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Abstract: We analyze schemes of high-fidelity multi-qubit CNOTN and C2NOT2 gates for alkali
metal neutral atoms used as qubits. These schemes are based on the electromagnetically induced
transparency and Rydberg blockade. The fidelity of homonuclear multi-qubit CNOTN gate based
on Rydberg blockade was limited by the undesirable interaction between the target atoms and by
the coupling laser intensity. We propose overcoming these limits by using strong heteronuclear
dipole–dipole interactions via Förster resonances for control and target atoms, while the target atoms
are coupled by a weaker van der Waals interaction. We optimized the gate performance in order to
achieve higher fidelity, while keeping the coupling laser intensity as small as possible in order to
improve the experimental feasibility of the gate schemes. We also considered the optimization of
the schemes of the C2NOT2 gates, where the fidelity is affected by the relation between the control–
control, control–target and target–target interaction energies. Our numeric simulations confirm that
the fidelity of the CNOT4 gate (single control and four target atoms) can be up to 99.3% and the
fidelity of the C2NOT2 (two control and two target atoms) is up to 99.7% for the conditions which are
experimentally feasible.

Keywords: CNOT; homonuclear; heteronuclear; EIT; Rydberg blockade; quantum architecture

1. Introduction

Notable progress in quantum computing in recent years has resulted in first demon-
strations of quantum supremacy with superconducting qubits and photons [1–3]. Ultracold
ions and atoms remain promising platforms for a scalable quantum computer [4]. The
advantage of ultracold atoms is the potential to create quantum registers of thousands of
identical qubits on a micrometer scale [5]. A substantial improvement of two-qubit gate
fidelity in quantum registers based on single trapped atoms has been recently demon-
strated [6–9]. Quantum simulations of complex problems of many-body physics and
correlated quantum phases of matter can be performed using two-dimensional arrays of
hundreds of Rydberg atoms in optical tweezers [10,11]. However, the fidelity of two-qubit
gates for neutral atoms still remains limited. These gates use temporary excitation of atoms
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into Rydberg states [12]. The dipole moments of Rydberg atoms scale as n2 [13], where
n is the principal quantum number. Ground-state atoms do not interact at distances of
few microns, but Rydberg atoms do. Therefore the dipole-dipole interaction of Rydberg
atoms can be used for implementation of two-qubit gates and creation of entanglement [14].
The experimentally demonstrated schemes of two-qubit gates are based on the effect of
Rydberg blockade: when two atoms are located at short interatomic distance, they cannot
be excited simultaneously to Rydberg states by narrow-band laser radiation [7,15–18].

Multi-qubit gates with many target qubits can provide a remarkable speed-up of
quantum algorithms. Realization of geometric and swap gates with atomic qubits using
antiblockade was discussed in Refs. [19–21]. Schemes for multi-control and multi-target
gates based on microwave dressing were proposed in Refs. [22–24]. A single-step imple-
mentation of the three-qubit controlled gates with Rydberg atoms was reported [25]. Also,
the realization of a two-qubit controlled-PHASE (CZ) gate via single-modulated-pulse
off-resonant modulated driving embedded in a two-photon transition for Rb atoms with
high-fidelity entanglement to be 0.980(7) was recently reported [26].

Quantum error correction schemes are of essential importance for quantum infor-
mation processing with neutral atoms. A scheme for fault-tolerant quantum computing
based on surface codes was proposed by Auger et al. [27]. This scheme requires parallel
implementation of multiqubit CNOTN (where N is a number of target atoms) gates with a
single control atom and N target atoms, which are used as ancillary qubits, as shown in
Figure 1a. Recently, a surface code with an atomic quantum processor was experimentally
demonstrated [28]. The non-local connectivity between qubits was achieved by coherent
transport of qubits in two dimensions and between multiple zones.
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ŷ

(c)

Figure 1. (a) Scheme of generation of multi-atom entangled GHZ-state using a sequence of CNOT
gates applied to different target atoms. Firstly, we apply Hadamard gate H on the control atom
and do measurement after performing the CNOT gates. (b,c) Scheme of spatial configurations of
Rb and Cs atoms for implementation of the CNOTN gate in the case of (b) symmetric homonuclear
interaction of Rb atoms and (c) asymmetric heteronuclear interaction between Cs control atom and
four Rb target atoms.

Multi-qubit gates can be built using Rydberg blockade and electromagnetically-induced
transparency (EIT) [29]. EIT is a quantum interference phenomenon that can be observed
by two optical fields (probe and control lasers) tuned to interact with quantum states of
atoms [30]. The transmission of a weak probe field is enhanced in the presence of a strong
(near-)resonant coupling field [31]. Several groups studied EIT with Rydberg states theo-
retically [32,33] and experimentally [34–36]. From the original proposal [29] it is clear that
implementation of high-fidelity multi-qubit quantum gates based on EIT requires large cou-
pling Rabi frequencies (of order of GHz) for transition between low excited and Rydberg
states [29], which is difficult to achieve in the experiment. For lower values of the coupling
Rabi frequency, the fidelity of parallel CNOTN gates becomes substantially limited by the
interaction between the target atoms. It is possible to suppress the interaction between the
target atoms while keeping strong interaction between control and target atoms by using
the dipole-dipole interactions via Förster resonances and asymmetric excitation of control
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and target atoms to different Rydberg states. Moreover, creation of heteronuclear atomic
arrays [37] provides both extended control over the interatomic interaction and reduced error
rates during readout of qubit states. The heteronuclear atomic species were first entangled in
the experiment by Zeng et al. [6]. A two-dimensional 6× 4 array of two isotopes of Rb atoms
was recently demonstrated [38]. An experimental implementation of a dual-element atomic
array with individual control of single Rb and Cs atoms with negligible crosstalk between the
two atomic species was recently reported [39]. There are also related experimental studies of
ultracold dense trapped samples of over 1000 of 87Rb 133Cs molecules in rovibrational ground
state with full nuclear hyperfine state control by protocols of stimulated Raman adiabatic
passage (STIRAP) with efficiencies of 90% [40,41]. Rydberg blockade between a single Rb
atom and a single RbCs molecule was recently demonstrated [42]. A mixture of heteronuclear
6Li and 133Cs atomic clouds was studied in Ref. [43].

In the present work we optimize the performance of a parallel CNOT gate based on
Rydberg blockade and EIT in order to reduce the required coupling Rabi frequency for
transitions between low excited and Rydberg states and improve the overall gate fidelity.
With decrease of the coupling Rabi frequency the target-target interaction deteriorates the
gate performance [29]. When both control and target atoms are excited to identical Rydberg
states [symmetric homonuclear interaction, as shown in Figure 1b], it is not possible
to tune the control-target and target-target interactions independently. However, if the
control and target atoms are excited to different Rydberg states [asymmetric homonuclear
or heteronuclear interaction, which is illustrated in Figure 1c], it is possible to meet the
conditions of Förster resonance [44,45] for control-target interaction and to keep target-
target interaction in the van der Waals regime. That allows substantial suppression of the
target-target interaction and obtaining higher fidelity of parallel CNOT gate at moderate
coupling Rabi frequencies of 100–200 MHz, which can be readily achieved in modern
experiments for tightly focused laser beams.

