hv .
Ry Photonics

Article

Application-Aware Resource Allocation Based on Benefit—Cost
Ratio in Computing Power Network with Heterogeneous
Computing Resources

Yahui Wang, Yajie Li *, Jiaxing Guo, Yingbo Fan, Ling Chen, Boxin Zhang, Wei Wang, Yongli Zhao

check for
updates

Citation: Wang, Y,; Li, Y.; Guo, J.; Fan,
Y.; Chen, L.; Zhang, B.; Wang, W.;
Zhao, Y.; Zhang,]. Application-Aware
Resource Allocation Based on
Benefit-Cost Ratio in Computing
Power Network with Heterogeneous
Computing Resources. Photonics 2023,
10,1273. https://doi.org/10.3390/
photonics10111273

Received: 21 August 2023
Revised: 14 November 2023
Accepted: 14 November 2023
Published: 17 November 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Jie Zhang

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and
Telecommunications (BUPT), Beijing 100876, China; yahui_wang@bupt.edu.cn (Y.W.);
guojiaxing@bupt.edu.cn (J.G.); ying_bo@bupt.edu.cn (Y.E); chen_0@bupt.edu.cn (L.C.);
zbx2017@bupt.edu.cn (B.Z.)

* Correspondence: yajieli@bupt.edu.cn

Abstract: The computing power network (CPN) is expected to realize the efficient provisioning of
heterogeneous computing power through the collaboration between cloud computing and edge
computing. Heterogeneous computing resources consist of CPU, GPU, and other types of computing
power. Different types of applications may have diverse requirements for heterogeneous computing
resources, such as general applications, CPU-intensive applications, and GPU-intensive applications.
Service providers are concerned about how to dynamically provide heterogeneous computing re-
sources for different applications in a cost-effective manner, and how to deploy more applications as
much as possible with limited resources. In this paper, the concept of the benefit—cost ratio (BCR) is
proposed to quantify the usage efficiency of CPU and GPU in CPNs. An application-aware resource
allocation (AARA) algorithm is designed for processing different types of applications. With massive
simulations, we compare the performance of the AARA algorithm with a benchmark. In terms of
blocking probability, resource utilization, and BCR, AARA achieves better performance than the
benchmark. The simulation results indicate that more computing tasks can be accommodated by
reducing 3.7% blocking probability through BCR-based resource allocation.

Keywords: computing power network; application-aware; heterogeneous computing resources;

resource allocation

1. Introduction

Data processing requires powerful computing resources and extensive network con-
nections that can function collaboratively across cloud, edge, and end. The computing
power network (CPN) is a new network technology that can flexibly allocate and schedule
computing resources, storage resources, and network resources among cloud, edge, and
end [1,2]. It considers the network conditions and user requirements to provide the optimal
distribution, association, transaction, and scheduling of resources [1]. The CPN can also
publish the current computing power and network status to the network as routing infor-
mation, and then the network routes the computing task to the corresponding computing
nodes to achieve the best user experience and network efficiency [2]. Moreover, due to
the dynamic nature of computing tasks, the tasks have the feature of high burstiness and
high throughput in CPNs. Thanks to the tremendous bandwidth in fibers, optical networks
have become the key infrastructure in CPNs. Optical transport networks (OTNs) with an
agile bandwidth allocation have been developed to achieve large-capacity, low-latency,
and high-efficiency performance [3]. Therefore, OTN has become a promising transport
solution in CPNs.

CPNss offer heterogeneous computing resources to meet the requirements of various
types of computing tasks, including CPUs, GPUs, and others [4-6]. The CPU is a common

Photonics 2023, 10, 1273. https:/ /doi.org/10.3390/photonics10111273

https:/ /www.mdpi.com/journal /photonics

https://doi.org/10.3390/photonics10111273
https://doi.org/10.3390/photonics10111273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0003-3716-8248
https://doi.org/10.3390/photonics10111273
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10111273?type=check_update&version=2

Photonics 2023, 10, 1273

2 of 14

processor that can handle a variety of computing tasks that require low latency and high
reliability [7,8]. However, the GPU is a graphics processor that excels at high-speed floating-
point calculations and parallel computing. Therefore, GPUs are particularly suitable for
tasks that require high levels of parallelism [9]. To quantify the acceleration of GPU to data
parallelism, the author in [10] presented a paleo-analysis performance model that simulated
training the whole neural network through data parallelism. Typically, computing tasks can
be calculated by software specification using a CPU or GPU. According to the application
scenarios and requirements, we can divide the computing tasks into three types: (1) general
applications (i.e., both CPUs and GPUs can be used) [11]; (2) CPU-intensive applications,
which require significant CPU resources and have relatively low GPU demands, such
as text parsing and semantic analysis in natural language processing [12]; and (3) GPU-
intensive applications, which require significant GPU resources and have relatively low
CPU demands, such as game design and image processing [13,14].

As a service provider, the allocation of computing resources is influenced by multiple
factors, such as the Quality of Service (QoS) requirement and computing resource capac-
ity. We need to consider the bandwidth, latency, and prioritization of different types of
tasks simultaneously to ensure optimal user experience and satisfaction. The benefits of
completing the computing task are also taken into account, since the service provider will
be motivated by benefit goals. However, the benefits brought by fulfilling the task are
not always proportional to the costs of computing resources [15,16]. In addition, resource
utilization also needs to be considered, as service providers optimize the computing re-
source allocation to ensure the maximum efficiency of the resource usage [17]. Therefore,
service providers are concerned about how to dynamically provide computing resources
for multiple computing tasks in a cost-effective manner. The target is to minimize resource
costs while maximizing the benefits of performing computing tasks within the constraints
of the limited resources.

