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Abstract: In shallow tissues of the human body, pathological changes often occur, and there are
several kinds of scattering media, such as mucosa, fat, and blood, present on the surface of these
tissues. In such scattering environments, it is difficult to distinguish the location of the lesions using
traditional attenuation-based imaging methods, while polarization-based imaging methods are more
sensitive to this information. Therefore, in this paper, we conducted experiments using diluted milk
to simulate biological tissues with scattering effects, illuminated with non-polarized light sources,
and used an optimized robust polarization de-scattering algorithm for image processing. The results
were qualitatively and quantitatively analyzed through local intensity comparison and visual fidelity
functions, verifying the effectiveness of this algorithm under specific conditions.

Keywords: polarimetric imaging; turbid tissue-like scattering media; stokes vector; cell slice; de-scattering

1. Introduction

Polarization imaging allows us to obtain additional information beyond conventional
imaging, which has been proven in various fields such as dehazing imaging, material
surface and structure detection, biomedical imaging, and so on. In the field of biomedical
imaging, polarization imaging has played a crucial role. For instance, in cellular and
tissue imaging, polarization imaging can be used to observe and analyze the structure,
morphology, and function of cells and tissues [1]; in neuroscience research, polarization
imaging can be used to study the structure and function of the nervous system, aiding
in the understanding of the workings and mechanisms of neurological disorders [2]; in
ophthalmic diagnostics, polarization imaging can be employed for the diagnosis and
the treatment of various eye diseases, including corneal diseases, glaucoma, and retinal
diseases [3]; in cancer detection and diagnosis, polarization imaging can be used for the
early detection and diagnosis of cancer [4,5]; in dermatology, polarization imaging can be
utilized for the diagnosis and assessment of skin diseases, assisting doctors in determining
the type and severity of skin diseases [6]. In addition to the aforementioned applications of
polarization imaging, we have discovered that a polarization-based de-scattering imaging
method (PBD, the method we proposed) can offer new solutions for biomedical imaging
diagnostics in certain scenarios where scattering environments are present.

Due to the presence of turbid tissues or components in the human body that act as
scattering media [7] (such as mucosa, fat, blood, etc.), the accuracy of diagnosis using
traditional attenuation-based imaging methods is greatly reduced. However, polarization
imaging methods are highly sensitive to environmental structures, and the influence of light
scattering on polarization states has been found to be very useful in surface or subsurface
structural imaging as well as deep tissue transmission imaging [8–10]. Therefore, the
combination of polarization imaging with traditional approaches will make biomedical
diagnostic imaging more convenient and clearer.
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In previous biomedical imaging studies, such as the imaging of calcium oxalate
crystals in Epipremnum aureum leaves, and early cancer diagnosis, various polarization
parameters (depolarization and birefringence, etc.) were used to characterize the samples.
These parameters are based on the fact that the polarization state of reflected light is
lost due to scattering when illuminated with polarized light. Therefore, backscattered
light contains polarized photons that have undergone multiple scattering events, and
depolarized light typically depends on the scattering medium particle size and scattering
mechanisms [11,12]. It is found that accurately measuring and analyzing tissue polarization
signals is a significant challenge. However, in other applications where the influence of
scattering media needs to be eliminated, such as outdoor dehazing [13,14] and underwater
de-scattering [15,16], several image reconstruction methods (based on polarization imaging)
have been proposed that achieve good results without the need for complex modeling,
directly improving imaging quality in scattering environments.