While working on this manuscript we became aware of a foremost experimental
work [46] demonstrating the considered EIT gate protocol for two-qubits, verifying the
ability to perform a native CNOT gate. The authors managed to achieve a loss corrected
gate fidelity of F cor

CNOT = 0.82(6), and prepared an entangled Bell state with F cor
Bell = 0.66(5)

by trapping individually a pair of 133Cs atoms separated by 6 µm.
The paper is organized as follows: in Section 2 we describe the scheme of multi-qubit

CNOTN gate and the physical model used for our numeric simulation of the gate per-
formance. In Section 3, we discuss the properties of the asymmetric homonuclear and
heteronuclear Förster interactions. In Section 4, we investigate the influence of the param-
eters of atomic states and laser fields, Förster interaction channels, and gate duration on
the gate fidelity in homonuclear symmetric and heteronuclear asymmetric configurations.
In Section 5, we extend our approach to implement a C2NOT2 gate with two control and
two target atoms and calculate its fidelity for heteronuclear configuration. Analysis of gate
errors due to spontaneous emissions is given in Section 6. In Appendix A, the model of
the atomic system is described taking into account multiple Rydberg interaction channels.
Results of calculations are compared with the single-channel model. In Appendix B, a
model of multi-intermediate hyperfine states of the target atom is formulated.

2. Scheme of Rydberg EIT CNOTN Gate

The scheme of multiqubit CNOTN gate, proposed in Ref. [29], is shown in Figure 2a.
The gate operation can be understood as following: (i) If the control atom is initially in the
ground state |0〉, the first π-pulse does not change its quantum state. The Raman transfer
between states |A〉 and |B〉 is inhibited due to the interaction with intensive resonant
coupling radiation with Rabi frequency Ωc, as shown in Figure 2b. The fidelity of blocking
the population transfer is determined by the value of coupling Rabi frequency Ωc. (ii) If
the control atom is initially prepared in the ground state |1〉, then it will be excited to the
Rydberg state |r〉 by the first laser pulse Ωr. The interaction between control and target
atoms will shift the energy levels of the target atoms by a value of Vc tk where tk denotes
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kth target atom, and will make the coupling radiation Ωc off-resonant for the transition
between intermediate excited and Rydberg state of the target atoms, as shown in Figure 2c.
Thus, the conditions for EIT are not met anymore, and the Raman population transfer
between the states |A〉 and |B〉 becomes possible. In the ideal limit of a blockade regime,
the Rydberg states of the target atoms are never populated.
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Figure 2. (a) Sequence of laser pulses for Rydberg EIT gate. Ωc couples intermediate excited state
|P〉 and Rydberg state |r〉 of the target atom. Two-photon smooth Raman π pulse Ωp(t) couples
logical states of the target atoms |AN〉 and |BN〉 of the target atom. Laser π pulses Ωr excite and
de-excite Rydberg states of control atom; (b) Scheme of CNOT gate operation in the regime of blocked
population transfer (the control atom in ground state |0〉). No population transfer between states
|A〉 and |B〉 is allowed; (c) Scheme of CNOT gate operation in the transfer regime. The ground state
of control atom |1〉 is coupled to the Rydberg state |r〉 by a π-pulse Ωr. The ground states of the
target atom |A〉 and |B〉 are coupled to the intermediate state |P〉 by a smooth Raman π-pulse Ωp(t),
and the intermediate state is coupled to the Rydberg state |R〉 by resonant laser radiation with Rabi
frequency Ωc. The dipole-dipole interaction between control and target atoms results from coupling
of Rydberg states |r〉 and |R〉 to |r′〉 and |R′〉, respectively.

It is shown in Ref. [29] that the following conditions for CNOTN gate are satisfied:

(I) No transfer: |0〉|AN〉 → |0〉|AN〉,
|0〉|BN〉 → |0〉|BN〉,

(1)

(II) Transfer: |1〉|AN〉 → −(−1)N |1〉|BN〉,
|1〉|BN〉 → −(−1)N |1〉|AN〉.

(2)

We considered several spatial configurations for N = 1− 4 target atoms, which are
illustrated in Figure 3. The control atom is at the origin. The target atoms are equally displaced
from the control atom. For N = 3 (N = 4), the target atoms are placed on the vertices’ of an
isosceles triangle (square) where the distance between the nearest target atoms is

√
2R.

The interaction of the control atom with radiation in the rotating wave approximation
(RWA) is described by the Hamiltonian in basis of |0〉, |1〉 and |r〉 as

ĤC =
h̄
2

0 0 0
0 0 Ωr
0 Ωr 0

, (3)

where h̄ is Planck’s constant, and Ωr is a sharp π pulse which couples the Rydberg state |r〉
with |1〉 and is applied for Tc µs. Explicitly Ωr(t) is defined as following
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Figure 3. Spatial configurations of control and target atoms. The control atom is at the origin.
Here ẑ is the quantization axis and R is the interatomic distance between the control and the target
atoms for linear configurations (a) with single target atom, (b) with two target atoms; (c) Triangular
configuration with three target atoms equally displaced from the control atom. The coordinates of the
target atoms are (−R, 0, 0), (0, R, 0), and (R/

√
2,−R/

√
2, 0); (d) Rectangular configuration with four

target atoms. The coordinates of the target atoms are (R, 0, 0), (−R, 0, 0), (0, R, 0), and (0,−R, 0).

Ωr(t) =



0, t < 0.
π

Tc
, 0 ≤ t ≤ Tc.

0, Tc < t < (Tp + Tc).
π

Tc
, (Tp + Tc) ≤ t ≤ (Tp + 2 Tc).

0, t > (Tp + 2 Tc).

(4)

The interaction of the target atom with radiation for an inverted Y configuration of the
atomic energy levels is described by the Hamiltonian in basis of |A〉, |B〉, |P〉, and |R〉 as

ĤT =
h̄
2


0 0 Ωp(t) 0
0 0 Ωp(t) 0

Ωp(t) Ωp(t) −2∆ Ωc
0 0 Ωc 0

 (5)

where Ωp(t) =
√

16π∆
3T sin2(πt

T ) is a smooth Raman π-pulse that couples the ground states
of the Rb target atom |A〉 = |5 S1/2, F = 1〉 and |B〉 = |5 S1/2, F = 2〉 to the intermediate
state |P〉 = |6 P3/2, mj = 3/2〉 (For Cs atoms, the long-lived ground states, and intermediate
state of the target atoms are |A〉 = |6 S1/2, F = 3〉, |B〉 = |6 S1/2, F = 4〉 and |P〉 = |7 P3/2〉,
respectively.) with

∫ T
0 dt Ω2

p(t) = 2π∆. Here ∆ is the detuning from the resonance with the
intermediate state |P〉, as shown in Figure 2. Explicitly Ωp(t) is defined as following

Ωp(t) =


0, t < Tc,√

16π∆
3Tp

sin2
(

π
Tp
(t− Tc)

)
, Tc ≤ t ≤ (Tp + Tc),

0, t > (Tp + Tc).

(6)

The value Ωc is a constant Rabi frequency which couples the intermediate state |P〉
with Rydberg state |R〉 = |n S1/2〉 [see Figure 2b].

The model Hamiltonian of the combined system with single control atom and N target
atoms can be written as

Ĥ = ĤC ⊗ 1̂T + 1̂C ⊗ ĤT + ĤCT + ĤTT (7)

where 1̂C = I4 with dimensions 4 × 4 and 1̂T = ⊗N I5 with dimensions 5N × 5N are
the identity matrices acting on the control atom, and on the ensemble of target atoms,
respectively. ĤT is the Hamiltonian describing the ensemble of target atoms. ĤT can be
written in the following form
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ĤT =
N

∑
i
⊗N

j Lij (8)

where

Lij =

{
ĤT, if i = j.
1̂T, otherwise.

(9)

The third and fourth terms of Equation (7) are the terms describing the interaction
between control and target atoms, and the interaction between the target atoms, respec-
tively. In Section 3, we show how to calculate the interaction energies in homonuclear and
heteronuclear architectures.

In our simulations, we choose the maximum value of the Raman pulse Ωp = 2π × 50 MHz
and the detuning ∆ = 2π × 1200 MHz. The Raman pulse is applied for a duration
Tp = 16π∆

3 max(Ωp)2 . Also, we adopted an approach of a non-Hermitian Hamiltonian to con-

sider the finite lifetime of Rydberg state |r〉 of control atom by adding the term− i
2 γr|r〉〈r| to

Equation (3) and the finite lifetime of the intermediate states |P〉 of target atoms by adding
the term − i

2 γp|P〉〈P| to Equation (5) where γr and γp are the decay rates of Rydberg and
intermediate excited states, respectively.