In order to adapt to the emerging computing requirements and different scenarios,
researchers have made several attempts at the resource allocation of CPNs. Resource
prediction can more accurately assess the execution time and resource requirements of
tasks so as to allocate resources more effectively and avoid resource waste [18,19]. The
authors in [20] proposed a dynamic idle interval prediction scheme. The scheme can forecast
the CPU’s idle interval length and choose the most cost-effective sleep state to achieve
minimal power consumption. In addition, the reduction in computing resource costs and
the enhancement of resource efficiency have progressively emerged as significant areas
of study in CPNs. The author in [21] considered the server configuration with the lowest
cost to meet time-varying resource demands in cloud centers. Resource allocation and
the cost problem are formulated in [22] as a Stackelberg game, which not only maximizes
the benefits of the provider, but also minimizes the costs of the services. Moreover, the
author in [23] proposed a price bidding mechanism for multi-attribute cloud-computing
resource provision from the perspective of a non-cooperative game. This mechanism aims
to maximize the benefit of each player. However, the researchers failed to consider the
provision of computing resources using a cost-effective method, and only focused on one
type of computing resource (i.e., the CPU). To this end, we consider both CPU and GPU
computing resources, and optimize the use of heterogeneous computing resources to reduce
costs and increase benefits.

In this paper, we propose the concept of the benefit—cost ratio (BCR) to quantify the
usage efficiency of CPUs and GPUs in CPNs. The benefits are obtained by accelerating
the computing tasks through appropriate resource allocation. In general, the earlier com-
pletion of computing tasks ahead of deadline brings more benefits for service providers.
Meanwhile, the costs are generated by occupying bandwidth and computing resources
for tasks. An application-aware resource allocation (AARA) algorithm is designed for pro-
cessing applications based on BCR in CPNs with CPUs and GPUs. The main contribution
of the AARA algorithm is to provide cost-effective computing resources for computing
tasks, while accommodating more applications by efficiently utilizing heterogeneous re-

Photonics 2023, 10, 1273

3of 14

sources. We compare our algorithm with an application-unaware resource allocation
(AURA) algorithm. Our performance metrics include CPU utilization, GPU utilization,
bandwidth utilization, blocking probability, and BCR. The results show that the proposed
AARA algorithm can significantly improve the BCR while improving the efficiency of
resource utilization.

The remainder of the paper is organized as follows. In Section 2, we describe the
problems of resource allocation in CPNs. The network model and AARA algorithm are
proposed in Section 3. Section 4 describes the performance evaluation of the proposed algo-
rithm using simulation results. In Section 5, we discuss the limitations and improvement
directions. The conclusions are described in the last section.

2. Problem Statement
2.1. Applications in CPNs with Heterogeneous Resources

The CPN integrates computing resources into the communication network, offering
users the most suitable computing resource services in a more holistic form. Figure 1 shows
the composition of the CPN, including the computing layer where CPUs and GPUs supply
computing resources, the IP layer where the Ethernet Switch (E-Switch) aggregates traffic,
and the optical layer where a ROADM provides wavelength bypass and switching [24]. The
E-Switch is a common device used to connect multiple network devices and facilitate the
forwarding and switching of data packets. Additionally, the computing node is equipped
with multiple high-performance servers, where CPUs and GPUs are integrated to provide
computing power for applications. These high-performance servers are connected to an
E-Switch to facilitate data exchange and interaction among multiple servers. Meanwhile,
the E-Switch is connected to a ROADM to convert electrical signals into optical signals for
data transmission.

Computing tasks [i ROADM gy E-Switch d CPU GPU J

CPU-intensive/GPU-

[
intensive application tc = CPU&GPU

I F1 Sl

. E-Switch =]
deploying . : tf - ROADM
_— - »%— —B
-~ A B
general application E /

1= I3
c ceN B e g
N =/ 4%

\\‘ i : F
....... 5
D E

Figure 1. Applications in CPN with heterogeneous resources.

In Figure 1, we propose a heterogeneous CPN model composed of nodes and links
with a certain capacity, where the nodes are divided into computing nodes and trans-
mission nodes. Computing nodes refer to the nodes connected to computing resources,
while transmission nodes are only for data transmission. Note that all computing nodes
have CPU resources, while only a portion of the nodes have GPU resources. In Figure 1,
node A is a computing node with CPU and GPU, node E is a computing node with CPU,
and nodes B, C, D, and F are all transmission nodes. In addition, we illustrate the three
mentioned types of applications. Specifically, general applications can be deployed on a
computing node with either CPU or GPU resources, but it is crucial to choose a node with
sufficient resources to accommodate the application, such as node E. CPU-intensive and
GPU-intensive applications require the selection of node A with CPU and GPU resources
to satisfy the QoS requirements of the application. For successfully deployed applications,
the sum of the transmission time f; and computing time ¢, must meet the QoS requirement
tgos- Meanwhile, the applications are placed in the form of containers, considering the
high efficiency of resource isolation and usage. In addition, the CPU and GPU resources re-

Photonics 2023, 10, 1273

4 of 14

quired by the application are determined by the computational workload and computation
completion time.

2.2. Resource Allocation for Applications

The service provider provides computing resources for an application and therefore
needs to consider the benefit of an application [16]. However, the benefit of an application
is influenced by various factors, such as network resources, computing resources, and
resource costs. Specifically, the relationship between benefit and cost is not always propor-
tional, and the related benefits of applications may increase non-proportionally with the
increase in the resource cost. Additionally, user experience and satisfaction should also be
considered [25]. If an application can provide a good user experience, it will result in greater
user loyalty and bring more benefits to the service provider. Thus, service providers need
to comprehensively consider these factors to measure the benefit brought by an application
and select a resource allocation scheme.

