + a2)z∗0 ,

ρ1 = −OC1 = −
√

4x∗0
2+(a1+2a2z∗0)

2

2 = 1
2c0,2

.
(10)

The coordinate of O (x∗0 , y∗0) can be obtained by the geometric relationship of the
incident chief ray OM0 to the optical surface.

z∗0 = − a1+2S0 tan2 ω0±
√

a2
1+4S0(a1+a2S0) tan2 ω0

2(a2−tan2 ω0)
,

x∗0 = tan ω0(z∗0 − S0).
(11)

The sign before the root in Equation (11) should be taken as positive for a1 < 0;
otherwise, it is negative. The sign of B in Equation (9) should be taken as positive in the
case of reflection by a convex mirror or refraction by a concave optical surface, otherwise, it
is negative [13].

3. Calculation Method of the Wave Aberration of a Fisheye Lens
3.1. Aperture Ray Wave Aberrations of an Off-Axis Point Object

For an optical system of g elements, the total wave aberration is [10]

W =
g
∑
1

4
∑
ij

wij0xiyj, (i + j ≤ 4, j is even), (12)

with
wij0 = nMij0(α, rm, rs, 0) + n′Mij0

(
β, r′m, r′s, 0

)
. (13)
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In Equation (13), n and n′ mean the refraction index of the object and image space.
Mij0 means the wave aberration coefficient of object beam pencil, which is calculated by
Equations (11) and (13)–(16) in ref. [14]. r′m(i) and r′s(i) mean the meridional and sagittal
focal distances along the chief ray in the image space of the gth optical surface; they can
be obtained with the conditions of the wave aberration coefficients, and w200 = 0 and
w020 = 0 [10] are applied sequentially to every optical surface as

r′m(i) =
n′i cos2 βi

2c2,0(ni cos αi+n′i cos βi)−
ni cos2 αi

rm(i)

,

r′s(i) =
n′i

2c0,2(ni cos αi+n′i cos βi)−
ni

rs(i)

.
(14)

The distance between object points and surface i + 1 along the chief ray is given by

rm(i+1) = di − r′m(i), rs(i+1) = di − r′s(i), (15)

where di means the optical spacing between the ith and (i + 1)th optical surfaces along the
chief ray.

di =
ρi sin(ωi−1 − αi)− ρi+1 sin(ωi − αi+1)

sin ωi
. (16)

The contributions of the spherical aberration Wsph and the coma aberration Wcoma to
any optical surface are

Wsph = w400x4 + w220x2y2 + w040y4,

Wcoma = w300x3 + w120xy2.
. (17)

3.2. Chief Ray Wave Aberration of an Off-Axis Point Object

The wave aberrations of the field curvature contributed from the first to the gth optical
surface in the meridional and sagittal direction are [9]

W∗m(g) =
n′g cos2 βg

2

(
1

r′m(g)
− 1

r′c(g)

)
x2

g,

W∗s(g) =
n′g
2

(
1

r′s(g)
− 1

r′c(g)

)
y2

g.
. (18)

The wave aberrations of the axial chromatic and transverse chromatic from the first to
the gth optical surface are [9]

W∗CL(g) =
n′g
2

(
1

r′F(g)
− 1

r′C(g)

)
x2

g_0, (19)

W∗CT(g) =
n′gxg_0

r′0(g)

(
y′F(g) cos ωF(g) − y′C(g) cos ωC(g)

)
. (20)

In Equation (19), r′F(g) and r′C(g) are the focal distances in the image space of F and
C light at normal incidence, and they can be calculated with Equation (14) in the case of
α = 180◦ and β = 0◦. In Equation (20), the height of the chief ray on the image plane for a
light of some color is [9,10]

y′g = tan ωg

(
ρg sin βg

sin ωg
− Γg + r′0(g)

)
, (21)

where r′0(g) represents the distance from the gth optical surface to the Gaussian image plane.
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The contributions of these types of wave aberrations from the first to the (g − 1)th
optical surface are also calculated with Equations (18)–(20). The wave aberration of field
curvature and chromatic contribution from the gth optical surface should be calculated by

Wm(g) = W∗m(g) −W∗m(g−1),

Ws(g) = W∗s(g) −W∗s(g−1),

WCL(g) = W∗CL(g) −W∗CL(g−1),

WCT(g) = W∗CT(g) −W∗CT(g−1).

