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Abstract: A compact and low-power-consumption gas sensor using a quantum cascade laser (QCL)
emitting at 4.6 µm for measurement of carbon monoxide (CO) was proposed and experimentally
demonstrated. A compact sensor structure with a physical dimension of 14 × 10 × 6.5 cm3 was
designed. A new intermittent scanning technique was used to drive the QCL to reduce the power
consumption of the system. In this technique, the power consumption of the sensor is as low as
1.08 W, which is about 75% lower than the conventional direct absorption technology. The stability of
the CO sensor was demonstrated by continuously monitoring CO concentration for more than 1 h. In
the concentration range of 10 ppm to 500 ppm, the CO sensor exhibited a satisfactory linear response
(R-square = 0.9998). With an integration time of 202 s, the minimum detection limit was increased to
4.85 ppb, based on an Allan deviation analysis.

Keywords: low-power-consumption; quantum cascade laser; intermittent scanning technique;
CO sensor

1. Introduction

Carbon monoxide (CO) is a colorless, odorless, and toxic gas formed in the process of
human production and life. CO monitoring is essential for coal mine safety [1,2], environ-
mental protection [2], life science [3], and other fields. When CO enters the human body, it
combines with hemoglobin in the blood, potentially resulting in poisoning, suffocation, and
even mortality. It can also be used as a quantitative marker to assist people in comprehend-
ing different production processes. Over the last few decades, thanks to the development of
laser technology, CO has been measured by various laser spectroscopy techniques, includ-
ing tunable diode laser absorption spectroscopy (TDLAS) [4,5], photoacoustic spectroscopy
(PAS) [6–8], cavity ring-down spectroscopy (CRDS) [9,10], and cavity-enhanced absorption
spectroscopy (CEAS) [11,12].

TDLAS is a low-cost measurement method and has proven to be a practical tool for
CO detection in several fields. Vertical-cavity surface-emitting laser (VCSEL) [1,13,14], dis-
tributed feedback laser (DFB) [15–18], interband cascade laser (ICL) [19,20], and quantum
cascade laser (QCL) [21] are the better excitation laser sources in TDLAS gas detection
systems, because they have the characteristics of single frequency emission and narrow
linewidth at the CO absorption line. Previously, many CO detection systems based on
TDLAS have been reported. For example, Wang et al. [13] reported a TDLAS sensor with a
1.58 µm VCSEL for CO detection, achieving a minimum detection limit of 200 ppm. Cui
et al. [16] used a diode laser emitting at 2.33 µm and a 14.5 m multipass gas cell (MGC) for
CO detection which achieved a minimum detection limit of 6 ppb at a 48 s averaging time.
Ghorbani et al. [20] developed a compact sensor for CO monitoring in the atmosphere and
exhaled gas based on a room temperature ICL operating at 4.69 µm. Test results showed
that minimum detection limits of 2 ppb for direct absorption spectroscopy and 0.6 ppb for
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wavelength modulation spectroscopy can be achieved at 20 s and 10 s integration time,
respectively. Dang et al. [21] presented a high-precision CO sensing system, which adopts
a continuous wave (CW), high power, distributed feedback QCL with a center wavelength
of 4.76 µm together with a mini MGC with the absorption length of 1.6 m, and a minimum
detection limit of 200 ppb was achieved with an averaging time of about 114 s.

Compact and low-power-consumption gas sensors using Dy3+ sulfide fibers [22,23],
mini-multi-pass cell [24], portable low-power laser controller [25], and ICL [26,27] have
been reported previously. With the development of ICL and QCL, a wide range of mid-
infrared wavelengths can be accessed to cover absorption features of many important
molecules such as CO, CO2, NH3, H2O, H2S, and C2H2. The common problems of mid-
infrared gas detection systems are large and power intensive. Hence, we have reported
an intermittent scanning technique to reduce the size and power consumption of the
mid-infrared gas detection system. The QCL emitting at 4.6 µm with output laser power
of 9.2 mW is employed as an excitation source. Compared with the conventional direct
absorption technology, the intermittent scanning technique reduces the power consumption
of the sensor. In addition, it also effectively eliminates the wavelength drift effects in fixed
wavelength pulse mode. Experimental results showed that the R-square of linear response
was greater than 0.9998, and the minimum detection limit was about 4.85 ppb at the
integration time of 202 s.