The current methods for de-scattering imaging can be roughly divided into three
categories: enhancement methods, restoration methods, and deep learning methods. En-
hancement methods refer to using image processing algorithms to improve contrast, such as
adaptive histogram equalization (AHE, which improves image contrast by computing mul-
tiple histograms for different sections of the image and redistributing the lightness values. It
enhances local contrast and edge definition, but can overamplify noise), Retinex algorithm
(restores the visual information lost due to poor illumination conditions by decomposing the
original image into reflectance and illumination components. It enhances local contrast and
color constancy), wavelet transform (wavelet transform enhances images by decomposing
them into different frequency sub bands. It separates the image’s edge and luminance
information, allowing for detailed processing and improved visual perception.), etc. This
method is simple and direct but has limited effectiveness. Restoration methods usually
involve establishing a physical model to obtain the dehazing image through inversion.
This method is based on specific priors or assumptions, for example, based on the Dark
Channel Prior [17], maximizing contrast, Haze-Lines Prior [18], Color Attenuation Prior [19],
and polarization-based methods [13,14], etc. These kinds of methods produce better de-
scattering output, but the assumptions and prior information have certain limitations and
may not be applicable to all scenarios. Deep learning methods [20–22], on the other hand,
mostly propose trainable end-to-end networks to directly output dehazed results. However,
this method requires specific datasets, and a large amount of data and time.

In this paper, we will establish a polarization-based de-scattering imaging algorithm by
utilizing an image degradation model to estimate relevant parameters. We will then validate
the feasibility of this method through simulation experiments and perform qualitative and
quantitative analysis on the restored results. The evaluation of the restoration results will
be conducted using the Visual Information Fidelity (VIF) [23] as an evaluation metric.
Comparative analysis will be carried out with results obtained from the other three de-
scattering methods: Dark Channel Prior (DCP) [17], All-in-One Network (AOD-Net) [20]
and Feature Fusion Attention Network (FFA-Net) [21].

2. Theory
2.1. Image Degradation Model

A widely used physical model in scattering environment imaging scenarios is the
degradation model proposed by Nayar et al. [24,25] in 2000. In this model, the total
light signal Itotal captured by the camera when imaging through a scattering medium is
composed of two parts, A and D:

Itotal = A + D (1)

where A represents the signal reaching the camera from ambient light that has not under-
gone scattering attenuation from the target; and D represents the signal reaching the camera
from the scene target’s reflected light after scattering attenuation. To further elaborate:

Itotal = A∞[1 − t(z)] + Lobjectt(z) (2)
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where A∞ represents the ambient light scattered at an infinite distance along the imaging
path, and t(z) is the medium transmittance that describes the degree of radiation attenuation,
given by

t(z) = exp(−βz) (3)

where z represents the distance from the target to the camera and β represents the extinction
coefficient due to scattering and absorption. The recovered target image is

Lobject =
Itotal − A∞(1 − t(z))

t(z)
=

Itotal − A
1 − A

A∞

(4)

Therefore, the method reconstructs the target image mainly by estimating A and A∞.

2.2. Estimation of A and A∞

Under the condition that the scattered particle size satisfies Mie scattering theory, due
to the multiple scattering effect, component A is generally considered partially polarized
light with a small degree of polarization, while component D is considered unpolarized
light. Therefore, we can use the following PBD imaging method to estimate A and A∞.

First, by rotating a linear polarizer in front of the camera, images I(0), I(45), I(90) and
I(135) are obtained in four different directions (0◦, 45◦, 90◦and 135◦). Then, the Stokes
parameters are calculated from these four images, where S0 corresponds to the previously
mentioned Itotal.

S0 = [I(0) + I(45) + I(90) + I(135)]/2
S1 = I(0)− I(90)

S2 = I(45)− I(135)
(5)

The degree of polarization (DoP) p and angle of polarization (AoP) θ of the total
intensity are calculated using the following equations, respectively:

p =

√
S2

1 + S2
2

S0
(6)

θ =
1
2

arctan
S2

S1
(7)

Since the polarized component in the total intensity comes from the A, most of the
elements in the matrix composed of the θ values computed from Equation (7) (referred to
as the θ matrix) are considered as the polarization angle of the A, denoted as θA. However,
some different values may be present due to the possibility of partially polarized character-
istics in the scene light closer to the camera. Based on this, we consider the most frequent
value in the θ-matrix as θA.

