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Abstract: This study proposes, designs, and simulates a unique plasmonic Y-shaped MIM waveguide
based 2 × 1 multiplexer (MUX) structure utilising opti-FDTD software. Two plasmonic Y-shaped
waveguides are positioned facing one another inside a minimum wafer size of 6 µm × 3.5 µm in
the 2 × 1 MUX configurations that is being described. The design parameters are adjusted until the
plasmonic multiplexer performs as required under optimal conditions. Extinction ratio and insertion
loss are two performance metrics that are calculated for performance analysis of the design, which
indicate the potential to be applied in plasmonic integrated circuits.

Keywords: multiplexer; MIM waveguide; Y-shaped Waveguide; finite-difference time-domain
(FDTD); plasmonic waveguide

1. Introduction

The operating speed issue with its counterpart, the electrical circuits, has been widely
addressed by all-optical systems [1,2]. As the bandwidth and bit rate of electronic-based pro-
cessing and computing systems approach their limits, future optical communications and
networks will require all-optical data processing. Researchers used a variety of techniques
to create all-optical devices, including Kerr materials, Mach-Zehnder interferometers,
the self-collimation approach, optical rings resonators, photonic crystals, and plasmonic
waveguide [3–9]. This raised the need for photonics since it severely controls light and only
requires a very minimal input power to switch on [10–16]. In addition to being faster and
compact, these optical circuits are equivalent electrical circuits in size. The diffraction limit
of photonic circuits has enabled a new field, plasmonics [17], which integrates photonics
with electronics at the nanoscale and has attracted a lot of attention due to its reduced
diffraction limit and higher frequencies, which allow for faster data transmission. The
generation, detection, and manipulation of optical signals at the material interface are
the main goals of plasmonics [18]. The primary drawbacks of plasmonic circuits include
their limited propagation length, high heat emission, and difficulty in changing a signal’s
direction within the circuit [19]. In order to reduce these losses, plasmonic waveguides
are used in these circuits to optimise both the length of surface plasmon propagation and
confinement. Additionally, the fact that they can work in the visible to far-infrared range
while using less power and a faster processing speed is drawing a lot of interest [20–22].

Numerous plasmonic waveguide types have been studied by researchers, including
Metal-Insulator-Metal (MIM) [23–25], Insulator Metal Insulator (IMI) [26–29], and

hybrid waveguides [30–32]. Plasmonic MIM waveguides, which have a dielectric core and
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two metallic cladding layers and exhibit more confinement than insulating waveguides,
are presented as a potential choice for nanoscale optical circuits since they outperformed
insulating waveguides in this regard. Multiple experiments on a variety of MIM devices,
such as logic gates, switches, couplers, splitters, and de-multiplexers, validated SPP modes’
reliable localization over a broad range of wavelengths with long propagation distance and
ease of manufacturing [33–36]. MIM waveguides are now often utilised in sensors, logic
gates, filters, lenses, and switches. Two-dimensional (2-D) MIM waveguides were chosen
for the proposed logic device due to their straightforward design, ability to confine light
at the microscopic scale, reduced crosstalk, and acceptable propagation lengths, making
them the ideal options for a range of ultra-compact devices. Later versions of the MIM
device allow for the execution of several logic operations without affecting the phase of the
input signals [37–45].

In communication systems, all-optical multiplexer (MUX) devices are often used to
transport more signals across a shared medium instead of N channels. Modeling optical
shift registers and optical arithmetic logical units (ALUs) necessitates the use of an all-
optical MUX [46]. In order to handle the fast-growing data load, many optical multiplexing
strategies have been tried during the last few decades. T- and Y-shaped photonic crystals
were used in an earlier proposal for a photonic crystal-based MUX; however, the device
lacked speed and the wafer size was huge (7.8 mm × 9 mm) [47–49]. When compared
to earlier works using different structures, such as heterostructure photonic crystals ring
resonators, plasmonic circular ring resonators, and square photonic crystals ring resonators,
the proposed model of all-optical 2 × 1 MUX is designed by the plasmonic Y-shaped MIM
waveguide based on the principle of linear interference.

The contents of this study are as follows: Section 2 examines the design and oper-
ation of an all-optical MUX; Section 3 describes the simulation results; and analyses the
performance of the recommended structure; and Section 4 provides a conclusion.

2. Design and Operating Principle of 2 × 1 Multiplexer

In fabrication of complex digital systems, a transmit line is required to transport
many digital signals; however, only one signal may be delivered at once. In this situation,
a tool is required to choose the signals that are likely to be sent on this shared line at
various times. A multiplexer is a device with the function of selecting any one of the ‘n’
inputs and producing a single output. As a consequence, they are sometimes referred to
as data selectors. It is a multi-input, single-output switch or device that boosts the data
transmission rates that are possible across a shared channel. A MUX may accommodate up
to 2N input lines, N select lines, and one output line.