(22)

In Equations (17)–(20), (xk, yk) is the mapping coordinates of the aperture ray of
the beam projected on the kth optical surface, and they are obtained by sequential linear
approximated from the aperture stop radius [10],

xk = Akxk+1, yk = Bkyk+1, (23)

where,

Ak =
r′m(k) cos αk+1

rm(k+1) cos βk
, Bk = −

r′s(k)
rs(k+1)

. (24)

4. Determining the Position of Aspheric Surfaces and Aspheric Coefficients

In this section, the optimal aspheric position and initial value of a2 are solved by the
functional curve between the evaluation function and the aspheric coefficient.

4.1. Evaluation Function

We define an evaluation function that sums types of aberrations at n field angles in its
working range:

Q =
n

∑
k=1

εk

(
Q2

x(k) + Q2
y(k) + ηkQ2

η(k) + µkQ2
c(k)

)
, (25)

and

Q2
x(k) =

8
πWq L

∫Wq/2
−Wq/2

∫ √1−4x2/Wq2

L/2
0 (x′ − x′)

2
dxdy,

Q2
y(k) =

8
πWq L

∫Wq/2
−Wq/2

∫ √1−4x2/Wq2

L/2
0 y′2dxdy,

(26)

with

x′ =
8

πWqL

∫ Wq/2

−Wq/2

∫ √1−4x2/Wq2

L/2

0
x′dxdy (27)

where εk and µk mean the corresponding weight factors of the axial chromatic and trans-
verse chromatic; Qx(k) and Qy(k) are contributed by the aperture aberration of the kth field
angle on the image plane, which is obtained by integrating and summing the area covered
by the beam [13], respectively.

The evaluation function (Equation (25)) is the sum types of aberrations at n field angles
in its working field ranges. This includes the effect of aspherical surfaces on the imaging
performance of optical systems.

In Equations (26) and (27), the aperture ray aberrations on the image plane G are
calculated by [10]:

x′ = 1
cos ωg

(
d100xg + d200x2

g + d020y2
g + d300x3

g + d120xgy2
g

)
,

y′ = h010yg + h110xgyg + h210x2
gyg + h030y3

g,
(28)
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where xg and yg mean the ray coordinates on the last optical surface. Since the light
beam from an object of an ultrawide-angle impinges on the optical surface with a large
incidence angle, the focal line position in the meridian plane and the sagittal plane is
severely deviated, and the aperture ray is usually elliptical when transmitted to the last
optical surface. Therefore, the integration area in Equations (26) and (27) are the elliptical
domain, and Wq and L mean the projection length of the aperture ray on the final optical
surface along the meridional (x) and sagittal (y) directions, respectively.

Qη(k) and Qc(k) in Equation (25) mean the numerical estimation of the transverse
aberration on the image plane of the axial color aberration and lateral color aberration,
respectively.

Qη(k) =

∣∣∣∣∣∣
2xg_0

(
r′F(g) − r′C(g)

)
r′0(g)

∣∣∣∣∣∣, (29)

Qc(k) =
∣∣∣y′F(g) − y′C(g)

∣∣∣. (30)

In the aberration theory of plane-symmetric optical systems, we calculated aberra-
tions with the parameters of the chief ray parameters ω, α, β, rm, rs, r′m , and r′s of each
optical surface. These parameters are all related to the figure coefficients ci,j. According to
Equations (8) and (9), ci,j is determined by the parameters a1 and a2 of the optical surface.
a1 = 2R0 represents the radius of curvature of the optical surface at the vertex, and a2
represents the aspheric coefficient of the optical surface. Therefore, the evaluation function
Q in Equation (25) is related to the aspheric coefficient a2. We calculate the variation curve
of Q with a2 for each optical surface to determine the optimal position of the aspheric
surface and the corresponding initial value of a2. This enables the optical system to have
the best imaging performance (that is, Q is the minimum).

4.2. Wave Aberration Distribution of the Optical Lens

We will apply the aberration theory of plane-symmetric optical systems [9] to calculate
the wave aberration distribution of two lenses, lens I and fisheye lens II, as shown in
Figures 3 and 4, and Tables 1 and 2 list their optical parameters. The characteristic param-
eters of the systems are the focal lengths of 33.7 mm and 14.6 mm, the diameters of the
aperture stop of 5 mm and 6 mm, and the maximum working field angle of view of 20◦

and 80◦, respectively.
We use Equations (17)–(22) to calculate the wave aberration distribution of each optical

surface of lens I at ω0 = 20◦ and fisheye lens II at ω0 = 80◦. Figures 5 and 6 show Wm, Ws,
WCL, WCT , Wsph, and Wcoma, respectively.