From the above, it is clear that A is partially polarized, and its polarized component can
be written as Ap, and, accordingly, the polarization degree of the A is pA, and pA = Ap/A.
As mentioned above, another component of the total intensity, D, is considered to be
unpolarized, and therefore the polarization degree of the total intensity can be written in
addition to Equation (6) as p = Ap/S0. Orthogonal decomposition of Ap with polarization
angle θA, where the component decomposed along the 0◦ polarizer direction is denoted
as Ax

p, the component decomposed along 90◦ polarizer direction is denoted as Ay
p, θA is

the angle between Ap and 0◦, and the two components can be expressed as Ax
p = Apcos2θA

and Ay
p = Apsin2θA, respectively. Ax

p and Ay
p are the polarization components in I(0) and

I(90), respectively, and can also be expressed in terms of equations containing I(0) and I(90)
as follows: {

Ax
p = Ap cos2 θA = I(0)− S0(1 − p)/2

Ay
p = Ap cos2 θA = I(90)− S0(1 − p)/2

(8)
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Therefore, Ap can be calculated as

Ap =
I(0)− S0(1 − p)/2

cos2 θA
=

I(90)− S0(1 − p)/2
sin2 θA

(9)

From Equation (9), we can deduce that p

p =
S1

S0(cos2 θA − sin2 θA)
(10)

where pA is the maximum value in matrix-p. The intensity of A is calculated by the equation
= Ap/pA:

A =
I(0)− S0(1 − p)/2

pA · cos2 θA
=

I(90)− S0(1 − p)/2
pA · sin2 θA

(11)

In the frequency domain of images captured directly from the camera, two key ob-
servations can be made. Firstly, A is predominantly located in the low-frequency region.
Secondly, D and noise are typically found in the high-frequency region. Therefore, to
improve the accuracy of estimating the A intensity, we can use a low-pass filter to roughly
separate the A. Additionally, this process also effectively suppresses the noise. So, in our
algorithm, the first step is to apply a low-pass filter in the patch of 5 × 5 in the frequency do-
main to the four polarized images [14], and then perform the aforementioned calculations
using the filtered images.

Next, let us consider how to estimate the value of the ambient light A∞ scattered into
the imaging path from distant surroundings. In fact, if the estimation of the A is accurate,
its maximum value can be considered as A∞. However, from Equation (4), to ensure that
the denominator is not zero, the value of A∞ needs to be slightly larger than the maximum
value in A. In our algorithm, the expression for A∞ is as follows:

A∞ = 1.1 × max[A] (12)

The result of de-scattering is mainly determined by A, so the coefficient in Equation (12)
is slightly larger than one. After A and A∞ are determined, the de-scattering result can be
calculated using Equation (4).

3. Experiments and Analysis

To validate the effectiveness of our proposed de-scattering algorithm in scattering envi-
ronments, similar to mucosa and blood, we designed a simulation experiment using onion
epidermal cell slices as targets and diluted milk [26] to mimic the scattering environment of
biological tissues. The experiment was conducted using an Olympus polarized microscope
under a 20× objective lens, and four polarized images at different angles were obtained
using a time-sequential polarization imaging method. All calculations in this article were
performed in commercial software Matlab R2021a. We aimed to achieve non-invasive
imaging, where the light source and camera are symmetrically distributed on the same
side. However, due to the close distance between the microscope objective and the focal
plane, and the fixed position of the camera, it was difficult to set up a same-side light
source. Therefore, we initially used the microscope’s built-in transmitted halogen lamp as
the experimental light source for reflection experiments. However, in this case, some of the
light will be directly reflected by the top glass slide, which may influence the experimental
results (some areas are overexposed). Therefore, to simulate reflection experiments under
non-direct incident conditions, we chose to simulate the experiments using transmitted
illumination. Additionally, due to the weak light signals reflected back, EMCCD (Electron
Multiplying Charge-Coupled Device, a type of CCD that amplifies the electron signal to
improve sensitivity in low-light imaging) was used for image capturing. The schematic
diagram of the experimental setup and actual experimental process are shown in Figure 1.
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Figure 1. (A) Schematic diagram of the experiment: a. camera (EMCCD and Color Camera);
b. polarizer; c. reflected light source; d. objective lens; e. cell slices; f. scattering medium; and
g. transmitted light source. (B) Diagram of the experiment process. (C) Diluted milk.