Following the original work [29], in Figure 4 we illustrate the dependence of the
probability of blocking the population transfer |0〉|A〉 → |0〉|A〉 as a function of the ratio
between Ωc and Ωp. In this case, the control atom is not excited to Rydberg state. Therefore,
there is no interaction between control and target atoms. As clearly seen in Figure 4a, for
Ωc > 2 Ωp in the EIT regime [30] the transfer between ground states of the target atom
is blocked. The time dependence of the population transfer is shown in Figure 4b–d. At
low value of Ωc = 0.15 Ωp the population transfer |A〉 → |B〉 becomes allowed [Figure 4b].
In the intermediate case of relatively small Ωc = 2.0 Ωp, the state |A〉 is temporarily
depopulated, but finally the system returns to the initial state [see Figure 4c]. At very high
values Ωc = 8.0 Ωp the system mostly remains in the state |A〉 [see Figure 4d]. Although
the regime of strong coupling is advantageous for maximum gate probability transfer, it
requires high coupling Rabi frequencies of order of hundreds of MHz or GHz which are
difficult to achieve experimentally for highly excited Rydberg states due to the drop of
transition matrix elements for ground-Rydberg laser excitation as n−3/2. Therefore, the
intermediate values of Ωc are of interest for experimental implementation. Similar behavior
of probability transfer is observed for larger number of target atoms.

Müller et al. [29] analyzed the effect of target-target interactions in the three-qubit
GHZ state for three target atoms while considering the control-target interaction to be
constant and varying the target-target interaction. This two-dimensional configuration
is not relevant to the typical experimental conditions, since changing the values of the
target-target interaction requires varying the interatomic distance between target atoms,
which also results in change of the distance between the control and target atoms in all
possible spatial configurations of atomic ensembles. In our following simulations, we
varied the interatomic distances for several spatial configurations, which are illustrated in
Figure 3. In Appendix A, we developed an analogous model for the one described in this
section, where the coupling between many Rydberg states in considered.
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Figure 4. (a) The dependence of the probability of blocking the population transfer |0〉|A〉 → |0〉|A〉
on the ratio between Ωc and Ωp. The inset shows the behavior of the population of initial state in the
region when it is close to 1. (b–d) Time dependence of the population of the collective states P|0〉|A〉
(solid-blue curve) and P|0〉|B〉 (solid-red curve) for the case of blocked population transfer during
CNOT gate for (b) Ωc = 2π × 7.5 MHz; (c) Ωc = 2π × 100 MHz and (d) Ωc = 2π × 400 MHz. The
solid-orange curve illustrates the population transfer to the Rydberg state of the target atom in the
case of blocked population transfer between logical states.

3. Homonuclear and Heteronuclear Interaction Energy

Our approach is based on the additional control of the energy of interatomic dipole-
dipole interactions using Förster resonances between two distinguishable atoms, which
were studied in Ref. [37]. A Förster resonance [47] means that the energies of two collective
states of two Rydberg atoms coupled by dipole-dipole interaction are equal. This enhances
the probability of the population transfer between the collective two-body states which
is equivalent to energy transfer between interacting atoms [48–50]. Förster resonance is
employed to compromise the choice of selected Rydberg states. The interaction between
atoms lies in two different regimes: dipole-dipole regime (d-d) where interaction energy can
be described as V(R) = C3

R3 or van der Waals regime (vdW) where V(R) = C6
R6 [51]. Recently,

software packages [52,53] facilitated the calculations of interaction energies between alkali
and alkaline earth atoms. We used Alkali Rydberg Calculator (ARC) [52] to calculate the
interaction energy of two alkali atoms in |n, `, j, mj〉 Rydberg states (here n is the principal
quantum number, ` is orbital angular momentum number, j is the total angular momentum
number, and mj is the projection of the total angular momentum on the quantization z-axis)
for homonuclear and heteronuclear configurations. We also calculated the Le Roy radius
RLR [54] which is the internuclear distance between two interacting atoms at which the
theory of Le Roy-Bernstein is satisfied, and the interaction potential can be approximated
by charge independent atomic distributions. This radius sets the minimum limit of the
interatomic distance where our calculations of the interaction energies are valid. As shown
in Figure 3, we considered the quantization z-axis perpendicular to the interatomic axis,
which is the general case for all spatial configurations which are studied in this work. As
shown in Section 2, we investigated the performance of CNOT gate based on EIT with a
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single control atom for different number of target atoms for homonuclear and heteronuclear
configurations. The target atoms are identical in all cases.

3.1. Heteronuclear Architecture

We consider a Cs atom excited from the ground state |1〉 to Rydberg state |r〉 = |81S1/2,
mj = −1/2〉 as control qubit (as described in Section 2), and spatially ordered Rb atoms as
target qubits. The intermediate state |P〉 = |6P3/2〉 of target atoms is coupled to Rydberg
state |R〉 = |77S1/2, mj = 1/2〉. Due to the interaction between these two atoms the Rydberg
states in both atoms will be coupled to other neighboring Rydberg state(s) |r; R〉 → |r′; R′〉
[see Figure 2c]. The most dominant interaction channel, as shown in Appendix A, is

|81S1/2, mj = −1/2; 77S1/2, mj = 1/2〉 → |80P1/2, mj = 1/2; 77P3/2, mj = 3/2〉 (10)

The asymmetric interaction between these two atoms lies in the regime of dipole-dipole
interaction. The interaction Hamiltonian between control and target atoms ĤCT can be written
as [55]

ĤCT =
NT

∑
κ

N

∑
j

C(j)
3 (1− 3 cos2 θCTj

)

R3
CTj

|r〉 ⊗N
i=1
∣∣Wij

〉
κ
〈r′| ⊗N

i=1 κ

〈
W′ ij

∣∣
+
NT

∑
κ

N

∑
j

δ
(j)
F |r〉 ⊗N

i=1
∣∣Wij

〉
κ
〈r| ⊗N

i=1 κ

〈
Wij

∣∣ (11)

where C3 = 2π× 10 GHz·µm3 is a dipole-dipole interaction coefficient for the target atom j
separated from the control atom by distance RCTj

> RLR = 2 µm, θCTj
= π/2 is the angle be-

tween the quantization axis and the interatomic axis. The energy defect δF = 2π × 2 MHz
is the energy difference between the collective two-atom Rydberg states for the dom-
inant interaction channel. The collective state ⊗N

i=1|Wij〉 = |W1j〉|W2j〉 . . . |WNj〉 =
|W1j;W2j; . . .WNj〉 is defined as

∣∣Wij
〉

κ
=

{ |R〉, if i = j.
|ψT〉κ , otherwise.

(12)

where |R〉 is the excited Rydberg state of the target atom, and |ψT〉 = {|A〉, |B〉, |P〉, |R〉, |R′〉}
is the set of all basis states of any target atom with dimensions NT = 5.

In this architecture, all target atoms are identical, and they interact in the vdW regime.
The Hamiltonian describing their interaction can be written as

ĤTT =
NC

∑
`=1

NT

∑
j=1

N−1

∑
l=1

N

∑
k>l

C(lk)
6

R6
Tl Tk

|ψC〉` ⊗N
i |G

(lk)
i 〉 `〈ψC| ⊗N

i 〈G
(lk)
i | (13)

where C6 = 2π× 2036 GHz·µm6 is van der Waals coefficient calculated by fitting the model
function with the calculated energy level using ARC function getC6fromLevelDiagram for
rStart = RLR, rStop = 20 µm, and minStateContribution = 0. The interatomic distance between
different target atoms RTl Tk

> RvdW = 4.5 µm. The set of all basis states of the control atom

|ψC〉 = {|0〉, |1〉, |r〉, |r′〉} with NC = 4. The collective state ⊗N
i=1|G

(lk)
i 〉 = |G1〉 . . . |Gl〉 . . .

|Gk〉 . . . |GN〉 = |G1; . . .Gl ; . . .Gk, . . . ,GN〉 where

|Gi〉 =
{ |R〉l(k), if i = l | i = k.
|ψT〉j, otherwise.