From Figures 5 and 6, it can be seen that the total wave aberrations of lens I and fisheye
lens II are more serious. The effects of field curvature, lateral color aberration, and coma
aberration are particularly significant. The position of the fifth surface is the aperture stop,
and its aberration contribution is zero.
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Figure 3. The optical system of lens I is an objective lens. Table 1 lists its optical parameters. The
numbers in the figure represent the optical surfaces, where the fifth surface is the aperture stop.
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Figure 4. The optical system of lens II is a fisheye lens. Table 2 lists its optical parameters. The
numbers in the figure represent the optical surfaces, where the fifth surface is the aperture stop.

Table 1. Optical parameters of lens I.

Surface i Radius/mm Spacing/mm Index Glass

Object Infinite 2000.0
1 35.0 5.0 1.84666 N-SF57
2 15.0 1.0
3 15.0 12.0 1.45600 N-FK58
4 −25.0 5.0

5 (STO) Infinite 10.0
6 −130.0 3.0 1.68893 P-SF8
7 −30.0 15.0

Table 2. Optical parameters of fisheye lens II.

Surface i Radius/mm Spacing/mm Index Glass

Object Infinite 2000.0
1 141.445 3.808 1.71300 N-LAK8
2 23.059 17.392
3 87.889 4.099 1.71300 N-LAK8
4 25.685 41.513

5 (STO) Infinite 2.0
6 30.0 4.0 1.71300 N-LAK8
7 −80.0 15.0
8 −24.0 4.0 1.45600 N-FK58
9 −50.0 31.101 - -
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Figure 5. The diagram shows the wave aberration distribution of lens I at ω0 = 20◦. Table 1 lists its
optical parameters.
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Figure 6. The diagram shows the wave aberration distribution of fisheye lens II at ω0 = 80◦. Table 2
lists its optical parameters.

We use Equation (25) to calculate the curve of the Q with the aspheric coefficient a2 of
each optical surface of lens I, as shown in Figure 7. Since a2 in the range of [–3, 1] can cover
common easily machinable aspheric surface types [15]. The search range of a2 is [−3, 2]
with a step of 0.01, and the field angles in Equation (25) are set to 0◦, 5◦, 10◦, 15◦, and 20◦.
Weighting factors εk, ηk, and µk are set to 1.
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Figure 7. The abscissa indicates the aspheric coefficient a2; the ordinate indicates the evaluation
function Q. The curve shows the relationship between Q and a2 of lens I.

Similarly, the curve of the Q with a2 of each optical surface of fisheye lens II is shown
in Figure 8. The search range of a2 is [−4, 2] with a step of 0.01, and the field angles are set
to 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, and 80◦. εk, ηk, and µk are set to 1.

From Figure 7, the second and third optical surfaces of lens I are more sensitive to
their imaging performance (making Q reach a minimum). From Figure 8, the second and
fourth optical surfaces of fisheye lens II are more sensitive to their imaging performance
(making Q reach a minimum), respectively. The corresponding initial value of a2 is shown
in Table 3.

Table 3. Optimal optical aspheric position in lens I and fisheye lens II, and the corresponding initial
value of a2.

Lens I Fisheye Lens II

Surface 2 3 2 4
a2 −1.69 0.79 −2.12 −3.42
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Figure 8. The abscissa indicates the aspheric coefficient a2; the ordinate indicates the evaluation
function Q. The curve shows the relationship between Q and a2 of fisheye lens II.