Figure 2 illustrates the problem of resource allocation for applications in CPNs.
Figure 2a shows the problem of service providers allocating resources for different ap-
plications. We use grades to describe the values of computing power parameters, where
different grades represent different levels of computing resource consumption. Therefore,
when a service provider allocates computing power grade j to application i, it incurs
corresponding costs(i, j) and generates the benefits(i,) in this computing power grade.
Figure 2b shows the trend of the benefit—cost ratio for allocating computing resources to
the application. The trend indicates that the benefits of the application and the costs of
resource investment exhibit a nonlinear relationship.

m Required _ Unavailable . Computational . . &3 Assigned wavelength
[__ » Path 5 bandwidth] bandwidth workload &3 Required CPU @B Required GPU g3 cU channel
4 (1 1]
S B — P
I .)|] B
’ enefit(i
Application (i) } Resource Grade (j Benefit(i.j) ("])
HH aEn h
B & m
application 1 Serv.hce Grade 1 Benefit(1.i
provi gr . enefit(1.j)
ENE EEE D]
NN N \ 3 J]
application 2 Grade 2 Benefit(2,j) ..
dﬁ g== =2 O Cost (i,))
EEE EEE =] v
application i Grade j Benefit(i,j)
(a) Resource allocation for applications (b) Trend of the benefit-cost ratio

]
9]
CPU-intensive/GPU-

intensive appllcanon al] i+t < Loos .
@_ (B) ? e % +
Grade 2 Grade 1 | Grade 3 Grade 1

@,

general @
general apphcanon[iH] ‘_ {E]y application

@

Option 11

PN /D

Option 11

1, +t, <o =
H s e
=&

Grade 2 Grade 1

(c) Two options of resource allocation for applications

Figure 2. Illustration of resource allocation for application.

Figure 2c demonstrates different options of resource allocation for three types of appli-
cations, where b, and c represent the bandwidth requirements and computational workload
of the applications, respectively. We assume that the CPU-intensive/ GPU-intensive applica-
tion is initiated from source node C and deployed in computing node A, while the general
application is deployed in computing node E. Meanwhile, the deployed path of both appli-
cations satisfies the bandwidth requirements. To meet the QoS requirements, we allocate
sufficient computing resources to the applications. The right side of Figure 2c presents two
different options of computing resource allocation for the mentioned applications. From the
example, it can be observed that allocating more computing resources does not necessarily

Photonics 2023, 10, 1273

5o0f 14

result in proportional increases in application benefits. For CPU-intensive/GPU-intensive
applications at node A, option II allocates more computing resources compared to option
I, but the benefit only increases slightly. However, for the general application deployed
in node E, the higher cost of resource investment in option II also brings higher benefits.
Therefore, how to allocate resources for applications using a cost-effective method is a
worthwhile problem to research.

3. Application-Aware Resource Allocation Model

In this section, we propose the network model and application-aware resource alloca-
tion (AARA) algorithm.

3.1. Network Model

In this paper, we approach the allocation of computing resources for three types of
applications, as well as taking into account the impact of latency on application QoS and
its associated benefits. The concept of the BCR is proposed to quantify the usage efficiency
of the CPU and GPU in CPNs. Figure 3 shows the network model and AARA algorithm
for different applications. The types and grades of computing resources in node A with
CPU and GPU and node E with CPU are indicated in Figure 3a. We classify the CPU and
GPU resources of computing nodes into different grades, where each grade represents a
specific size of computing resource. Meanwhile, a higher grade of computing resources
corresponds to a higher cost. The task is denoted as i{y, m,s, ¢, by, ty, te, tQos }, where p is
the application priority, m is the application type, s is the source node, and d is the data size.
The computational workload and bandwidth required for the computing task are denoted
as c and b,, respectively. Moreover, c consists of ccpyy and cgpy, tp, is the application begin
time, t, is the end time, and t@,s is the delay requirement of the QoS.

Eﬁ Assigned CPU & Assigned GPU O Computing node with CPU and GPU O Computing node with CPU Resource cost @@ BCR effect]

|
C C,._
Apphcatlon /@ | S CPUgradel 5 or _ Bis-tertrcon
', | ‘ —— - *\/@ CPU grade2 y " CCE + CE—COM

leg Ig_com

toos ~(tcattacom)

B c
C o, BCR}, =—osorecon)
@ -@ | ND=® ol U Cor G

O | general application(ty,s) tey t & GPU gradel
A-COM

Node

(b)

type

CPU GPU

BCR. = B’Qos—(’CA*'IAfCUM)
C, ..., =CPU gradel Al
- g CCA + CA com

Gradel

Grade2

=
=88

C A-CO. 5
@%%% EGPU gradel
tCA & CprU gradeZ BCR ’QoS —(teattacom) e

Li-cor
GPU gradel CCA + CA—COM

(a)

CPU / GPU -intensive(ly,s)

(c)

Figure 3. Network model (a) CPN with heterogeneous resources. (b) AARA for general application
(c) AARA for CPU/GPU-intensive application.

Figure 3b shows an example of the BCR-based resource allocation for general ap-
plications. The general applications can select nodes A and E for computing when the
bandwidth requirements are satisfied. We provide four grades of computing power avail-
able for general application in nodes A and E. Then, we determine the deployed cost and
generated benefit for each grade of computing power, as well as find the optimal BCR
of different grades in computing nodes A and E to deploy the general application. We
define cost as the consumption of computing and network resources by deploying the
application, calculated using Equation (2). The generated benefits of the application are
related to latency and calculated using Equation (3). Finally, we select the CPU grade 1 of
node A for general application. In Figure 3c, we provide an example of resource allocation

Photonics 2023, 10, 1273

6 of 14

for CPU/GPU-intensive applications. Based on the type of resource requirement for the
application, the computing node A with a CPU and GPU is chosen. The link between
nodes C and A satisfies the bandwidth requirement. Then, the required CPU and GPU
resources are allocated in proportion and two options of computing power grades can be
selected. Finally, the CPU grade 2 and GPU grade 1 are assigned for CPU/GPU-intensive
applications in comparison to BCR 41 and BCR 4.

