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Abstract: An all-dielectric metasurface composed of orthogonal-slit silicon disks is proposed in this
study. By modifying the unit structure of the metasurface with the bound states in the continuum
(BICs), a sharp Fano resonance can be generated. The resonance properties of the metasurface
are investigated by analyzing the effects of the structural parameters on the resonance using the
eigenmode analysis method. The Q factor and the resonance wavelength can be adjusted by varying
the slit width, the disk thickness, and the disk radius. The electromagnetic characteristics and
mechanism of the toroidal dipole BICs (TD-BICs) are explored in depth through an analysis of the
multipole expansion of the scattered power, along with the electromagnetic field and the current
distribution at resonance. This research provides a novel approach for the excitation of strong TD-BIC
resonance and proposes potential applications in optical switches, high-sensitivity optical sensors,
and related areas.

Keywords: metasurface; all-dielectric metasurface; bound states in the continuum; TD-BICs; Fano
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1. Introduction

In recent years, significant research attention has been focused on metasurfaces [1-7].
These surfaces are usually composed of artificial electromagnetic materials made from
subwavelength-scale dielectric nanostructures. Metasurfaces have the ability to manipulate
light efficiently and flexibly, thus bringing new design possibilities and methods to the
optics field. All-dielectric metasurfaces in particular offer advantages that include low
losses, high efficiency, and ease of integration, making these surfaces highly promising for a
variety of applications, including optical imaging [8-11], optical information processing [12],
and optoelectronic devices [13,14]. However, the limited nonlinear optical coefficients of
traditional optical materials such as silicon have hindered the development progress of
nonlinear optics in all-dielectric metasurfaces [15]. To enhance the nonlinear effects in these
all-dielectric metasurfaces, one effective method is to use bound states in the continuum
(BICs) to achieve high-Q resonances. Unlike conventional bound states, BICs are in a
continuous spectrum, can coexist with extended waves, and remain completely bound
without any radiation [16-20]. Based on BICs, a high level of localized electromagnetic field
enhancement can be generated in all-dielectric metasurfaces, thus improving the efficiency
of nonlinear processes significantly.

In addition, these metasurfaces can support Mie resonances [21,22], including electric
dipole (ED), magnetic dipole (MD), and toroidal dipole (TD) resonances. A TD can be
regarded as a circular arrangement of MDs or EDs that are compressed into a point and then
connected head to tail, and an almost unknown third type of electromagnetic multipole,
i.e., the toroidal multipole, is required, along with familiar magnetic multipoles and electric
multipoles, to form a complete multipole representation of any radiating or nonradiating
source [23,24]. It should be noted that the TD resonance in metal metasurfaces is relatively
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weak, and it is often masked by stronger electric and magnetic multipoles [25,26]. How-
ever, the all-dielectric metasurface proposed in this paper enables the observation and
detection of the TD response. By providing a reasonable design for the super-material unit
structure, the generation of the TDs can be achieved. The TD resonance in metasurfaces
provides new opportunities for the development of optical devices such as high-sensitivity
sensors [27-29], and optical modulators and switches [30]. Furthermore, recent reports
have revealed a strong association between the TD resonance and the BICs, allowing high
Q and a strong electromagnetic field enhancement [31].

In this paper, we present the design of a novel silicon-based all-dielectric metasurface
structure that breaks the in-plane symmetry of the metasurface structure by arranging
high-resistivity silicon disks that contain a pair of orthogonal slits into clusters. Using
this structure, the prominent feature of the BIC-Fano resonance can be observed in the
transmission spectrum. Through the analysis of the multipole expansion of the microscopic
scattered power and the electromagnetic field modulus distribution, we demonstrate the
existence of a TD-BIC in this structure, and we also achieve the continuous tuning of the
Fano resonance via the adjustment of the geometric parameters. This work provides a
novel and effective scheme for designing nonlinear optics in all-dielectric metasurfaces.

2. Materials and Methods

Figure 1 shows the proposed all-dielectric metasurface, which is composed of resonant
units consisting of slit silicon disks deposited on a quartz substrate (where the refractive
index of silicon is n = 11.7). The silicon disks are distributed in a square lattice with a period
of 100 um (p). The disks have a radius of 30 um (r), a thickness of 40 um (t), and a gap width
of 10 um (d). The electromagnetic properties and the spectral response of the all-dielectric
metasurface were numerically simulated using COMSOL Multiphysics 6.0 software, where
periodic boundary conditions were applied on the four sides of the resonant unit, and
perfectly matched layers were added at the top and bottom. The excitation field is an
x-polarized plane wave propagating along the z-axis.
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Figure 1. (a) The designed metasurface unit structure; (b) top view showing adjacent slits, where

one is tilted at an angle «; (c) reflection spectra at different values of the angle x. When « = 0°, the
metasurface is in a bound state in the continuum (BIC). As « increases, the metasurface transforms
from the BIC to quasi-BIC. When & = 90°, the adjacent slits are orthogonally distributed.
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3. Results