2. Selection of CO Absorption Lines

Figure 1 depicts the CO absorption lines in the spectral range of 1.5–5 µm according
to the HITRAN database [28]. It can be seen from Figure 1 that the CO absorption lines
are mainly concentrated near the bands of 1.56, 2.3, and 4.6 µm. At the second over-
tone band near 1.56 µm, the intensity of the strongest CO absorption line is only about
2.2 × 10−23 cm−1(molecule·cm−2). Therefore, it is necessary to use an absorption cell with
a long optical path to improve the sensitivity of the CO sensor, which will increase the
size and deteriorate the stability of the CO sensor. In the first overtone band near 2.3 µm,
the absorption line of methane overlaps with that of CO, which limits the application
of the CO sensor in some fields. The mid-infrared QCL provides easy access to the CO
fundamental band near 4.6 µm, having about 104 and 102 times stronger absorption line
intensity compared to the overtone bands around 1.56 µm and 2.3 µm. Taking into account
the cost and the absorption line intensity, a stronger CO absorption line operating at 4594.99
nm (2176.28 cm−1) is selected in our sensor, and the intensity of this absorption line is
4.34 × 10−19 cm−1 (molecule·cm−2).
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Figure 1. CO absorption lines in the range of 1.5–5 μm. Figure 1. CO absorption lines in the range of 1.5–5 µm.
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3. Experimental Configuration

A schematic of the experimental setup for compact and low-power-consumption CO
sensor is shown in Figure 2. A QCL (Beijing Institute of Semiconductors, Beijing, China) is
used as the laser source, with an output wavelength of approximately 4.6 µm. The QCL is
mounted on a miniature metal box integrated with a collimating lens and a thermoelectric
cooler as shown in Figure 3d. A home-made temperature control circuit is used to tune the
temperature of the QCL. The laser driving signals are generated by the ARM (Advanced
RISC Machine) to scan the whole gas absorption line. At a temperature of 23 ◦C and a
current scan interval of 249–280 mA, an average output power of 9.2 mW is achieved. The
laser beam emitted from the QCL is incident into a home-made small gas cell. The small
gas cell contains two plane mirrors, which provides an effective optical path of 21 cm,
and has a volume of 60 mL. After exiting the gas cell, the laser beam is focused onto an
InAsSb detector. The InAsSb detector (AM03120-02-SAMPLE, VIGO System SA, Ozarow
Mazowiecki, Poland) converts optical signals into electrical signals. The data processing
circuit is used to amplify and filter the electrical signals. Then, the processed signal is
collected by ARM for further processing and displayed on the computer. Figure 3a–c shows
the photographs of the compact and low-power-consumption CO sensor, the CO sensor
has a length of 14 cm, a width of 10 cm, a height of 6.5 cm, which meets the requirements
of miniaturization in many fields.
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4. Intermittent Scanning Technique

Common modulation methods for lasers in QCL based gas sensor include fixed wave-
length pulse mode [29], conventional direct absorption technology [28], and wavelength
modulation spectroscopy [30,31]. In fixed wavelength pulse mode, the output wavelength
of the QCL needs to be stabilized at the wavelength of the gas absorption peak. A pulse
signal is used to modulate the injection current of the laser as shown in Figure 4a. However,
laser wavelength drift caused by external ambient temperature fluctuations is an important
factor affecting the accuracy of gas detection system in fixed wavelength pulse mode.
Conventional direct absorption technology (see Figure 4b) can reduce the interference of
the external ambient temperature on the laser, but the QCL needs to work continuously,
resulting in serious heating. Therefore, it is necessary to install a heat dissipation device
for the sensor, which increases the power consumption and size of the sensor. Wavelength
modulation spectroscopy usually allows better detection accuracy due to reduced 1/f
noise [32,33], but it requires higher performance of the signal processing circuit, which will
increase the power consumption and cost.

Figure 4c shows an intermittent scanning technique combining pulse mode and con-
ventional direct absorption technology. In this technique, the driving signal consists of
“working state T1” and “resting state T2”. When the driving signal is in the “working
state T1”, the soft start circuit gradually increases the current signal to make it exceed the
laser threshold, and then superimposes the sawtooth wave signal to achieve continuous
scanning of the output wavelength. The corresponding driving signal is used to drive the
QCL source as shown in Figure 4d. When the “working state T1” is completed, the soft
shutdown circuit makes the current signal gradually reduce to zero, and the QCL is in
the “resting state T2”, which greatly reduces the power consumption of QCL. The heat
generated by the QCL in the “working state T1” can be lost during the “resting state T2”.
The duty cycle of the driving signal in the “working state T1” and “resting state T2” can be
automatically adjusted and optimized by monitoring the real-time temperature of the QCL,
so that the QCL can be kept in a thermally balanced working state. Therefore, the sensor
does not need a heat dissipation device, which reduces the power consumption and size
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of the sensor. Compared with the conventional direct absorption technology, the power
consumption of the sensor in the intermittent scanning technique is reduced by 75%, about
1.08 W.
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5. Experimental Results

By controlling the flow rate of high precision gas mixing device (RCS 2000-A, Beijing
Kingsun Electronics, Beijing, China), different concentrations of the CO/N2 gas mixture
can be accurately obtained. The concentrations of the CO were successively configured to
be 10, 20, 50, 100, 200, 350, and 500 ppm. These gases were flowed into the home-made gas
cell in turn to verify the response characteristics of our CO sensor. All the measurements
were carried out at the normal pressure and room temperature. The absorption signals
were measured near the wavelength of 4594.99 nm at different concentrations of CO, as
shown in Figure 5.
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The signal amplitude as a function of CO concentration ranging from 10 ppm to 500
ppm is plotted in Figure 6. The calculated R-square value is 0.9998 in this CO sensor,
which indicates that the response signal has an excellent linear response to the CO gas
concentration.
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In order to confirm the stability of our CO sensor, a long-term detection experiment of
the sensor response to 10 ppm and 500 ppm CO concentration was carried out. Measured
signal amplitude changes of CO over 1 h are shown in Figure 7. It is observed that the
signal amplitude of CO is comparatively steady during this period. The concentration
fluctuation is only about 4 ppm. These measurements show that our sensor can detect CO
with high stability. The main reasons for the signal fluctuations include the drifts of the
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QCL wavelength and power, the noise caused by the self-made circuit, instability of the
detector in long-term operation, optical fringes, etc.