In this paper, we define BCR, namely, the benefit—cost ratio. Our objective is Equation (1),
where R is the set of applications.

Max) BCR,r € R{1,2,3...,r} (1)
r

BCR is calculated in Equation (2), where B is benefit, Cco, is computing resource cost,
and C; is the bandwidth resource cost consumed by the computing tasks.

B
BCR = —— 2
Ccom + Ct ()

The benefit is formulated as in Equations (3)—(7).

B:]/IXTXln(l—l-(ths—tf)) 3)
tf =t + tcom, tf < thS (4)
T=t.—1, 5)
= D-v (6)

c
feom = @ (7)

In Equation (3), y is the priority of the computing tasks [26], T is the duration of the
application, and t s is the delay requirement of QoS [27]. The actual processing time ¢ is
calculated using Equation (4). In addition, the duration T follows an exponential distribu-
tion. In Equation (5), ¢, is the end time and ¢, is the begin time. Meanwhile, in Equation (6),
D is the distance from source node to computing node and v is the transmission speed.
Finally, the computing time is calculated using Equation (7), where CU is the computing
unit capacity of different grade [, [is the grade number, and 7 is the type of computing
resource, either CPU or GPU.

The cost is formulated as in Equations (8) and (9).

CUcpu CUgpu
Com=t0+———-0+p-——"F——-§ 8
com CuCPU_min CuGPl,l_min ()
Ci=b,-D-¢)

Equations (8) and (9) are used to calculate the cost, which is divided into two parts,
namely, computing resource cost and network resource cost. Equation (8) represents the
computing resource cost, where x and 8 denote the ratio of required CPU and GPU, 6 and
0 represent the unit cost consumed by each grade of resources. Equation (9) is the network
resource cost, where D is the distance from the source node to computing node, and ¢ is the
cost value per Gbps-km [26].

The average BCR of applications is defined as:

v _1BCR
BCRave = M (10)
Ns
where N is the number of applications that are successfully deployed in the computing
nodes. This paper attempts to obtain the optimal application average BCR with resource
constraint by deploying applications in a cost-effective manner.

Photonics 2023, 10, 1273

7 of 14

3.2. AARA Algorithm

As shown in the pseudocode provided in the Algorithm 1, we first determine the
type of application and subsequently select the appropriate computing node based on the
required computing resources types. Then, we search for a set of paths P from the source
node to the destination computing node, and calculate the BCR for each computing node
that meets the computing requirements. Finally, we select the deployment scheme with the
maximum BCR for application.

Some applications generate small benefits, but occupy a large amount of computing
resources, resulting in resource wastage, while certain applications generate significant
benefits, but lack sufficient computing resources. Therefore, we used a baseline algorithm
called the AURA to compare our algorithm. Additionally, the term unaware refers to the
lack of awareness regarding the application’s corresponding benefits. The main difference
between the AURA and AARA algorithms is that AURA only provides a single grade of
resources based on the requirements without considering the benefits or BCR of each appli-
cation. Specifically, AURA selects suitable computing nodes for different application types
to meet their requirements first. Then, it searches for a set of paths P using the K-Shortest
Path (KSP) algorithm. The application will be blocked when the P is empty. Meanwhile, if
there is a shortage of computing resources, the application will also be blocked.

Algorithm 1: AARA

Input: Give Gp = {Vp, Ep}, e € Ep,n; € Vp;
r={(u,m,s,by,c bty te,tQos) }, 1 € [1,4], m € {general, CPU_intensive, GPU_intensive}; grade
G = {Cuk}, 1 €1, 4], T € (CPU, GPU}

Output: CU’T, <P,n;>

Initialized system computing nodes and network parameters;
1. While there are undeployed applications do

2. for each undeployed application r do

3. if m is CPU/GPU-intensive then

4. Distribute ¢ proportionally for CPU and GPU, {ccpu, Cgpul
5. for each computing node n; do

6. Exclude node with insufficient computing resource
7. for each sufficient computing node n; do

8. Search for path set P can satisfy b, by using KSP algorithm
9. if P is the empty set then blocking

10. Search for grades set G = {C UIT}

11. forgin Gdo

12. Use Equations (1)—(8) compute BCR

13. end for

14. end if

15. end for

16. end for

17. end if

18. else if m is general then

19. Compute CPU or GPU computing resource required

20. The same as Step 5-16

21. end if

22. Find a computing node n; and grade C U’ with the max BCR;

23. Deploy application to computing node 7;

24. Update computing node n; and network parameters.
Remove tasks r from undeployed tasks set R

25. end for

26. end while

27. Use Equation (10) to compute BCRype.

Photonics 2023, 10, 1273

8 of 14

4. Simulation Setup and Results
4.1. Simulation Setup

To evaluate the effect of our work, as shown in Figure 4, we use an NSFNET topology
consisting of 14 optical nodes (of which 5 computing nodes and 9 transmission nodes)
and 22 fiber links. We consider the computing tasks as the form of data flow, and the
arrival time and duration time of the computing tasks follow Poisson distribution and
exponential distribution, respectively. For the same source node and destination node,
multiple computing tasks can be aggregated into a single wavelength channel for data
transmission to improve network resource utilization.

O Computing node Computing node with OTra nsmission node
with CPU CPU&GPU

Figure 4. NSENET topology.