A 2 × 1 MUX has two inputs (A0 and A1), one output (Y), and one control signal input
(S). The control signal line selects one of the input lines to send data to the output line.
The existence or absence of a light signal at the output (Y) while the control signal (S) is
inactive relies on the input signal (A0). The input signal A1 determines whether there is
a light signal at output (Y) while the control signal (S) is active. The truth table of 2 × 1
multiplexer is depicted in Table 1.

The schematic of the proposed 2× 1 multiplexer is depicted in Figure 1 that consists of
four linear waveguides each of 2.8 µm and four S-bend waveguides each of 3.6 µm arranged
in Y-shape, separated by a distance of 2.6 µm along XZ axis designed on a minimum wafer
size of 6 µm × 4 µm. In the structure put forward, the upper linear arm is taken as input
A0, the lower linear arm is taken as input A1 and middle linear arm is considered as control
signal, S which is sent to both the arms of the designed MUX simultaneously.

The structure is designed on a plasmonic MIM waveguide of continuous-waveform
(CW) in transverse electric (TE) mode, with wavelength (λ) of 1.55 µm provided at both
inputs. The optical intensity at input for low and high intensity are 0.7 × 109 W/m
and 3 × 109 W/m, respectively, as tabulated in Table 2 along with various simulation
parameters of the proposed 2 × 1 MUX design.
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Table 1. Truth table of 2 × 1 multiplexer.

Control Signal (S)
Inputs Output

A0 A1 Y

0

0 0 0

0 1 0

1 0 1

1 1 1

1

0 0 0

0 1 1

1 0 0

1 1 1
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Table 2. Simulation parameters of proposed 2 × 1 multiplexer.

Simulation Parameters Considered Value

Low power intensity 0.7 × 109 W/m

High power intensity 3 × 109 W/m

X mesh cells 349

Z mesh cells 603

Transverse Input field Gaussian

Simulation type 2D

Mesh size 0.0114 µm (X)/0.0114 µm (Y)

Boundary conditions Anisotropic perfectly matched layer (PML)

Time Step size 9.77 × 1017

Anisotropic PML layer number 10

Theoretical reflection coefficient 1.0 × 1012

Real Anisotropic PML tensor parameter 5

Power of grading polynomial 3.5
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By comparing the output power intensity of various refractive indices (n), 2.1 with
Boron Nitride material is chosen for the proposed design of 2 × 1 MUX, whereas air is
chosen as the dielectric material with an refractive index of 1, as tabulated below in Table 3.

Table 3. Output power analysis of 2 × 1 multiplexer with various refractive indices (n).

2 × 1 Multiplexer Conditions
Output Power

n = 2.05 n = 2.1 n = 2.15

1 0.4 0.2 0.3

2 0.58 0.3 0.4

3 0.4 0.58 0.43

4 0.9 1.22 0.8

5 0.01 0.08 0.05

6 3.12 6.22 2.3

7 0.3 0.14 0.25

8 0.7 1.48 0.83

At a given instance, the selection input is fixed as 0 or 1 and the output is verified for
all the input cases by changing the orientation of the phase between the applied inputs
and the extinction ratio (ER) and insertion loss (IL) are calculated, respectively. The ER is
estimated by comparing the peak output power in ON

(
Pout | ON

)
with peak output power

in OFF (Pout | OFF) states and is represented as

ER = 10 log10

(
Pout | ON

Pout | OFF

)
(1)

whereas the Insertion loss (IL) is defined as the ratio of total input power (Pin) to the total
output power (Pout), which is given as

IL = 10 log10(Pin|Pout) (2)

The results are utilised to calculate performance measures, such as IL and ER.

3. Simulation and Results of the Proposed 2 × 1 Multiplexer

The Opti-FDTD approach, which takes advantage of device analysis, employs a
continuous optical TE wave along the exactly matched circumstances at the input. The
simulation results are shown in Figure 2a for a variety of input condition combinations (h).
The interference effect governs the phase of light beams under the logical condition “1,”
which simplifies the design of any logic operation. Phases of the light beams at the various
input ports are chosen to enable interference to occur either way. When two optical waves
have a phase difference greater than 2n, where n = 0, 1, 2, etc., constructive interference,
according to the wave optics theory, develops. The output, which corresponds to the logic
state “1,” has a high degree of power. Destructive interference occurs when the phase
difference is (2n + 1), leading to logic 0 at the output port. In this design, logic “1” is defined
as 3 × 109 W/m and logic “0” as 0.7 × 109 W/m. All input states and the control signal
input get a change in the input phase with either 0◦ or 180◦ to fulfill the gate’s output. The
suggested 2 × 1 Multiplexer’s simulation parameters are shown in Table 2.
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Figure 2. (a–h). Propagation of light through the 2 × 1 multiplexer for various conditions of control
signal(S) and inputs A0, A1 using opti-FDTD method.