(14)
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3.2. Homonuclear Architecture

The case when all interacting atoms are the same atomic species (Rb), all inter-
actions are in the vdW regime, since all atoms all excited to the same Rydberg state
|77S1/2, mj = 1/2〉 and the interaction is in the vdW regime. The control-target Hamilto-
nian in this case will be in the following form

ĤCT =
NT

∑
κ

N

∑
j

C(j)
6

R6
CTj

|r〉 ⊗N
i=1
∣∣Wij

〉
κ
〈r| ⊗N

i=1 κ

〈
Wij

∣∣ (15)

and the target-target interaction Hamiltonian will be the same as given in Equation (13) for
Rb atoms. For Cs homonuclear interaction with all atoms are excited to the same Rydberg
state |81S1/2, mj = −1/2〉, the van der Waals coefficient C6 = 2π × 2364 GHz·µm6.

In Figure 5a, we show the dependence of the dipole-dipole interaction coefficient C3 for
Cs and Rb atoms excited to Rydberg states, on the angle θ between quantization z-axis and
the interatomic axis for two different cases of the projection of the total angular momentum
on the quantization z-axis. We have θ = π/2 which does not meet the maximum value
of interaction energies but for using negative projection of the Rydberg state of Cs atom
strengths the interaction. The interaction between the two atoms vanish at the magic angle
θm1 = 54.7356◦, and θm2 = π − θm1 .

0

π
4

π
2

3π
4

π

5π
4

3π
2

7π
4

0

2
,0
0
0

4
,0
0
0

mj = −1
2

mj = +1
2

θm
1

θm 2

(a)

40 60 80 100 120

10

20

30

40

Principal quantum number n

B
lo
c
k
a
d
e
r
a
d
iu
s
(µ
m
)

40 60 80 100 120

1

2

3

4

5

Principal quantum number n

L
e
R
o
y
r
a
d
iu
s
(µ
m
)

Homonuclear

Rb-Rb: |nS 1
2
, nS 1

2
⟩

(b)

40 60 80 100 120

10

20

30

40

Principal quantum number n

B
lo
c
k
a
d
e
r
a
d
iu
s
(µ
m
)

40 60 80 100 120

1

2

3

4

5

Principal quantum number n

L
e
R
o
y
r
a
d
iu
s
(µ
m
)

Heteronuclear

Rb-Cs: |(n − 4)S 1
2
, nS 1

2
⟩

(c)

Figure 5. (a) The dipole-dipole interaction coefficient C3 (MHz.µm3) as a function of the angle θ

between the interatomic axis and the quantization axis for the heteronuclear interaction between
Rb |77S1/2, 1/2〉 and Cs |81S1/2, mj〉. Red curve (Violet curve) represent the projection of the total
angular momentum on z-axis mj = − 1

2 (mj =
1
2 ) for the most dominant interaction channel. (b,c) The

evolution of blockade radius (blue curve) and Le Roy radius (red curve) as a function of the principal
quantum number n for homonuclear interaction of two Rb atoms and heteronuclear interaction
between Rb and Cs atoms, respectively. Local minima of blockade radius of the heteronuclear
interaction of pair states |(n− 4)S1/2, nS1/2〉 can be attributed to principal quantum numbers where
the dipole-dipole couplings to different pair states compensate each other.

In Figure 5b,c, we show the evolution of blockade radius (dotted-blue curve) and
Le Roy radius (dotted-red curve) as a function of the principal quantum number n of
the excited Rydberg state for homonuclear interaction between two Rb atoms excited
symmetrically to Rydberg states |nS 1

2
, mj = 1/2 and the heteronuclear interaction between

Rb and Cs atom excited asymmetrically to Rydberg states |(n − 4)S 1
2
, mj = 1/2〉, and

|nS 1
2 ,mj=−1/2, respectively. It is noted that for homonuclear interactions with symmetric

Rydberg states, the evolution of blockade radius is steady while being fluctuant for the
asymmetric heteronuclear (or homonuclear) interactions. For Rb atom excited to Rydberg
state |77S 1

2
, mj = 1/2〉 interacting with Cs atom excited to Rydberg state |81S 1

2
, mj = −1/2〉,
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the value of blockade radius reaches local maxima. Local maxima points are repeated also
at n = 65, and 122 (the principal quantum number corresponding to the Rydberg state
of Cs atom). Local minima points (n = 67, and 94) can be imputed to principal quantum
numbers where the dipole-dipole couplings of these pair states counteract each other. The
evolution of Le Roy radius RLR is steady in both cases.

4. Fidelity of Multiqubit Entangled States

Fidelity is a measure of the closeness of two arbitrary quantum states. We employed the
standard definition [56] of fidelity between arbitrary states ρ̂ and σ̂ of a quantum system as

F(ρ̂, σ̂) = Tr
(√√

ρ̂σ̂
√

ρ̂

)
, (16)

where we considered ρ̂ as the calculated density matrix after performing a partial trace
over the subspace of computational states of control and target atoms, and σ̂ = |Φ+〉〈Φ+|
is the density matrix of the multi-qubit entangled state |Φ+〉 = 1√

2
⊗k

i (|0〉+ |1〉)i ⊗N
j

(|A〉+ |B〉)j. We numerically calculated the density operator of the system when it was
initially prepared in the superposition of the computational ground states of control
atom, which results in simultaneous blocking and transferring operations 1√

2
(|0〉|AN〉+

|1〉|AN〉) → 1√
2
(|0〉|AN〉 + |1〉|BN〉) where |AN〉 = ⊗N

k=1|A〉k. The case when N = 1
corresponds to a two-qubit Bell state, while for N > 1 we end in a GHZ-state, which is
a useful resource in quantum computing and cryptography [57]. For N = 1, we have
four computational states |0 A〉, |0 B〉, |1 A〉 and |1 B〉. Generally, the total number of basic
computational states in Rydberg blockade of CNOT gate is equal to 2N+1 from the total
NC ×N N

T states, where NC (T) is the number of states in control (target) atom.
In our simulations, we consider different configurations of the control and target atoms

to be either Rb ( 87Rb) or Cs (133Cs). We have taken decay rates γr = 1/τc and γp = 1/τp of
the Rydberg state of the control atom |r〉 and the intermediate state of the target atoms |P〉,
respectively, from the data of ARC [52]. The lifetime of Rb |P〉 = |5P3/2, mj = 3/2〉 state
(first excited state of Rb) is τp = 26.4 ns while for Rb |6P3/2, mj = 3/2〉 state the lifetime is
τp = 0.131µs. The lifetime of Cs |P〉 = |6P3/2, mj = 3/2〉 (first excited state of Cs) of the
target atom is τp = 30.5 ns, while for Cs |7P3/2, mj = 3/2〉 state we have τp = 0.118 µs.
Since lifetimes of higher excited states of target atoms are much longer, in the following
calculations we consider Rb |P〉 = |6P3/2, mj = 3/2〉 and Cs |7P3/2, mj = 3/2〉 states as
the intermediate state of the target atom. The Rydberg excitation schemes through these
intermediate states were experimentally demonstrated in Refs. [5,7]. In Section 6, we justify
this choice of the intermediate state |P〉.