The specific parameters are shown in Table 1, where V}, is the set of computing nodes
with CPU and GPU, V is the computing nodes with CPU, C¢py and Cgpyy are CPU and
GPU capacity of computing node, respectively [28], Nyy is the number of wavelength
channels [29], b is the bandwidth capacity of each wavelength [3], and v is the transmission
speed [30]. In addition, the proportion of general, CPU-intensive, and GPU-intensive
applications is r¢, ¢, and rg, respectively.

Table 1. Parameter setup in simulation.

Category Parameters Value
v [1,8,12]
Ve [5,10]
Ceru ATFLOPS
Cepu 8TFLOPS
CUbpy [50, 100, 150, 200] GFLOPS
Network parameters CulG u [100, 200, 300, 400] GFLOPS
CUcpu 50GFLOPS
CUgpu 100GFLOPS
Nw 80
b 100 Gbps
v 5 us/km
u [1,2,3,4]
c [4, 20] x108 FLOPs
b, [3, 8] Gbps
. toos [10, 30] ms
Computing task rgQ 20%
re 35%
rG 45%
a:p 1:4/4:1/1:3/3:1
0 0.2/(CUs-time unit)
Cost value 5 0.4/(CUs-time unit)
€ 0.00375/(Gbps-km-time unit)

Photonics 2023, 10, 1273 9 of 14

4.2. Results and Analysis

In this section, we analyze the performance of the proposed AARA algorithm under
a limited resource and compare it to the performance of AURA in the same number of
computing tasks. The effectiveness of the proposed algorithm is evaluated based on the
CPU utilization, GPU utilization, bandwidth utilization, blocking probability, and BCR of
the tasks. For each set of simulations, we define two cases for the workload ratio between
the CPU and GPU of CPU-intensive and GPU-intensive applications. In Case 1, the ratio of
CPU and GPU requirements for CPU-intensive and GPU-intensive applications is 1:3 and
3:1, respectively. In Case 2, these ratios are 1:4 and 4:1, respectively. The resource utilization
ratios in the simulation results are all calculated under the traffic load of 450 Erlangs.

Computing resource utilization is a key metric in evaluating system efficiency and
performance in CPNs. Figure 5 shows the results of the CPU utilization for 2000 and
3000 computing tasks. It can be observed that there are significant variations in resource
utilization as tasks arrive and depart. When the number of tasks is 2000, our proposed
AARA algorithm and the AURA algorithm achieve maximum resource utilization ratios
with task ID between 1000 and 1500. The respective maximum CPU utilization ratios for
the AARA and AURA algorithms are 66% and 62% in Case 1. In Case 2, the increased
demand for CPU resources leads to higher CPU utilization. For task ID between 1000
and 1500, the maximum CPU utilization ratios for AARA and AURA are 86% and 78%,
respectively. Due to the consideration of dynamic scenarios, resources are released when
tasks depart, resulting in some fluctuations in resource utilization ratios. When the number
of computing tasks is 3000, both AARA and AURA exhibit a peak CPU utilization ratio of
99% in Case 1 and Case 2. Furthermore, for both task numbers, AARA shows a higher peak
of CPU utilization ratio compared to AURA. This can be attributed to the lower cost of
CPU resources, which enables AARA to allocate resources with a higher benefit—cost ratio.

1.0
1.0 0.99 (b)
0.8
081 078
5 g
= 0.6+ =
8 8 06-
= 3
0.4
E E 0.4 -
QO QO
0.2 0.2
AARA(Casel) = —— AARA(Case2) AARA(Casel AARA(Case2
0.0 - AURA(Casel) —— AURA(Case2) 0.0- (Casel) (Case2)
: AURA(Casel) = —— AURA(Case2)
T T T T T T T T T T T T T T T T T T | T T 1
0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000
Task ID Task ID

Figure 5. CPU utilization in different profiles of computing tasks: (a) 2000 tasks; (b) 3000 tasks.

Figure 6 shows the result of GPU utilization, in which the process of resource occu-
pation and release coincides with the arrival and departure of tasks. Given the significant
demand for GPU resources brought by Al, the simulation sets a larger proportion of GPU-
intensive applications. Therefore, there is a higher demand for GPU resources. In Figure 6
a, when the workload ratio between the CPU and GPU is set as Case 1, for 2000 tasks, the
GPU resource utilization reaches its peak of task ID between 750 and 1500. For AARA
and AURA, the maximum GPU resource utilization ratios are 73% and 85%, respectively.
When the workload ratio between the CPU and GPU is set as Case 2, the maximum GPU
utilization ratios for AARA and AURA are 93% and 97%, respectively. When the number
of tasks is 3000, the peak of the GPU utilization ratio for the AARA and AURA algorithms

Photonics 2023, 10, 1273

10 of 14

are 99% in Case 1 and Case 2. From the CPU and GPU utilization ratios, it can be observed
that the AARA algorithm shows higher CPU utilization, whereas the AURA algorithm
shows higher GPU utilization. This is because CPUs are relatively lower in cost compared
to GPUs, leading to a preference for CPU resources in the allocation of resources for general
applications. Moreover, the AURA algorithm lacks awareness of the resource cost and
benefit, leading to the inappropriate utilization of GPU resources.

1.0 4
0.8
=
.2
§ 061
5
2 041
@)
0.2 4
00 ‘ AARA(Casel) —— AARA(Case2)
7 —— AURA(Casel) —— AURA(Case2)
T T T T T T T T T
0 500 1000 1500 2000
Task ID
1.0+
0.8
=}
2
S 0.6
5
o
% 0.4
0.2 4
AARA(Casel) —— AARA(Case2)
0.0 AURA(Casel) —— AURA(Case2)
: H

T T T T T
0 500 1000 1500 2000 2500 3000
Task ID

Figure 6. GPU utilization in different profiles of computing tasks: (a) 2000 tasks; (b) 3000 tasks.