Photonics 2023, 10, x FOR PEER REVIEW 7 of 9 
 

 

which indicates that the main noise of the compact and low-power-consumption CO sen-
sor is white noise [34]. When the integration time is 202 s, a minimum detection limit of 
4.85 ppb is achieved. 

 
Figure 7. Long-term stability of the compact and low-power-consumption CO sensor (a) 10 ppm 
CO; (b) 500 ppm CO. 

 
Figure 8. Allan deviation plot for the compact and low power-consumption CO sensor. 

6. Discussion 
In this work, we developed a TDLAS gas sensor system for a CO analysis by use of a 

4.6 μm QCL and intermittent scanning technique. The above experimental results prove 
the ability of this proposed compact low-power sensor for measurement of CO concentra-
tion with high precision. In this sensor, we chose a 4.6 μm QCL as the excitation laser 
source whose output spectrum range can cover the absorption lines of several gases, such 
as CO and N2O [35,36]. Hence, this sensor can be readily employed to detect N2O by 
properly adjusting the driving current and temperature of the laser. Since the TDLAS gas 
sensor system uses an InAsSb detector with a response wavelength range of 2–5 μm to 
collect mid-infrared laser, which covers absorption transitions of many different gas spe-
cies in this wavelength range. Therefore, the TDLAS gas sensor can be easily extended to 
monitor more industrial harmful gases by replacing the laser source without reducing the 
detection accuracy of the sensor. 

7. Conclusions 

0 1000 2000 3000 4000 5000
0
2
4
6
8

10
12
14
16
18
20

C
O

 c
on

ce
nt

ra
tio

n 
(p

pm
)

Time (s)

(b)

0 1000 2000 3000 4000
492

494

496

498

500

502

504

506

508

C
O

 c
on

ce
nt

ra
tio

n 
(p

pm
)

Time (s)

(a)

1 10 100 1000
10-4

10-3

10-2

10-1

100

101

A
lla

n 
de

vi
at

io
n 

(p
pm

)

Integration time (s)

4.85 ppb @ 202 s

Figure 7. Long-term stability of the compact and low-power-consumption CO sensor (a) 10 ppm CO;
(b) 500 ppm CO.

Finally, to evaluate the performance of the compact and low-power-consumption CO
sensor, an Allan deviation analysis was computed when 99.9% N2 gas was injected into the
CO sensor. Figure 8 shows the Allan deviation analysis results of the CO sensor, where the
integration time varies from 1 s to 200 s. The Allan deviation follows a dependence, which
indicates that the main noise of the compact and low-power-consumption CO sensor is
white noise [34]. When the integration time is 202 s, a minimum detection limit of 4.85 ppb
is achieved.
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6. Discussion

In this work, we developed a TDLAS gas sensor system for a CO analysis by use of a
4.6 µm QCL and intermittent scanning technique. The above experimental results prove the
ability of this proposed compact low-power sensor for measurement of CO concentration
with high precision. In this sensor, we chose a 4.6 µm QCL as the excitation laser source
whose output spectrum range can cover the absorption lines of several gases, such as CO
and N2O [35,36]. Hence, this sensor can be readily employed to detect N2O by properly
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adjusting the driving current and temperature of the laser. Since the TDLAS gas sensor
system uses an InAsSb detector with a response wavelength range of 2–5 µm to collect
mid-infrared laser, which covers absorption transitions of many different gas species in
this wavelength range. Therefore, the TDLAS gas sensor can be easily extended to monitor
more industrial harmful gases by replacing the laser source without reducing the detection
accuracy of the sensor.

7. Conclusions

In conclusion, we developed and demonstrated a compact and low-power-consumption
CO sensor based on the intermittent scanning technique. To demonstrate reliability and
long-term stability of the CO sensor, a continuous monitoring of 10 ppm and 500 ppm CO
for a period of 1 h was performed. The results showed that the sensor has good stability.
The CO linear experimental measurements showed that this CO sensor has a better linear
response (R-square = 0.9998) in the concentration range of 10 ppm to 500 ppm. Allan
deviation analysis was performed to study the detection accuracy of the CO sensor, and
a minimum detection limit of 4.85 ppb was achieved with an integration time of about
202 s. Hence, this CO sensor is suitable for applications in coal mine safety, environmental
protection, as well as in life science.
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