3.1. Reflected Light Source Experiment

In the reflection experiment, we first stacked glass slides of the same thickness on both
sides of the first cell slice, leaving a scattering layer gap of 280 µm. Then, we placed the
second cell slice on it and aligned the observation portions of the two slices. We continued
to stack glass slides of the same thickness on both sides of the second cell slice, also leaving
a scattering layer gap of 280 µm. Finally, we added another glass slide on top to obtain the
observation sample with two layers of targets and two layers of scattering media. The top
single glass slide and the side portions of the stacked slices were fixed using hot glue. From
the top down, the two layers of targets are denoted as Layer 1 and Layer 2. Then, water
mixed with milk in ratios of 7:1, 6:1, and 5:1 was used as the scattering media. Initially,
water was injected into the scattering layer gaps to obtain clear target images (ground
truth). Then, using a syringe with a needle diameter of 0.3 mm, the liquid in the scattering
layer was extracted and replaced. Using this process, the original images and polarized
images of targets in the scattering environment with different concentrations of scattering
media can be obtained. The rotation of the polarizer was controlled using a motor to reduce
errors. The images obtained from the reflection experiment and the results after processing
via four methods are shown in Figure 2.

From the processed results in Figure 2, it can be observed that each image restoration
method partially restores the original images to some extent. Both the DCP and PBD meth-
ods show good subjective results, but the PBD method produces images with more uniform
overall brightness. The histogram in Figure 3 shows the grayscale value distribution of
the original image and the processed image. For the entire image, the DCP and AOD-Net
methods have a better stretching effect on the grayscale values, while the effects of the
FFA-Net and PBD methods are less obvious. However, the grayscale value distribution of
the ground truth is not particularly concentrated to begin with, and the grayscale value
distribution of the image processed using the DCP method is mostly concentrated in the
lower value range. Considering Figure 1, the overall processing result appears darker, and
the visual effect of the DCP method is not particularly superior to that of the PBD method.

We compared the intensity values at the marked black lines in Figure 2 with the
corresponding positions in other images, and the results are shown in Figure 4. Compared
to the ground truth (line a), the contrast at the cell wall significantly decreases after adding
scattering media with different dilution ratios (line b). At a ratio of 7:1, the contrast
(difference between the maximum and minimum values) at black rectangular regions of
Layer 1 and Layer 2 is approximately 34.6% and 28.8% of the original image, respectively.
Similarly, at a ratio of 6:1, it is 28.8% and 18.2%, and at a ratio of 5:1, it is 25.7% and 10.3%.
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In Layer 1, after processing with the DCP method (line c), the contrast improves
significantly, and the contrast enhancement relative to the same region of the original image
is about 2.85 times (at 7:1), 5.65 times (at 6:1), and 2.46 times (at 5:1). The restoration effect
of the PBD method (line f) is comparable to that of the DCP method and the brightness
is closer to the ground truth, and the contrast enhancement relative to the same region of
original image is about 2.84 times (at 7:1), 2.26 times (at 6:1), and 2.86 times (at 5:1). The
AOD-Net (line d) and FFA-Net (line e) methods show limited improvement in contrast
(contrast enhancement lower than 1.5 times) after restoration.