4.1. Homonuclear Architecture

In this section, we study the gate performance for the case when control and target
atoms are same atomic species, which can be either Rb or Cs. There are two different
scenarios of homonuclear interaction: (i) symmetric interaction |nS, nS〉 → |n′P, n′′P〉,
when both control and target atoms are excited to the same Rydberg state, and (ii) asym-
metric interaction |nS, n̄S〉 → |n′P, n̄′P〉, when the control atom is excited to one Rydberg
state with principal quantum number n, and the target atoms are excited to a different
Rydberg state with principal quantum number n̄. Note that in the latter case, the interaction
between the target atoms is also symmetric (the quantum states |n̄S1/2〉 of target atoms
are identical)—Symmetric interaction channel |nS, nS〉 → |n′P, n′′P〉. Figure 6 is a contour
plot of fidelity of entangled states as a function of interatomic distance between control
and target atoms RCT (µm) and the ratio Ωc/Ωp where we considered |77S1/2, mj = 1/2〉
Rb Rydberg states of control and target atoms with lifetime τc = 505 µs. In the case of
only one target atom it is possible to achieve high fidelity F = 99.8% for a wide range of
interatomic distances RLR < RCT < 5.5 µm and moderate values of Ωc ≥ 2.5 Ωp, since the
target-target interaction does not exist in this case. Considering schemes with more target
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atoms N > 1, the fidelity for Ωc < 2 Ωp drops at small interatomic distances because of
the increase of the influence of strong target-target interactions. The optimum interatomic
distance is found to be around RCT ∼ 3–4 µm. For N = 4 target atoms, the fidelity u 96.5%
for very high values of Rabi frequency Ωc > 3.5 Ωp at RCT = 5 µm as in Figure 6d.
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Figure 6. Contour plot of the fidelity of entangled states FRb-Rb as a function of interatomic dis-
tance RCT (µm) and coupling Rabi frequency Ωc/Ωp, for homonuclear symmetric interaction of
|77S1/2, mj = 1/2〉 Rb atoms for different spatial configurations of N = 1–4 target atoms [see Figure 3].

In principle, it is also possible to consider asymmetric homonuclear interactions
(|nS, mS〉 → |n′P, m′P〉) to achieve high fidelities by reducing target-target interaction
compared to control-target interaction. This case will be considered in a future work.

4.2. Heteronuclear Architecture

The contour plot of the fidelity FCs-Rb of entangled states in heteronuclear configuration
is shown in Figure 7 as a function of interatomic distance R (µm) and the ratio Ωc/Ωp.
This case corresponds to asymmetric heteronuclear interaction between control and target
atoms, while the target atoms interact in the vdW regime. The control Cs atom is excited to
Rydberg state |r〉 = |81S1/2, mj = −1/2〉 with lifetime τc = 548 µs and Rb target atoms are
excited to Rydberg state |R〉i = |77S1/2, mj = 1/2〉. Heteronuclear configuration is clearly
advantageous in terms of fidelity comparing to the symmetric homonuclear configuration,
shown in Figure 6. The regime of a CNOT gate with one target atom for the selected range
of interatomic distances RLR ≤ RCT ≤ 10 µm, as shown in Figure 7a, is governed purely by
dipole-dipole interaction and allows to achieve fidelity FN=1

Cs-Rb = 99.8% for Ωc ≥ 2.5 Ωp.
With increase of the number of target atoms N > 1, the maximum obtained fidelity slightly
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drops, similarly to the homonuclear case. The fidelity FN=4
Cs−Rb 99.3% within the region

6 µm < RCT < 10 µm and Ωc > 2.5 Ωp. This justifies the advantage of heteronuclear
configuration for implementation of multiqubit CNOTN gates. Moreover, the two-species
architecture is useful for improvement of readout without cross-talk when the state of a
Rb data qubit is not affected by measurements performed by resonant light scattering by
ancillary Cs atoms [37], which was recently demonstrated experimentally for arbitrary
two-dimensional arrays of Rb and Cs atoms [39].
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Figure 7. Contour plot of fidelity FCs-Rb as a function of interatomic distance RCT (µm) and coupling
Rabi frequency Ωc/Ωp, for the case of heteronuclear asymmetric interaction of Cs control atom in
state |r〉 = |81S1/2, mj = −1/2〉 and Rb target atoms in state |R〉i = |77S1/2, mj = 1/2〉 for different
spatial configurations of N = 1–4 target atoms [see Figure 3].

5. Scheme of Rydberg EIT C2NOT2

The proposals for implementation of CkNOTN/CkZN gates with many control and
many target atoms have been limited to gates with either many control atoms and single
target atoms, or to single control atom and many target atoms. The most general case for ar-
bitrary number of control and many target atoms has not been studied extensively. Recently,
such schemes were proposed in several theoretical approaches [23,24,58]. Young et al. [23]
designed a protocol which uses microwave dressing to implement multi-qubit gates with
many control and many target atoms. This protocol reduces intraspecies interaction ener-
gies and maximizes the interspecies interaction energies, leading to asymmetric blockade,
which simplifies the state preparation and enhances the speed of quantum algorithms and
reduces the need for fault-tolerant error correction schemes. In this section, we modify the
previously studied CNOT scheme based on EIT in order to implement a four-qubit gate
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with two control and two target atoms (C2NOT2 gate) [see Figure 8a] simultaneously by
proposing an asymmetric sequence of laser pulses acting on control atoms. We consider
the following sequence [see the scheme in Figure 8b]:

1. We apply π-pulses to excite the control atoms from ground state |1〉 to highly excited
Rydberg state |r〉 in sequence.

2. Then we apply smooth Raman laser π pulse to couple the ground states of the target
atoms |A〉 and |B〉, simultaneously, to the intermediate dark state |P〉.

3. Finally, we apply π pulses to return the control atoms from highly excited Rydberg
state |r〉 to ground state |1〉 in reversed sequence applied in step 1.

R
C
T
=

√ 5
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(b)
Figure 8. (a) Scheme of spatial configurations of homonuclear/heteronuclear interactions for the
implementation of C2NOT2 gate. The atoms are located on the vertices of a rhombus with perpendic-
ular diagonals and RTT = 2 RCC. RCC (RTT) is the interatomic distance between control (target) atoms.
(b) The sequence of laser pulses to perform C2NOT2 gate.

By applying this sequence of laser pulses, it is possible to efficiently implement the
following gates by properly tuning the system parameters:

(I) No transfer: |0 0〉|AA〉 → |0 0〉|AA〉,
|0 0〉|BB〉 → |0 0〉|BB〉,
|0 0〉|A B〉 → |0 0〉|A B〉,
|0 0〉|B A〉 → |0 0〉|B A〉,

(17)

(II) Transfer: |11〉|AA〉 → |11〉|BB〉,
|11〉|BB〉 → |11〉|AA〉,
|01〉|AB〉 → |01〉|BA〉,
|01〉|BA〉 → |01〉|AB〉,
|10〉|AB〉 → |10〉|BA〉,
|10〉|BA〉 → |10〉|AB〉.

(18)

The system dynamics for the case of only one control atom excited to the Rydberg
state |r〉 and the second control atom remaining in the ground state |g〉 [i.e., 1√

2

(
|0 0〉|A A〉+

|0 1〉|A A〉
)
→ 1√

2

(
|0 0〉|A A〉+ |0 1〉|B B〉

)
or 1√

2

(
|0 0〉|A A〉+ |1 0〉|A A〉

)
→ 1√

2

(
|0 0〉|A A〉

+|1 0〉|B B〉
)
] corresponds to the previously considered cases for homonuclear symmetric

and for heteronuclear configurations in Figure 6b and Figure 7b, respectively.
The architecture of this gate becomes possible if the qubits satisfy the following

conditions: (1) Cs control atoms are excited to Rydberg state |81S1/2, mj = −1/2〉 where
their dominant interaction regime is vdW i.e., VCC = C6

R6
CC

, (2) Rb target atoms are excited to

Rydberg state |77S1/2, mj = 1/2〉 and similarly their dominant interaction regime is vdW
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i.e., VTT = C6
R6

TT
, (3) The regime of interaction between control Cs and target Rb atoms, is

dipole-dipole interaction i.e., VCT =
C3
R3

CT
.