Figure 7 shows the results of bandwidth utilization. When the task ID is between
500 and 1500, both AARA and AURA achieve peak of bandwidth utilization. The peak
bandwidth utilization of AARA reaches 80% when there are 2000 tasks, and reaches 93%
when there are 3000 tasks. Figure 7a shows that the peak bandwidth utilization of AARA
is 5% more than AURA in Case 1, and 7% more in Case 2. In Figure 7b it can be seen
that as the number of tasks increases, the bandwidth utilization increases. The maximum
bandwidth utilization of AARA reaches 93%, while AURA peaks at 91%. From the overall
trend, it can be observed that the AARA algorithm achieves a higher peak of bandwidth
utilization compared to AURA. This is because the AARA algorithm allocates computing
resources based on BCR, which may result in selecting a longer path for task deployment.

Photonics 2023, 10, 1273

11 0f 14

1.0
(a) 1.0 (b)
0.8 1
g £ 08
3 3
= 0.6 X
5 S 0.6 1
= =
2 04+ 2
_E % 0.4 1
g 3 /
A 2 ‘
0.2 1 0.2 - ///
004 AARA(Casel) —— AARA(Case2) I AARA(Casel) —— AARA(Case2)
: —— AURA(Casel) —— AURA(Case2) 00 — AURA(Casel) —— AURA(Case2)
0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000
Task ID Task ID
Figure 7. Bandwidth utilization in different profiles of computing tasks: (a) 2000 tasks; (b) 3000 tasks.
Figure 8a shows the blocking probability (BP) of two workload ratios between the
CPU and GPU in 2000 and 3000 tasks. The result shows that AARA can achieve lower
BP compared with the benchmark AURA with traffic loads from 100 to 600 Erlangs. The
p &
blocking ratio of the AARA algorithm is reduced by 3.7% compared to AURA in Case 2. If
the traffic load and number of tasks are set as 600 Erlangs and 3000 in Case 2, respectively,
nearly 8.6% of the tasks are blocked by the AURA algorithm, while for AARA, the blocking
ratio is 4.9%. The reason is that the AARA algorithm considers the BCR for each task, but
AURA only considers the resources that meet the requirement of the task. Thus, there is an
allocation of inappropriate resource types and computing power grades for tasks, resulting
in blocking of newly arrived tasks due to insufficient resources.
10 value
AARA(Case1/2000) 1.160
1 |—e— AURA(Case1/2000) 8. 6% 12 107
8 - |[—®— AARA(Case2/2000) ,f” 0.9920
—e— AURA(Case2/2000) RANES ™
2] AARA(Case1/3000) 09050
E 64 | -7 AURA(Casel/3000) Y e 4 2 0.8240
| --v-- AARA(Case2/3000) 4 r-—*4 9 2 0.7400
< 1 |--¥-- AURA(Case2/3000) Y o - ¢ 0.6560
Q v v o .-V i . 651
2 4- I o o{r/o 3 0.5720
v /,.V’ _.—V 4’ :/. 2 0.4880
g ~ T e b
m o, v v /;" ./ 0.4040
v v’ /:."’/ 0.3200
R o T3
B A —
0 - dr"z_‘sgﬁ—‘ (a)
l(I)O 2(I)0 3(I)0 4(I)0 S(I)O 6(I)0

Traffic load

Figure 8. (a) Blocking probability in different traffic load (The number of tasks is 2000 and 3000);
(b) BCR in different task numbers and traffic loads.

Figure 8b shows the average BCR of the tasks for different numbers of tasks and traffic
loads, where the BCR of the AARA algorithm is higher than that of the AURA algorithm.
In the AARA algorithm, we can see that the BCR increases with the traffic load from 100 to
450 Erlangs, but it decreases when both the number of tasks approaches 3000 and the traffic
load increases from 450 to 600 Erlangs. This is because the network has limited resource
capacity, and when accommodating a larger number of computing tasks, the available
grades for the tasks become limited, resulting in a decrease in the benefits brought by the
computing tasks. Consequently, the BCR shows a downward trend. The maximum and

Photonics 2023, 10, 1273

12 of 14

minimum BCR values for the AARA algorithm are 1.1 and 0.32, respectively. The AURA
algorithm has a lower BCR due to its single selection mechanism of computing power
grade and lack of awareness of BCR. As the traffic load and number of tasks increase,
the available computing and bandwidth resources become insufficient to accommodate
more tasks. This results in a flat trend of BCR between 400 and 550 Erlangs, followed by a
decrease of between 550 and 600 Erlangs.

The simulation results show that under the limited resource capacity, our proposed
AARA algorithm can allocate computing resources for computing tasks by selecting the
appropriate computing power grade. Meanwhile, AARA can obtain the maximum BCR
and ensure the efficient utilization of heterogeneous computing resources.