Condition 1: For control signal, S = 0, A0 = 0, A1= 0.
The existence or absence of a light signal at the output (Y) while the control signal (S)

is inactive relies on the input signal (A0). Since the light signal at the output port is similarly
zero when A0 = 0, it is noticed that the intensity of light at port Y is exactly correlated with
the signal at the input port, as shown in the previous Figure 2a.

Condition 2: For control signal, S = 0, A0 = 0, A1= 1.
When the control signal (S) is inactive, the presence or absence of the light signal at

output (Y) depends on the input signal A0. Therefore, when A0 = 0, the light signal at the
output port, Y is also 1. Thus, the intensity of light at the port Y is observed to be directly
dependent on input port signal A0, as shown in the above Figure 2b.

Condition 3: For control signal, S = 0, A0 = 1, A1= 0.
The existence or absence of a light signal at the output (Y) while the control signal (S)

is inactive relies on the input signal (A0). The intensity of light at port Y is discovered to be
directly dependent on input port signal A0, as shown in the above Figure 2c. When A0 = 1,
the light signal at the output port is likewise 1; therefore, the relationship between the two
is clear.

Condition 4: For the control signal, S = 0, A0 = 1, A1= 1.
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In the absence of the control signal (S), the input signal A0 determines whether there
will be a light signal at the output(Y). The intensity of light at port Y is observed to be
directly dependent on the input port signal A0, as illustrated in the above Figure 2d, because
when A0 = 1, the light signal at the output port is likewise 1.

Condition 5: For control signal, S = 1, A0 = 0, A1= 0
The input signal A1 determines whether or not there is a light signal at output (Y)

while the control signal (S) is active. The intensity of light at port Y is discovered to be
directly dependent on the input port signal A1, as illustrated in the above Figure 2e, because
when A1 = 0, the light signal at the output port, Y, is likewise 0.

Condition 6: For the control signal, S = 1, A0 = 0, A1= 1.
The presence or absence of a light signal at the output (Y) when the control signal (S)

is active relies on the input signal A1. The intensity of light at port Y is discovered to be
directly dependent on input port signal A1, as illustrated in the above Figure 2f, because
when A1 = 1, the light signal at port Y is also 1.

Condition 7: For control signal, S = 1, A0 = 1, A1= 0.
When the control signal (S) is active, the presence or absence of the light signal at

output (Y) depends on the input signal A1. When A1 = 1, the light signal at the output port
is Y = 1; therefore, the intensity of light at the port Y is observed to be directly dependent
on the input port signal A1, as shown in the above Figure 2g.

Condition 8: For the control signal, S = 1, A0 = 1, A1 = 1.
The input signal A1 determines whether there is a light signal at output (Y) while the

control signal (S) is active. As can be shown in Figure 2h, the intensity of light at port Y is
observed to be directly dependent on the signal from the input port when A1 = 1, and the
light signal at the output port is also 1 when A1 = 1.

To analyze the intensity of the light propagated, Figure 3 depicting the color bar,
indicating the intensity of light, is given below.
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Table 4 indicates the values of output power (PY) obtained by providing a optical
input power signal at a low intensity of 0.7 × 109 W/m and high intensity of 3 × 109 W/m
for the inputs (A0 and A1) and control signal (S). A normalized power of 0.5 is used as
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the threshold for the proposed 2 × 1 MUX, below which the output is regarded as a
low-intensity signal and beyond which it is regarded as a high-intensity signal, which are
simulated in 2D using the opti-FDTD software.

Table 4. Truth table of Multiplexer in terms of logic power output values with input power at low
intensity of 0.7 × 109 W/m and high intensity of 3 × 109 W/m.

Control Signal (S)
Inputs Output Logic Power Output

A0 A1 Y PY

0

0 0 0 0.20

0 1 0 0.40

1 0 1 0.58

1 1 1 1.22

1

0 0 0 0.08

0 1 1 6.22

1 0 0 0.14

1 1 1 1.48

4. Conclusions

In conclusion, utilising 2D FDTD approaches, a new 2 × 1 multiplexer was designed
and studied, which is built on a Y-shaped plasmonic MIM structure. Plasmonic devices,
which enable nanophotonics and nanodevices, offer a solution to the miniaturisation and
diffraction limit problems in photonics devices. The proposed device works by using
interference between input signals and selector signals, which may be both destructive
and beneficial. Performance of the proposed device is evaluated using elements such as
transmission and extension ratio.
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