Similarly, when comparing the restored images of Layer 2 with the ground truth using
the four methods, it can be observed that the DCP method (line c) introduces significant
noise compared to the PBD method (line f), which can achieve almost complete restoration.
The restoration results of methods AOD-Net (line d) and FFA-Net (line e) are extremely
bad. When using the DCP method, the contrast enhancement relative to the same region
of the original image is about 3.51 times (at 7:1), 3 times (at 6:1), and 1.88 times (at 5:1).
With the PBD method, the contrast enhancement relative to the same region of the original
image is about 4.58 times (at 7:1), 2.91 times (at 6:1), and 3.19 times (at 5:1). This analysis
implies that PBD has a better performance in higher turbid media.

To evaluate the processing results further and objectively, we also used the Visual
Information Fidelity (VIF) as an evaluation function to calculate the fidelity of the initial
image and the four processed images relative to the ground truth. In simple terms, VIF
assesses the quality of an image by comparing its structural information and perceptual
characteristics, including brightness, contrast, and structural similarity. Therefore, VIF
can be used to measure the effectiveness of image processing algorithms and evaluate
the similarity between reconstructed and original images. A higher score indicates better
fidelity. Moreover, compared to metrics like PSNR (Peak Signal-to-Noise Ratio, a measure
used to assess the quality of a reconstructed image compared to the original image) and
SSIM (Structural Similarity Index Measure, a metric for comparing the similarity and
difference between two images), VIF, which combines natural image statistics models,
image distortion models, and the human visual system model, has higher consistency with
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subjective visual perception. Table 1 presents the VIF values of the images in the reflection
experiment results, and it is evident that the PBD method consistently achieves the highest
scores across various conditions. In conclusion, both from objective metrics and subjective
effects, our proposed PBD method performs better.
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Table 1. VIF values for reflected light source experiment.

Original DCP AOD-Net FFA-Net PBD

Layer 1
7:1 0.044 0.050 0.058 0.055 0.100
6:1 0.038 0.071 0.058 0.051 0.111
5:1 0.040 0.050 0.061 0.025 0.135

Layer 2
7:1 0.149 0.281 0.189 0.163 0.283
6:1 0.144 0.243 0.224 0.167 0.263
5:1 0.077 0.118 0.112 0.084 0.118
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Figure 4. Intensity values at black line (in Figure 2) for different images: (a) Layer 1 and (b) Layer
2. Images from left to right correspond to concentrations of 7:1, 6:1, and 5:1. Legends a–f represent
ground truth, original image, DCP, AOD-Net, FFA-Net, and PBD, respectively. The curves in the
black box show the depths on the edge of the sample.

3.2. Transmitted Light Source Experiment

In the transmitted illumination light source experiment, we used the same method to
create three-layer observation samples, controlling the thickness of each scattering layer gap
to be around 260 µm. From the top to down, the three layers of targets are denoted as Layer
1, Layer 2, and Layer 3. We mixed water and diluted milk in different concentrations of
16:1, 8:1, 7:1, and 6:1 as scattering media. Similar to the reflection experiment, we obtained
the ground truth, target images, and polarized images under the influence of different
concentrations of scattering media. In this case, a color camera equipped with a microscope
can be used, since the transmitted ray is strong enough. The images obtained from the
transmitted illumination experiment and the images processed by four different methods
are shown in Figure 5.

By comparing the results in Figure 5, we can see that the PBD and DCP methods still
yield the best results, followed by AOD-Net, and FFA-Net performs the worst. Although the
DCP method performs well in overall structural restoration, it still suffers from significant
brightness deviations in some Layer 1 and Layer 2 images, as well as color shifts in Layer 3
images. Therefore, in this scenario, the robustness of the PBD method is superior to that of
the DCP method.

Similarly, we compare the intensity values at the yellow line markers in the corre-
sponding images in Figure 5, and the results are shown in Figure 6. This local comparison
objectively reflects the restoration effects of different methods. The PBD and DCP methods
show excellent results, especially for Layer 1 at different concentrations, and for all layers
at a concentration of 16:1. However, as the concentration and imaging depth change, the
restoration performance of the PBD and DCP methods significantly decreases for Layer 2
at concentrations other than 16:1. The PBD method (line f) still improves the contrast at the
cell wall for all concentrations to some extent, but the improvement with the DCP method
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(line c) is not as significant as that with the PBD method. For greater depths, with Layer 3,
except for the PBD method, which can achieve effective restoration at a concentration of
16:1, none of the four methods can restore the targets effectively at other concentrations.