In Figure 9a,b, we plot the contours of fidelity when the system is initially prepared in
the superposition of ground states on control atoms, while the target atoms are in states
|A A〉: 1√

2
(|0 0〉|A A〉+ |1 1〉|A A〉) → 1√

2
(|0 0〉|A A〉+ |1 1〉|B B〉) with gate duration of

τ = 8.06 µs. The total number of computational basis states for a scheme with k control
atoms interacting with N target atoms is equal to 2k+N . In Figure 9a, we consider all
possible interaction between control and target atoms. The maximum achieved fidelity
is 99.7% for a high value of Rabi frequency Ωc/Ωp > 2.5 for RCT u 6 µm. It is also
noticed a sharp drop in fidelity for 8 µm < RCT < 12 µm which can be a result of the
interaction between control atoms, since in this regime interaction between target atoms
almost vanishes as seen in Figure 9c. In Figure 9b, we study a non-realistic case where we
neglected the interaction between control atoms, which can be compared with the case of
CNOT2 in Figure 7b, considering the different spatial arrangements. The maximum value
of fidelity becomes possible for a wider range of intratomic distances. This case proves that
the destructive pattern in system dynamics is a direct result of VCC.
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Figure 9. Contour plot of fidelity FC2 NOT2

Cs-Rb for the case of heteronuclear interaction of Cs control
atom in state |r〉i = |81S1/2, mj = −1/2〉 and Rb target atoms in state |R〉j = |77S1/2, mj = 1/2〉 as
a function of the interatomic distance RCT and the ratio Ωc/Ωp. The system is initially prepared in
state 1√

2
(|00〉|AA〉+ |11〉|AA〉). Ωp = 2π × 50 MHz, and gate duration τ = 1.53 µs. (a) VCC 6= 0;

(b) VCC = 0; (c) The evolution of interaction energies as a function of the interatomic distances
according to the considered spatial arrangement in Figure 8a.

6. Gate Errors

In this section we discuss the effect of finite lifetimes, and the role of the excitation
through different intermediate states and of the spatial arrangement of target atoms on the
fidelity for of CNOT4 and C2NOT2 gates.

CNOTN—In Figure 10a,b, we plot the fidelity as a function of interatomic distance
between Cs control and Rb target atoms for CNOTN gate for N = 2, and N = 3, respectively,
with Ωc = 2.5 Ωp = 2π × 125 MHz, TC = 1 µs, and total gate time τ = 3.28 µs. Solid
(dashed) curve represents the case of excitation of the target atoms through the second
(first) resonance level of the intermediate state |P〉 = |6P3/2〉 (|P〉 = |5P3/2〉). It is clear that
using the second resonance level enhanced the obtained fidelity for CNOT2 (CNOT3) to be
99.75% (99.68%) at RCT = 8.33 µm, compared with 99.43% (99.2%) for excitation through
the first resonance level.
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Figure 10. Investigating the source of error resulting from exciting the target atom from ground
state through the first of the second resonance level of intermediate state for different configurations:
(a) CNOT2, (b) CNOT3, and (c) C2NOT2 gates. We plot the evolution of fidelity as a function of
the interatomic distance RCT taking into account the finite lifetimes of excited states. Solid (dashed)
curves represent the case of intermediate state of the Rb target atoms to be |P〉 = |6P3/2, mj = 3/2〉
(|P〉 = |5P3/2, mj = 3/2〉) [see main text]. Ωc = 2.5 Ωp = 2π × 125 MHz, TC = 1 µs.

CkNOTN—In Figure 10c, we plot the fidelity of multi-control and multi-target C2NOT2

gate as a function of interatomic distance RCT between Cs control and Rb target atoms with
total gate time τ = 5.28 µs. Solid (Dashed) curve represents the case of excitation of
the two target atoms through the second (first) resonance level of the intermediate state
|P〉 = |6P3/2〉 (|P〉 = |5P3/2〉) which shows a possible fidelity F = 99.6% (99.3%) at
RCT = 8.4 µm.

In our model, we considered the time gap between excitation and de-excitation of
Rydberg state on the control atom to be Tp (µs) caused by the pulse sequence π − gap− π
which is typically required by a Rydberg blockade gate can cause an expected atom loss,
not only for control atom but also for the ensemble of target atoms, which can also a
source of errors for implementing the physical system in experiment. In [59], the authors
reported their findings in constructing a native CNOT gate based on optimizing smooth
Gaussian-shaped pulses.

In Figure 11, we show the effect of spatial arrangement and the number of target atoms
on the obtained fidelity of CNOTN gate for Rabi frequency Ωc = 2.5 Ωp = 2π × 125 MHz
for two different values of RCT. It is clear that the spatial arrangement of target atoms
around the control atom slightly changes the fidelity according to their trapping positions.
We also show that the heteronuclear architecture can be advantageous in terms of fidelity
as a value for arrays with RCT > 5 µm.
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Figure 11. The fidelity for different spatial arrangement of qubits in CNOTN (C2NOT2) gate for
Ωc ' 2.5 Ωp and interatomic distance RCT = 5 µm in (a), RCT = 7 µm in (b).
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7. Conclusions

We studied the performance of the multi-qubit CNOT gates based on EIT and Rydberg
blockade. Our simulations confirm the advantages of heteronuclear architecture of the
atomic quantum registers for suppression of the undesirable target-target interactions
which limit the performance of multi-qubit gates. We have shown that in the configuration
of single control and four target atoms which is most suitable for surface codes it is possible
to achieve the fidelity of multi-qubit CNOT4 gate above 99% which opens the way to fast
quantum error correction schemes with neutral atoms.
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Appendix A. Model of Multiple Rydberg Interaction Channels

In this Appendix, we consider that effect of multiple Rydberg interaction channels
due to coupling of initially excited colective two-atom Rydberg state to numerous neigh-
boring collective two-atom states through dipole-dipole interaction. This problem is well
described in [61], and its formalism is limitedly adopted in [22,55]. In Ref. [55], the authors
showed that for implementation of Toffoli gate with homonuclear architecture using main
interaction channel |(n + 1) S1/2, n P3/2〉 � |n P3/2, (n + 1) S1/2〉 for dipole blockade the
effect of other interaction channels (e.g., |(n + 1) S1/2, n P3/2〉 → |(n + 2) P3/2, n S1/2〉) can
be neglected.

As in Figure A1, we will consider the state |r0; R0〉 = |81S1/2, mj = −1/2 ; 77S1/2,
mj = 1/2〉 which is coupled to a set of other Rydberg states {|r1, R1〉, |r2, R2〉, . . . } with
|rα〉 = |(81± n̄)Pj, mj〉 and |Rα〉 = |(77± m̄)Pj, mj〉 for different values of total angular
momentum j and of the projection of the total angular momentum on the quantization
z-axis mj, as we show in Table A1, where ∆n is the range of variation of principal quan-
tum number n. n̄ and m̄ are integers ∈ [−∆n, ∆n]. We limited our calculations here for
∆` = 1 for the interaction channel |ss〉 → |pp〉. The control-target interaction Hamiltonian
in Equation (11), can be straightforwardly modified to include coupling to many other
Rydberg states.

Energy defect δFα is the energy difference between any two states for the interaction
channel α,

δFα = δ|r0〉→|rα〉 + δ|R0〉→|Rα〉,

=
(
E|r0〉 − E|rα〉

)
+
(
E|R0〉 − E|Rα〉

)
.