To initiate the BIC, we rotated adjacent silicon disk slits by an angle «, thus breaking
the in-plane symmetry of the metasurface. As « changes, the metasurface transforms
from the BIC into quasi-BIC. When « = 0°, the metasurface is in a BIC that cannot be
excited by external fields and is unobservable. As « increases, a sharp asymmetric Fano
line shape then appears and is accompanied by a blueshift in the resonance center and
an increase in the modulation depth until o = 90°, when the adjacent silicon disk slits
are distributed orthogonally, and the modulation depth reaches a maximum. To ensure
maximum reflectance, we studied the case of the orthogonal slit distribution. Figure 1c
shows the reflection spectrum of the orthogonal distribution structure, as fitted using the
Fano formula [32]:

[9+2(A = A0) /TP
1+ [2(A = Ag) /T

In the equation above, g is the Fano fitting parameter that determines the asymmetry of
the curve. Tp and Ag are coupling parameters. Ag represents the resonance peak wavelength
and I” represents the resonance linewidth. Therefore, Q = )‘—19 The resonance peak wave-
length and resonance linewidth are 211.43 um and 0.44 um for this resonance, respectively,
resulting in a Q factor of 480. To enable further quantitative analysis of the microscopic
aspects of the multipole properties of the resonance, we also calculated the multipole
expansion of the scattered power of this resonance in Cartesian coordinates [33,34].

Figure 2 illustrates the scattering powers of the ED, MD, TD, electric quadrupole (Qe),
and magnetic quadrupole (Qm). From Figure 2, it is evident that the TD is dominant in
resonance, followed by the Qm. The scattering power of the Qm is less than half that
of the TD. Simultaneously, the ED, MD, and Qe are strongly suppressed. To explore the
mechanism of this TD-BIC, we analyzed it from the perspective of its electromagnetic field
and current profile. As shown in Figure 3, the displacement current forms two reversed
loops in the x-z plane and the magnetic field forms a clockwise loop in the x-y plane,
indicating that this is a TD resonance pattern along the negative z-direction. At the
resonance wavelength, due to the presence of the dielectric layer, we can see that the
electric and magnetic field enhancements can reach up to 2.74 x 10° and 3.1 x 10%, far
exceeding the case in free space.
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Figure 2. Multipole expansions of the scattered power.
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Figure 3. (a) Electric near-field enhancements in the x-y plane at the resonance wavelength, where
the black arrows represent the magnetic field and form a counterclockwise magnetic field loop;
(b) magnetic near-field enhancements and x-z plane at the resonance wavelength, where the black
arrows represent the displacement current and form two reversed loops.

4. Discussion

We investigated the reflectance spectra of asymmetric metasurface structures with
various geometric parameters. All geometric parameters were varied in steps of 1 um,
with only one parameter being varied in each figure, while the other parameters were
maintained at their corresponding values, as shown in Figure 1. The results are shown
in Figure 4. When the period, radius, and thickness of the unit structure were varied, a
redshift in the resonance was observed. The linewidth slightly increased with increasing
thickness. The redshift was more pronounced with increasing radius than it was with
changing thickness, and increasing the radius also led to a larger linewidth and a reduced
Q factor. The linewidth decreased, and the Q factor increased when the period increased.
In contrast, increasing the gap width caused a blueshift in the resonance with almost no
change observed in the linewidth. By comparing the effects of these different geometric
parameters on the reflection spectra of the asymmetric metasurface structures, we found
that the Fano resonance was more sensitive to radius than to the other parameters because
the TD mode was a complex collective response that was more dependent on the radius
than on the other geometric parameters. Based on these results, we can easily adjust the TD
resonances of the asymmetric metasurface structures by changing the different geometric
parameters. We set up a metasurface (p = 102 um, r = 28 um, t = 38 pum, and d = 12 um) and
achieved a Q factor of 1582. By further adjusting the geometric parameters, the Q factor
can be increased.

We also studied the effect of the incident light’s polarization angle on the resonance,
and the results are shown in Figure 5. The results demonstrate that the reflection spec-
trum’s modulation depth reaches a maximum when the incident light is polarized along
the x direction, but the resonance disappears when the incident light is polarized along
the y direction. This occurs because the designed metasurface structure only breaks the
symmetry along the x direction, and periodic translational symmetry is maintained along
the y direction. Optical switching may be achieved using this feature. When 0 = 0°, elec-
tromagnetic waves at the resonance peak are reflected completely, and this state can be
considered to be “off”. When 6 increases, the reflectivity then decreases, and this can be
considered to be “on”. The transmitted light intensity can then be modulated by simply
changing 0.

In summary, we designed a TD-BIC metasurface structure in which the continuous
tuning of the Fano resonance can be achieved by adjusting its geometric parameters. We
revealed the mechanism of the TD-BIC by analyzing the multipole decomposition of
the scattered power, along with the electromagnetic field and the polarization current.
Additionally, our design and fabrication methods are universal and can easily be extended
to different wavelengths. Furthermore, the designed metasurface structure can be applied
to optical devices, including optical switches and high-sensitivity refractive index sensors.
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Figure 4. Reflection spectra of asymmetric metasurface structures with various values of (a) period
(p), (b) radius (r), (c) thickness (t), and (d) slit width (d). The resonance caused a redshift with an
increase in p, 1, and t, and a blueshift with an increase in (d).
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Figure 5. Reflection spectra of asymmetric metasurface structures with various values of the incident
light polarization angle 6. The incident light is polarized along the x direction when 6 = 0° and along

the y direction when 6 = 90°.
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