5. Discussion

In this section, we analyze the time complexity of the AARA algorithm and AURA
algorithm in Equation (11) and Equation (12), respectively. The time complexity mainly
depends on calculating the k-shortest paths, finding an available wavelength channel,
and searching for an optimal grade. The time complexity of the path calculation is
O(K x |V| x (|[E| + |V|log(|V| —1))). The available free wavelength channels on the k-
shortest path are calculated with the time complexity of O(K x Ny x log(|V| —1)). The
time complexity of the AARA algorithm to search for the optimal grade is O(K x), while
for the AURA algorithm is O(K). Thus, the time complexity of AARA is calculated using
Equation (11):

T = O(Kx|V|x(|E|+|V|log(|V]|~1)) - O(K x Ny x log(|V|~1)) - O(K x I)

11

— O(K3x |V x (|E|+|V|log(|V|=1)) x N x log(|V|~1) x I) ()
The time complexity of the AURA algorithm is calculated using Equation (12):

T = O |V|x(|E[+|Vliog(VI-1)) - O(K x Ny x log([V|-1)-O(K)

= O(K3x|V|x(|E|+|V]log(|V|-1)) x Nw x log(|V|-1)

Furthermore, the limitations of and improvements of our work mainly include the
following points. Firstly, our future research can expand to larger-scale simulations, includ-
ing a greater variety of datasets and more evaluation metrics. Moreover, due to resource
and time constraints, we may not be able to explore all possible parameter combinations
in our simulations. Therefore, we have to select values within a limited range and rely
on existing knowledge and experience. The complexity and diversity of the research field
can also present challenges in parameter selection. Each specific problem has its unique
characteristics and variables, which may require specific parameter settings. As a result,
our chosen parameters may not be applicable to all situations. Secondly, we only consider
the heterogeneous resources limited to CPUs and GPUs. However, there are also other
computing resources such as NPUs and TPUs for different computing tasks in different sce-
narios. Thirdly, this work does not consider traffic prediction, which can further optimize
resource allocation strategies. Finally, faults and attacks can also be considered in CPNs, as
well as their impact on resource allocation and application performance. Therefore, we can
further explore solutions to deal with failures and attacks in CPNs, such as establishing
redundant systems and designing recovery methods for failures and attacks.

6. Conclusions

In this paper, we studied the resource allocation problem in CPNs with heterogeneous
resources, considering three types of applications: general applications, CPU-intensive
applications, and GPU-intensive applications. To quantify the efficiency of CPU and GPU
utilization in CPNs, we proposed a new concept of BCR. Meanwhile, the AARA algorithm
was designed to process multiple applications with limited resource capacity. With massive
simulations, we analyze the different effects of AARA and AURA. In terms of blocking
probability, resource utilization, and BCR, AARA achieved better performance than AURA.

Photonics 2023, 10, 1273 13 of 14

The simulation results validate that more computing tasks can be accommodated by
reducing 3.7% blocking probability through BCR-based resource allocation.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L. and Y.W.; software, YW.,, J.G. and
Y.F; validation,].G. and Y.F; formal analysis, B.Z. and L.C.; investigation, Y.W. and B.Z.; resources,].Z.
and W.W.,; data curation, W.W. and Y.W.; writing—original draft preparation, Y.W.; writing—review
and editing, Y.L.; visualization, L.C. and Y.Z.; supervision, Y.Z. and].Z.; funding acquisition Y.L. and
J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Beijing Natural Science Foundation (4232011), the
Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communi-
cation Network, Soochow University (SDGC2117), and the Fundamental Research Funds for the
Central Universities and NSFC (61831003, 62021005, 62101063).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

Lei, B.; Zhou, G. Exploration and practice of Computing Power Network (CPN) to Realize Convergence of Computing and
Network. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6-10
March 2022.

Tang, X.; Cao, C.; Wang, Y.; Zhang, S.; Liu, Y,; Li, M.; He, T. Computing Power Network: The architecture of Convergence of
Computing and Networking towards 6G Requirement. China Commun. 2021, 18, 175-185. [CrossRef]

Ji, Y,; Zhang, J.; Xiao, Y.; Liu, Z. 5G flexible optical transport networks with large-capacity, low-latency and high-efficiency. China
Commun. 2019, 16, 19-32. [CrossRef]

Zeng, Q.; Du, Y.; Huang, K.; Leung, K. Energy-Efficient Resource Management for Federated Edge Learning With CPU-GPU
Heterogeneous Computing. IEEE Trans. Wirel. Commun. 2021, 20, 7947-7962. [CrossRef]

Goyat, S.; Kant, S.; Dhariwal, N. Dynamic Heterogeneous scheduling of GPU-CPU in Distributed Environment. In Proceedings of
the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 27-29 November 2019.
Chen, C; Li, K,; Ouyang, A.; Zeng, Z.; Li, K. GFlink: An in-memory computing architecture on heterogeneous CPU-GPU clusters
for big data. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 1275-1288. [CrossRef]

Heldens, S.; Varbanescu, A.L.; Iosup, A. Dynamic Load Balancing for High-Performance Graph Processing on Hybrid CPU-GPU
Platforms. In Proceedings of the 2016 6th Workshop on Irregular Applications: Architecture and Algorithms (IA3), Salt Lake City,
UT, USA, 13 November 2016.

Jain, R.; Cheng, S.; Kalagi, V.; Sanghavi, V.; Kaul, S.; Arunachalam, M.; Maeng, K.; Jog, A.; Sivasubramaniam, A.; Kandemir,
M.T,; et al. Optimizing CPU Performance for Recommendation Systems At-Scale. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (ISCA '23), New York, NY, USA, 17-21 June 2023.

Buber, E.; Diri, B. Performance Analysis and CPU vs GPU Comparison for Deep Learning. In Proceedings of the 2018 6th
International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25-27 October 2018.

Qi, H.; Sparks, E.R.; Talwalkar, A. Paleo: A Performance Model for Deep Neural Networks. In Proceedings of the 2017
International Conference on Learning Representations, Toulon, France, 24-26 April 2017.

Alsubaihi, S.; Gaudiot, J.-L. A Runtime Workload Distribution with Resource Allocation for CPU-GPU Heterogeneous Systems.
In Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lake Buena
Vista, FL, USA, 29 May-2 June 2017.