(A1)

where E|λ〉 is the energy of atomic state |λ〉 with respect to the center of gravity of the
hyperfine-split states.

https://rscf.ru/project/23-42-00031/
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Figure A1. Hyperfine structure of the collective atomic energy levels with control 133Cs atom and
target 87Rb atom and laser-induced transitions between ground and Rydberg states.

Table A1. The calculated dipole-dipole coefficient C(α)3 (GHz·µm3), the energy defect δEα
(GHz), the van

der Waals C(α)6 (GHz·µm6) interaction coefficients for: Table (above), the heteronuclear asymmetric in-
teraction channels |r0〉|R0〉 → |rα〉|Rα〉with |r0〉 = |81S1/2, mj = −1/2〉 and |R0〉 = |77S1/2, mj = 1/2〉
for Cs and Rb atoms, respectively. Table (below), the corresponding homonuclear symmetric interaction
channels |R0〉|R0〉 → |Rα〉|Rα〉 for Rb atoms. ωj (j = 1, 2) is the driving transition field that couples

|r0〉 7→ |rα〉 (|R0〉 7→ |Rα〉). χα =
C(α)3

R̄3
CT δFα

is the dimensionless coupling strength factor. If χα � 1, then

the leakage from the resonantly coupled state can be suppressed. We limited the results of heteronuclear
interaction to be ∆n = 2 and δFα

/2π ∈ [−2, 2] GHz and considered the corresponding interaction
channels for the homonuclear interactions. R̄CT = 5 µm, R̄TT =

√
2 R̄CT. The values are taken from ARC

using functions getDipoleMatrixElement, and getEnergy.

α ω1

87Rb
ω2

133Cs
C3/2π δF /2π χ C6/2π

n1 `1 j1 mj1 n2 `2 j2 mj2

1 σ+ 76 1 1.5 1.5 σ+ 81 1 0.5 0.5 10.9 1.87 4.650× 10−2 5.812

2 π 77 1 0.5 0.5 σ+ 80 1 0.5 0.5 5.88 0.214 2.201× 10−1 27.52

3 σ+ 77 1 1.5 1.5 σ+ 80 1 0.5 0.5 10.0 0.002 3.656× 10+1 4570

4 π 78 1 0.5 0.5 σ+ 79 1 0.5 0.5 0.105 −0.437 1.927× 10−3 −0.241

5 σ+ 78 1 1.5 1.5 σ+ 79 1 0.5 0.5 0.190 −0.64 2.374× 10−3 −0.297

α ω1

87Rb
ω2

87Rb
C3/2π δF /2π χ C6/2π

n1 `1 j1 mj1 n2 `2 j2 mj2

1 σ+ 76 1 1.5 1.5 σ+ 76 1 1.5 1.5 11.2 16.84 6.657× 10−4 67.26

2 π 77 1 0.5 0.5 π 77 1 0.5 0.5 4.29 −15.40 2.784× 10−4 −96.78

3 σ+ 77 1 1.5 1.5 σ+ 77 1 1.5 1.5 12.5 −15.82 7.873× 10−4 −88.39

4 π 78 1 0.5 0.5 π 78 1 0.5 0.5 0.060 −46.79 1.294× 10−6 −0.006

5 σ+ 78 1 1.5 1.5 σ+ 78 1 1.5 1.5 0.197 −47.20 4.178× 10−6 −0.007

The dipole-dipole C(α)3 coefficient can be calculated for specific interaction channel α
by considering the dipole matrix element 〈n0, `0, j0, mj0 | e r |nα, `α, jα, mjα〉. Adopting the
notation |λ0〉 = |n0, `0, j0, mj0〉 and |λα〉 = |nα, `α, jα, mjκ 〉 for the initial and final Rydberg



Photonics 2023, 10, 1280 18 of 22

states, respectively. C(α)3 and the van der Waals coefficient C(α)6 can be calculated from the
following forms (ε0 is the permittivity of free space):

C(α)3 =
1

4πε0
〈r0| e r |rα〉〈R0| e r |Rα〉, (A2)

C(α)6 =
1

4πε0

|〈r0| e r |rα〉|2 |〈R0| e r |Rα〉|2
δFα

, (A3)

with a cross-over between these two-regimes occurs at radius RvdW =
(

C(α) 2
3 /δ2

Fα

)1/6
. In

Table A1, we show the values of C(α)3 , C(α)6 and δFα for different interaction channels.
For the interaction with many target atoms, the target-target interaction Hamiltonian

in Equation (13) can be written to include more Rydberg states.
The values of C(α)3 and δFα for the symmetric homonuclear interaction between Rb

atoms are given in Table A1 [below]. The dimensions of the system DN with many Rydberg
states substantially increases. The system dimensions are written as DN = (NC +K)×
(NT +K)N , where K is the number of considered other coupled Rydberg states for N of
target atoms.

In Figure A2, we show the contour plots of fidelity as a function of interatomic distance
RCT and Ωc/Ωp using the model of coupling of the initially excited Rydberg state to many
other Rydberg states for N = 1 and 2. It is clearly seen that the coupling to other Rydberg
states does not result in significant changes to the value of the calculated fidelity compared
to their results shown in Figure 7a,b, where only single interaction channel was considered.
The difference in fidelities between these models is of order 10−3∼10−7 for N = 1, and of
order 10−3∼10−5 for N = 2.
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Figure A2. (a) The contour plots of fidelity for implementing CNOTN gate using multi-Rydberg
model as a function of RCT and Ωc/Ωp for (a) N = 1, (b) N = 2.

For greater number of target atoms with using many Rydberg states results in substan-
tial increase of the dimension of the model, which makes calculations difficult. Therefore
we limited to a single-channel model in our calculations. The situation is the same for many
control atoms. Dongmin et al. [55], demonstrated that non-resonant couplings between
the identical Rydberg states for control atoms in Toffoli gates can be regarded as weak
leakage error. We checked our model for a wider range of ∆n and higher values δFα for the
heteronuclear control-target interaction, and got the same conclusion.
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Appendix B. Model of Multi EIT Gate via 6P3/2

The authors in [46] considered a multi-level EIT model of a cesium target atom for
excitation via the |6P3/2〉 intermediate state. To consider the multi-hyperfine states of the
second resonance intermediate state |6P3/2〉 of rubidium atoms, we will consider the target
atom Hamiltonian

ĤT =
1
2 ∑

j

[
Ωp(t)

(
αj,A|Pj〉〈A|+ αj,B|Pj〉〈B|

)
+ αj,RΩc|Pj〉〈R|+ h.c.

]
+ ∑

j
∆̄j|Pj〉〈Pj|+ δ|B〉〈B|+ δR|R〉〉R|,

(A4)

where |Pj〉 = |6P3/2, F′ = j〉 are the different hyperfine states of the intermediate state [see
Figure A3a], δ is the Raman detuning, ∆̄ = ∆± δ̄j MHz is the detuning from the intermedi-
ate state |Pj〉. δ̄j is the detuning of the individual hyperfine states, with δ̄0/2π = 23.72 MHz,
δ̄1/2π = 51.4 MHz, δ̄2/2π = 0, and δ̄3/2π = 86.97 MHz [62,63]. Ωp(t) and Ωc are the
Raman and Rabi laser pulses [see the main text]. αj,A, and αj,B, αj,R are the angular factors
for dipole moments.
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Figure A3. (a) Scheme of energy levels of 87Rb target atom. (b) Dependence of the fidelity of the
transfer gate on two-photon Raman detuning. (c) Dependence of the fidelity of the blocking gate on
the two-photon Rydberg detuning.