Photonics 2023, 10, x FOR PEER REVIEW 11 of 16 
 

 

 

 

Figure 5. Cont.



Photonics 2023, 10, 1374 11 of 15Photonics 2023, 10, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 5. Experimental and post-processing images: (A) Layer 1, (B) Layer 2, and (C) Layer 3. (ⅰ) 
Water (ground truth), (ⅱ) 16: 1, (ⅲ) 8: 1, (ⅳ) 7: 1, and (ⅴ) 6:1. (a) Images captured by the Color Camera 
in different media environments (original images), (b) DCP, (c) AOD-Net, (d) FFA-Net, and (e) PBD. 

Similarly, we compare the intensity values at the yellow line markers in the corre-
sponding images in Figure 5, and the results are shown in Figure 6. This local comparison 
objectively reflects the restoration effects of different methods. The PBD and DCP methods 
show excellent results, especially for Layer 1 at different concentrations, and for all layers 
at a concentration of 16:1. However, as the concentration and imaging depth change, the 
restoration performance of the PBD and DCP methods significantly decreases for Layer 2 
at concentrations other than 16:1. The PBD method (line f) still improves the contrast at 
the cell wall for all concentrations to some extent, but the improvement with the DCP 
method (line c) is not as significant as that with the PBD method. For greater depths, with 
Layer 3, except for the PBD method, which can achieve effective restoration at a concen-
tration of 16:1, none of the four methods can restore the targets effectively at other con-
centrations. 

For Layer 1, the black rectangular region at concentrations of 16:1, 8:1, 7:1, and 6:1, 
when processed by the PBD method, shows contrast enhancements of 3.45 times, 6.34 
times, 6.6 times, and 6.94 times, respectively, compared to the same region of the original 
image. When processed via the DCP method, it shows contrast enhancements of 2.31 
times, 4.19 times, 4.48 times, and 4.71 times, respectively. The AOD-Net method and FFA-
Net method also show enhancements of less than 1.5 times. For Layer 2, when processed 
using the PBD method, the contrast enhancements at four different concentrations are as 
follows: 6.47 times, 8.07 times, 6.3 times, and 5.88 times. When processed using the PBD 
method, contrast enhancements were 2.71 times, 5.46 times, 3.2 times, and 3 times, respec-
tively. For Layer 3, only at a concentration of 16:1, the PBD and DCP methods can achieve 
limited contrast enhancement, denoted as 7.45 times and 2.15 times, respectively. Under 
other concentration conditions, the recovered targets are submerged in image noise, re-
sulting in poor restoration quality. 

Figure 5. Experimental and post-processing images: (A) Layer 1, (B) Layer 2, and (C) Layer 3.
(i) Water (ground truth), (ii) 16: 1, (iii) 8: 1, (iv) 7: 1, and (v) 6:1. (a) Images captured by the Color
Camera in different media environments (original images), (b) DCP, (c) AOD-Net, (d) FFA-Net, and
(e) PBD.
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Figure 6. Intensity values at yellow line (in Figure 5) for different images: (a) Layer 1, (b) Layer 2, and
(c) Layer 3. Images from left to right correspond to concentrations of 16:1, 8:1, 7:1, and 6:1. Legends
a–f represent ground truth, original images, DCP, AOD-Net, FFA-Net, and PBD, respectively. The
curves in the black box show the depths on the edge of the sample.
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For Layer 1, the black rectangular region at concentrations of 16:1, 8:1, 7:1, and 6:1,
when processed by the PBD method, shows contrast enhancements of 3.45 times, 6.34 times,
6.6 times, and 6.94 times, respectively, compared to the same region of the original image.
When processed via the DCP method, it shows contrast enhancements of 2.31 times,
4.19 times, 4.48 times, and 4.71 times, respectively. The AOD-Net method and FFA-Net
method also show enhancements of less than 1.5 times. For Layer 2, when processed using
the PBD method, the contrast enhancements at four different concentrations are as follows:
6.47 times, 8.07 times, 6.3 times, and 5.88 times. When processed using the PBD method,
contrast enhancements were 2.71 times, 5.46 times, 3.2 times, and 3 times, respectively. For
Layer 3, only at a concentration of 16:1, the PBD and DCP methods can achieve limited
contrast enhancement, denoted as 7.45 times and 2.15 times, respectively. Under other
concentration conditions, the recovered targets are submerged in image noise, resulting in
poor restoration quality.