The wave aberration distributions of lens I and fisheye lens II in the case of ω0 = 20◦

and ω0 = 80◦ are recalculated with Equations (17)–(22), respectively. As shown in
Figures 9 and 10, only the a2 of the sensitive optical surface is changed according to Table 3.
Figure 9a,b show lens I with a2(2) = −1.69 and a2(3) = 0.79. Figure 10a,b show fisheye lens
II with a2(2) = −2.12 and a2(4) = −3.42. Compared with Figures 5 and 6, their total wave
aberrations decreased significantly, respectively.
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Figure 9. The diagram shows the wave aberration distributions of lens I at ω0 = 20◦. They are
recalculated with Equations (17)–(22), and only the a2 of the sensitive optical surface is changed.
(a) shows a2(2) = −1.69 and (b) shows a2(3) = 0.79, respectively.
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Figure 10. The diagram shows the wave aberration distributions of fisheye lens II at ω0 = 80◦.
(a) shows a2(2) = −2.12 and (b) shows a2(4) = −3.42, respectively.

Compared to Figures 9 and 10 with Figures 5 and 6, in lens I and fisheye lens II, only
the aspheric coefficient of one sensitive surface is modified, which makes the total wave
aberration of these two lenses significantly reduced. It is confirmed that the use of an
aspheric surface at a sensitive optical surface has a significant effect on correcting lens
aberrations.

Lens I and fisheye lens II have not been designed and optimized. They only contain
three and four lenses, respectively, so their aberrations are more serious. Lens I and fisheye
lens II are difficult to optimize the lens system with better performance. We will optimize
the fisheye lens using an aspheric surface in the next section.

5. Numerical Validation

To verify the performance, we optimize fisheye lens III using an aspheric surface in
the following steps: the sensitive optical surface in fisheye lens III and the corresponding
initial value of a2 are solved; then, based on the MTF calculated by the aberration theory
as the evaluation function, a self-adaptive and normalized real-coded genetic algorithm
is used to optimize the optical parameters of fisheye lens III. Note that the optimization
parameters do not include the refractive index of the lens’s material.

5.1. Determining the Position and Initial Value of Aspheric Surface in the Fisheye Lens

Fisheye lens III [16] is composed of 18 standard optical spheres, as shown in Figure 11,
where the 11th surface is the aperture stop. Table 4 lists optical parameters, with a focal
length of 9 mm, F/# = 5, 2ω0 = 160◦.
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Figure 11. The diagram shows the layout of fisheye lens III. Table 4 lists its optical parameters.

Table 4. Optical parameters of the original and optimized fisheye lens III.

Surface i
Radius/mm Spacing/mm

Index Glass
Original Optimized Original Optimized

1 162.236 148.852 7.676 5.946 1.5163 BK7HT
2 69.168 35.582 28.975 29.988 - -
3 98.314 60.443 4.186 3.716 1.6127 SK4
4 42.474 35.560 13.054 10.810 - -
5 64.484 41.520 4.210 3.521 1.6148 SSK3
6 12.623 13.644 13.536 13.741 - -
7 −105.027 −170.440 1.297 1.219 1.4875 N-FK5
8 18.953 14.957 4.535 5.050 1.7847 SF56A
9 −232.713 −273.525 1.175 1.118 1.7555 P-LAF37

10 75.791 74.989 13.862 12.265 - -
11

(STO) ∞ ∞ 2.528 2.843 - -

12 57511.3 53039.16 1.364 1.396 1.7847 SF56A
13 15.425 13.347 8.586 7.203 1.7433 N-LAF35
14 −46.059 −63.238 0.142 0.117 - -
15 −259.655 −316.890 4.751 4.043 1.7555 P-LAF37
16 −37.371 −36.438 18.493 16.484 - -
17 38.3731 34.778 2.524 2.169 1.7847 SF56A
18 24.438 19.829 19.820 23.887 1.6204 N-SK16
19 −53.609 −43.558 12.963 12.006 - -

Taking the aspheric coefficient a2 of each optical surface as a variable in sequence,
the evaluation function Q of fisheye lens III is calculated by Equation (25). The minimum
value of each curve and the corresponding initial value of a2 are calculated, and the curve
is shown in Figure 12. We set the field angles in Equation (25) to be 0◦, 10◦, 20◦, 30◦, 40◦,
50◦, 60◦, 70◦, and 80◦. The weighting factors of εk, ηk, and µk are set to 1.

In Figure 12, the sixth optical surface using an aspheric surface is most sensitive to
the imaging performance of fisheye lens III. It is a more significant effect than the other
17 optical surfaces. Therefore, we determine the sixth optical surface as the best aspheric
surface position in fisheye lens III, where a2(6) is 1.04 and Q(6) is 0.0385.
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Figure 12. The abscissa indicates the aspheric coefficient a2; the ordinate indicates the evaluation
function Q. The curve shows the relationship between Q and a2 of fisheye lens III.