The hyperfine structure of the intermediate excited state is a source of additional gate
errors. In Ref. [48] this question has been explicitly studied and analytical expressions for
the differential Stark shifts of Raman transitions have been obtained. The level structure of
target Rb atom is shown in Figure A3a. The Raman transition goes through two interaction
channels with different Rabi frequencies

|5S1/2, F = 1, mF = 0〉 → |6P3/2, F′ = 1, m′F = 1〉 → |5S1/2, F = 2, mF = 0〉
|5S1/2, F = 1, mF = 0〉 → |6P3/2, F′ = 2, m′F = 1〉 → |5S1/2, F = 2, mF = 0〉 (A5)

The couplings |5S1/2, F = 1, mF = 0〉 → |6P3/2, F′ = 0, m′F = 1〉 and |5S1/2, F = 2,
mF = 0〉 → |6P3/2, F′ = 3, m′F = 1〉 lead to the additional light shifts of the energy levels.
However, these time-dependent light shifts can be compensated by an additional two-
photon Raman detuning, as shown in Figure A3a. The numerically calculated dependence
of the fidelity of the transfer gate on Raman detuning δ is shown in Figure A3b. By
proper choice of the detuning it is possible to reduce the error due to additional light shifts
below 10−3.

The light shifts also affect the fidelity of the blocking gate which can be compensated
by using an additional detuning δR of the coupling radiation. The numerically calculated
dependence of the fidelity of the blocking gate on Rydberg detuning is shown in Figure A3c.
We fixed δ/2π = 0.6 MHz which provides the maximum fidelity of the transfer gate in
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Figure 1b. Here it is also possible to reduce the error of the blocking gate due to the
additional light shifts below 10−3.

Another source of errors can be undesirable Rydberg excitation through different
excitation pathways. The excitation of |6P3/2, F = 0〉 state is suppressed due to selection
rules if the clock states |5S1/2, F = 1, mF = 0〉 and |5S1/2, F = 2, mF = 0〉 are selected as
logical states. However, off-resonant Rydberg excitation through |5S1/2, F = 3, mF = 1〉 is
possible. For low coupling Rabi frequencies Rydberg states are temporarily excited when
the blocking gate protocol is implemented. The decay of Rydberg states is taken into account
in our model. The influence of the other excitation pathways through different mF states can
be substantially suppressed using optical pumping to the clock states |5S1/2, F = 1, mF = 0〉
and |5S1/2, F = 2, mF = 0〉.
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52. Šibalić, N.; Pritchard, J.D.; Adams, C.S.; Weatherill, K.J. ARC: An open-source library for calculating properties of alkali Rydberg

atoms. Comput. Phys. Commun. 2017, 220, 319–331. [CrossRef]

http://dx.doi.org/10.1002/andp.202100506
http://dx.doi.org/10.1103/PhysRevApplied.16.064040
http://dx.doi.org/10.1103/PhysRevA.105.042430
http://dx.doi.org/10.1103/PhysRevA.96.052320
http://dx.doi.org/10.1038/s41586-022-04592-6
http://www.ncbi.nlm.nih.gov/pubmed/35444318
http://dx.doi.org/10.1103/PhysRevLett.102.170502
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1364/OE.417529
http://www.ncbi.nlm.nih.gov/pubmed/33984920
http://dx.doi.org/10.1103/PhysRevLett.105.193603
http://www.ncbi.nlm.nih.gov/pubmed/21231168
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nature11361
http://www.ncbi.nlm.nih.gov/pubmed/22832584
http://dx.doi.org/10.1103/PhysRevLett.112.073901
http://dx.doi.org/10.1038/ncomms12480
http://www.ncbi.nlm.nih.gov/pubmed/27515278
http://dx.doi.org/10.1103/PhysRevA.92.042710
http://dx.doi.org/10.1103/PhysRevLett.128.083202
http://dx.doi.org/10.1103/PhysRevX.12.011040
http://dx.doi.org/10.1103/PhysRevLett.113.205301
http://dx.doi.org/10.1103/PhysRevLett.113.255301
http://dx.doi.org/10.1103/PhysRevLett.131.013401
http://dx.doi.org/10.1103/PhysRevA.87.010702
http://dx.doi.org/10.1103/PhysRevA.77.032723
http://dx.doi.org/10.1103/PhysRevA.97.032701
http://dx.doi.org/10.1103/PhysRevLett.129.200501
http://dx.doi.org/10.1103/PhysRevA.72.022347
http://dx.doi.org/10.1103/PhysRevLett.104.073003
http://dx.doi.org/10.1103/PhysRevLett.119.173402
http://dx.doi.org/10.1038/s41567-019-0733-z
http://dx.doi.org/10.1016/j.cpc.2017.06.015


Photonics 2023, 10, 1280 22 of 22

53. Weber, S.; Tresp, C.; Menke, H.; Urvoy, A.; Firstenberg, O.; Büchler, H.P.; Hofferberth, S. Tutorial: Calculation of Rydberg
interaction potentials. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 133001. [CrossRef]

54. Le Roy, R.J. Long-Range Potential Coefficients from RKR Turning Points: C6 and C8 for B (3Π+
Ou)-State Cl2, Br2, and I2. Can. J.

Phys. 1974, 52, 246–256. [CrossRef]
55. Yu, D.; Wang, H.; Liu, J.M.; Su, S.L.; Qian, J.; Zhang, W. Multiqubit Toffoli gates and optimal geometry with Rydberg atoms. Phys.

Rev. Appl. 2022, 18, 034072. [CrossRef]
56. Nielsen, M.A.; Chuang, I.L. Quantum Computing and Cuantum Information; Cambridge University Press: Cambridge, UK, 2000.
57. Hillery, M.; Bužek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829. [CrossRef]
58. Cong, I.; Levine, H.; Keesling, A.; Bluvstein, D.; Wang, S.T.; Lukin, M.D. Hardware-efficient, fault-tolerant quantum computation

with Rydberg atoms. Phys. Rev. X 2022, 12, 021049. [CrossRef]
59. Li, R.; Qian, J.; Zhang, W. Proposal for practical Rydberg quantum gates using a native two-photon excitation. Quantum Sci.

Technol. 2023, 8, 035032. [CrossRef]
60. Farouk, A.M.; Beterov, I.; Xu, P.; Bergamini, S.; Ryabtsev, I. Data for: Parallel Implementation of CNOTN and C2NOT2 Gates via

Homonuclear and Heteronuclear Forster Interactions of Rydberg Atoms; Zenodo: Newton, NJ, USA, 2023. [CrossRef]
61. Saffman, M.; Walker, T.G.; Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 2010, 82, 2313. [CrossRef]
62. Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.;

Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J. Observation of the 5p3/2 → 6p3/2 electric-dipole-forbidden transition
in atomic rubidium using optical-optical double-resonance spectroscopy. Phys. Rev. A 2015, 92, 042511. [CrossRef]

63. Ramírez-Martínez, F.; Ponciano-Ojeda, F.S.; Hernández-Gómez, S.; Del Angel, A.; Mojica-Casique, C.; Hoyos-Campo, L.M.;
Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.I. Use of an electric-dipole forbidden transition to optically probe
the Autler Townes effect. arXiv 2019, arXiv:1909.01293. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1361-6455/aa743a
http://dx.doi.org/10.1139/p74-035
http://dx.doi.org/10.1103/PhysRevApplied.18.034072
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevX.12.021049
http://dx.doi.org/10.1088/2058-9565/ace0d5
http://dx.doi.org/10.5281/zenodo.10020506.
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/PhysRevA.92.042511
http://dx.doi.org/10.48550/arXiv.1909.01293

	Introduction
	Scheme of Rydberg EIT CNOTN Gate
	Homonuclear and Heteronuclear Interaction Energy 
	Heteronuclear Architecture
	Homonuclear Architecture

	Fidelity of Multiqubit Entangled States 
	Homonuclear Architecture
	Heteronuclear Architecture

	Scheme of Rydberg EIT C2NOT2
	Gate Errors
	Conclusions 
	Appendix A
	Appendix B
	References