Table 2 shows the VIF values of each image in the transmission experiment, and the
PBD method still scores higher than the other methods. From subjective to objective, local
to overall validation, the effectiveness of the PBD method is confirmed.

Table 2. VIF values for transmitted light source experiment.

Original DCP AOD-Net FFA-Net PBD

Layer 1

16:1 0.070 0.107 0.090 0.080 0.121
8:1 0.031 0.076 0.041 0.035 0.106
7:1 0.028 0.076 0.038 0.031 0.123
6:1 0.026 0.074 0.034 0.028 0.112

Layer 2

16:1 0.043 0.090 0.058 0.051 0.131
8:1 0.033 0.104 0.045 0.036 0.126
7:1 0.034 0.098 0.046 0.038 0.135
6:1 0.033 0.100 0.044 0.036 0.126

Layer 3

16:1 0.039 0.074 0.053 0.045 0.133
8:1 0.036 0.083 0.049 0.039 0.117
7:1 0.036 0.081 0.049 0.039 0.115
6:1 0.035 0.083 0.049 0.039 0.101

4. Conclusions

In this paper, we propose a polarization imaging method that enhances the visibility
of cell-scale targets in a scattering medium environment. Firstly, we obtain four linear
polarization images of the target using a time-division polarization imaging method. Then,
we apply Gaussian low-pass filtering to the four images to reduce noise and improve
the accuracy of subsequent parameter estimation. Finally, we calculate the reconstructed
image using a scattering removal imaging algorithm based on polarization angle estimation.
We conducted experiments on scattering media with various concentrations under both
reflection and transmission illumination conditions. The results show that our method
has significant advantages in terms of the quality of the reconstructed results compared to
three other methods. Additionally, our method uses non-polarized light for illumination,
making it applicable in various lighting environments without specific requirements for
the light source. In summary, our method only requires four polarization images as an
input to generate the reconstructed result, making it simple, efficient, and robust.

Of course, the simulation experiments we are currently conducting are relatively
simple and not difficult to reproduce. At the same time, there are parts of our experiment
that have not yet been explored. For example, the thickness of visible light penetrating
biological tissues is quite limited. It is possible to try to deepen the penetration depth by
using the absorption window of biological tissues in the near-infrared region [27], which
may yield more information. During the experiment, we manually rotate the knob to adjust
the height of the carrier stage and shoot targets at different layers. If this process can be
achieved through electronic control, it may effectively reduce focusing errors. As for our
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algorithm, the processing of color images is just calculating the three channels in sequence
and then outputting. If the intensity value of a certain channel is significantly higher, the
final output image may appear color-biased. In addition, low-pass filtering will inevitably
cause some detail loss. Although our current observation target is relatively simple and the
impact is not significant, if we need to observe smaller, more detailed targets, this issue
may need to be considered.

We believe that this polarization-based scattering removal imaging technique has
broad prospects in the field of biomedical imaging and other applications that involve the
imaging of scattering media. It provides a feasible approach to obtain more accurate and
clear images, thereby improving the accuracy and reliability of diagnosis and research.
However, further research and validation are still necessary, and the performance of this
method needs to be optimized and its application scope expanded.
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