Peng,].; Chen, J.; Kong, S.; Liu, D.; Qiu, M. Resource Optimization Strategy for CPU Intensive Applications in Cloud Computing
Environment. In Proceedings of the 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud),
Beijing, China, 25-27 June 2016.

Melangon, G. Living Flows: Enhanced Exploration of Edge-Bundled Graphs Based on GPU-Intensive Edge Rendering. In
Proceedings of the 2010 14th International Conference Information Visualisation, London, UK, 26-29 July 2010.

Akutsu, H.; Naruko, T.; Suzuki, A. GPU-Intensive Fast Entropy Coding Framework for Neural Image Compression. In
Proceedings of the 2021 International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany,
5-8 December 2021.

Feng, G.; Garg, S.; Buyya, R.; Li, W. Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing
Environments. In Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing, Beijing, China, 20-23
September 2012.

https://doi.org/10.23919/JCC.2021.02.011
https://doi.org/10.23919/j.cc.2019.05.002
https://doi.org/10.1109/TWC.2021.3088910
https://doi.org/10.1109/TPDS.2018.2794343

Photonics 2023, 10, 1273 14 of 14

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Samanta, A.; Chang, Z. Adaptive Service Offloading for Revenue Maximization in Mobile Edge Computing with Delay-Constraint.
IEEE IoT]. 2019, 6, 3864-3872. [CrossRef]

Yadav, A.; Rathod, S.B. Priority based task scheduling by mapping conflict-free resources and optimized workload utilization in
cloud computing. In Proceedings of the 2016 International Conference on Computing Communication Control and automation
(ICCUBEA), Pune, India, 12-13 August 2016.

Yang, G.; Shin, C.; Lee, J.; Yoo, Y. Prediction of the Resource Consumption of Distributed Deep Learning Systems. Proc. ACM
Meas. Anal. Comput. Syst. 2022, 6, 1-25.

Cao, J.; Fu, J.; Li, M,; Chen, J. CPU load prediction for cloud environment based on a dynamic ensemble model. Softw. Pract.
Exper. 2014, 44, 793-804. [CrossRef]

Duan, L.; Zhan, D.; Hohnerlein,]. Optimizing Cloud Data Center Energy Efficiency via Dynamic Prediction of CPU Idle Intervals.
In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, New York, NY, USA, 27 June-2 July 2015.
Liu, C.; Li, K,; Li, K. Minimal Cost Server Configuration for Meeting Time-Varying Resource Demands in Cloud Centers. IEEE
Trans. Parallel Distrib. Syst. 2018, 29, 2503-2513. [CrossRef]

Cardellini, V.; Valerio, V.D.; Presti, F.L. Game-Theoretic Resource Pricing and Provisioning Strategies in Cloud Systems. IEEE
Trans. Serv. Comput. 2020, 13, 86-98. [CrossRef]

Hu, J.; Li, K,; Liu, C.; Li, K. A Game-Based Price Bidding Algorithm for Multi-Attribute Cloud Resource Provision. IEEE Trans.
Serv. Comput. 2021, 14, 1111-1122. [CrossRef]

Ma, H.; Zhang, J.; Gu, Z,; Yu, H,; Taleb, T.; Ji, Y. DeepDefrag: Spatio-Temporal Defragmentation of Time-Varying Virtual
Networks in Computing Power Network based on Model-Assisted Reinforcement Learning. In Proceedings of the 2022 European
Conference on Optical Communication (ECOC), Basel, Switzerland, 18-22 September 2022.

Lin, X.; Wu, W.; Zhu, Y;; Qiu, T.; Mi, Z. SARS: A novel QoE based service-aware resource scheduling scheme in wireless network.
In Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16-19
October 2016.

Santos, A.S.; de Santi, J.; Figueiredo, G.B.; Mukherjee, B. Application-Aware Service Degradation in Elastic Optical Networks.
IEEE Trans. Netw. Serv. Manag. 2022, 19, 949-961. [CrossRef]

Suarez-Varela, J.; Mestres, A.; Yu, J.; Kuang, L.; Feng, H.; Barlet-Ros, P.; Cabellos-Aparicio, A. Feature Engineering for Deep
Reinforcement Learning Based Routing. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications
(ICC), Shanghai, China, 20-24 May 2019.

Tang, X.; Fu, Z. CPU-GPU Utilization Aware Energy-Efficient Scheduling Algorithm on Heterogeneous Computing Systems.
IEEE Access 2020, 8, 58948-58958. [CrossRef]

Nag, A.; Tornatore, M.; Mukherjee, B. Optical Network Design with Mixed Line Rates and Multiple Modulation Formats. J. Light.
Technol. 2010, 28, 466-475. [CrossRef]

Lim, W.; Kourtessis, P.; Milosavljevic, M.; Senior,]. M. Dynamic Subcarrier Allocation for 100 Gbps, 40 km OFDMA-PONs with
SLA and CoS. |. Light. Technol. 2013, 31, 1055-1062. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2019.2892398
https://doi.org/10.1002/spe.2231
https://doi.org/10.1109/TPDS.2018.2836452
https://doi.org/10.1109/TSC.2016.2633266
https://doi.org/10.1109/TSC.2018.2860022
https://doi.org/10.1109/TNSM.2022.3154331
https://doi.org/10.1109/ACCESS.2020.2982956
https://doi.org/10.1109/JLT.2009.2034396
https://doi.org/10.1109/JLT.2013.2242046

	Introduction
	Problem Statement
	Applications in CPNs with Heterogeneous Resources
	Resource Allocation for Applications

	Application-Aware Resource Allocation Model
	Network Model
	AARA Algorithm

	Simulation Setup and Results
	Simulation Setup
	Results and Analysis

	Discussion
	Conclusions
	References