5.2. Optimizing Fisheye Lens III Using an Aspheric Surface

Based on the fourth-order wave aberration theory of the plane-symmetric optical sys-
tems, we use the MTF as the evaluation function and apply a self-adaptive and normalized
real-coded genetic algorithm to optimize the optical parameters of fisheye lens III. The
evaluation function is defined as [12]

Q = ηQm + ξQs, (31)

and

Qm =
k
∑
1

εiMTFm(i), Qs =
k
∑
1

εiMTFs(i), (32)

where Qm and Qs mean the evaluation function; and MTFm(i) and MTFs(i) mean modu-
lation transfer function in the meridional and sagittal directions, respectively. εi is the
corresponding weight factor at the ith field angle. In this optimization, the field angle and
the corresponding εi are listed in Table 5. We set the weighting factors of the meridional
and sagittal directions as η = 4, ξ = 1, respectively.

Table 5. Weight factors at different field angles of fisheye lens III.

ωi(
◦) 0 10 20 30 40 50 60 70 80

Frist round εi 1 1 1 1 2 2 2 2 2
Second round εi 1 1 2 2 4 4 6 6 7

The optimization of fisheye lens III is performed in two rounds. In the first round, we
search for the optimal values of the upper limit is set to 1.7 times, and the lower limit is set
to 0.5 times the original radius of fisheye lens III. The upper limit is set to 1.3 times and
the lower limit is set to 0.7 times the original optical distance of fisheye lens III; the search
range for a2 is set to [−2, 0]. The optimal position of the image plane is set to a range of
±0.5 mm around r′0.

The number of generations in the genetic algorithm is taken to be 600. We run 20 times
for the original fisheye lens III and choose two designs of good performance as the starting
designs for the second round of optimization.

In the second round of optimization, we take a relatively small search range of param-
eters, setting the radius to ±10% and the optical distances to ±5% of the starting designs.
Around ±0.2 of the starting design, the search range of a2 is set. The optimal position of the
image plane is in a small range of ±0.2 mm around r′0. The number of generations in the
genetic algorithm is taken to be 200, and each starting design is run 10 times. The optimiza-
tion result for the aspheric coefficient is a2(6) = −1.065. Consequently, we obtained the best
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design of the fisheye lens from the optimization, and Table 4 lists its optical parameters.
We apply the FFT method of Zemax [17,18] to calculate the MTF curves of the original and
optimized fisheye lens III, respectively. We apply Zemax to calculate its MTF curves for the
spatial frequencies of 10 lp/mm and 30 lp/mm in the case of F/# = 5 as shown in Figure 13;
(a) shows the MTF curve of the original fisheye lens III; (b) shows the MTF curve of the
optimized fisheye lens III. By comparing the MTF curves, the proposed approach in the
paper makes the imaging performance of fisheye lenses superior. Our next step will be
actual production and further testing and research.
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Figure 13. The diagram shows the MTF curves of fisheye lens III. (a) shows the MTF curve of the
original fisheye lens III; (b) shows the MTF curve of the optimized fisheye lens III, with a2(6) = −1.065.
Their optical parameters are listed in Table 5.

From Table 4, compared with the original optical parameters of fisheye lens III, the
optimized parameters have little change. The aspheric coefficient a2(6) = −1.065 of the
sixth optical surface is close to the standard spherical surface. From Figure 13, we obtain
the best design of fisheye lens III from the optimization.

6. Conclusions

Based on the wave aberration theory of plane-symmetric optical systems, this paper
develops a method by which to determine the position and initial value of the aspheric
surface, which provides an effective means for the design and optimization of fisheye lens
systems. Through aberration calculation and example verification, the conclusions are
as follows:

(1) In fisheye lenses, the optical surface with a small curvature radius generally adopts an
aspheric surface, which is more advantageous for improving its imaging performance.
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The aspheric coefficient is also closer to the spherical surface, making it easy to
manufacture.

(2) In the case of a moderate acceptance aperture of fisheye lenses, the contribution of the
aspheric surface to the balance of field curvature aberration is more significant.

The method in this paper is also suitable for the optimal design of paraxial optical
imaging systems and other wide angle lens systems. We hope that this work may be helpful
to optical designers in creating high-quality fisheye lens systems.
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