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Abstract- The K, -core of a complex valued sequence has been introduced in [5]. In this
paper, we have determined a class of matrices such that K, - core (Ax) CK; - core (x)
hold for all xe l.. Also; we have defined a new type of absolute equivalence, r -
absolute equivalence, and characterized these type of matrices.
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1. INTRODUCTION

Let A be an infinite matrix of complex entries a,x (n, kK € N, the set of natural
numbers) and x = (x;) be a sequence of complex numbers. Then Ax = {(Ax),} is called

the A transform of x, if (Ax), = Z‘k a,x, converges for each n. For two sequence

spaces X and Y we say that A € (X, Y) if Ax € Y for each x € X. If X and Y are equipped
with the limits X-lim and Y-lim, respectively, and if A € (X, Y) and Y-lim, (Ax), = X-lim;
X for all x € X, then we say A regularly transforms X into ¥ and write A € (X, Y),... The
matrix A € (¢, ¢)g is said to be regular and the conditions of regularity are well-known,
[4, pp. 4], where c is the space of all convergent complex sequences.

The regular matrices A and B are said to be absolutely equivalent on /., the space
of all bounded complex sequences, [4, pp. 97] if lim (Ax - Bx) = 0, (i.e., Ax and Bx have
the same limit or neither of them goes to a limit but their difference goes to zero). It is

also well-known [4, pp. 105] that the regular matrices A and B are absolutely equivalent
on Iy if and only if

lim Y |a, —b, |=0.
L

Let us define, for any real number r, the matrix A" = (a, ) by

14"
0 JEEH

In [3], it is shown that the matrix A" is regular for 0< r <1 and it is stronger than
the Cesaro matrix defined by

k<n



410 C. Cakan and C. Aydin

The B-dual space of a sequence space X is defined by
X% = {(ai) Za x, converges forall x € X}

and by X, we mean the set of sequences such that Ax € X, i.e.,
={(x,): Axe X}.

In [2], the new sequence space a_ is defined by € and it is shown that

tar)” {(a )i Z ( <mand{ljr }e cs}

where ¢y is the space of all convergent series. Note that if a sequence x € a_, then we

J(k +1)

write a,-lim x exists. Also, the sequence space a. is introduced as (I_) o and it is

established that
1+ k
k+ 1| <ecand ECyt,
[ +rt J( ) {l+rk } u}

€ {(ak) ¥,

where ¢y is the space of all null sequences.

Let us write

r;(x)zA’(x)=l nZ(l+r Jk,
k=0

. In [5], K,-core of a
complex sequence x is defined by the intersection of all H,,. Also, it is shown that

K, —core(x) = ﬂG_t(z)

and H, be the least closed convex hull containing ;7. .1, .,,..

for any x € [, where G (z) ={we C:|w- z|< llmsupn |#;(x)—z|}and C is the set of

all complex numbers.

In the present paper, we have determined the necessary and sufficient conditions
on a matrix A for which K,-core (Ax) C K, -core (x) for all x € l,. Also, we have
introduced a new type of absolute equivalence, r-absolute equivalence, and
characterized the r-absolutely equivalent matrices.

2. THE INCLUSION THEOREM

Firstly, we shall quote some lemmas which will be useful to our proofs.

Lemma 2.1 [5, Lemma 2.1]. A € (I, a) if and only if
(21) “A”rzsupn2|aﬂﬁ |<°°
k

(2.2) lima,, =a, foreachk,
(2.3) limY'| &, —o, |=0
n r
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where

By=1— 2(1+r Ja, ,(n,keN).

Lemma 2.2. A€ (a_,c) if and only if

1+ k&

k

(2.4) lim

a, =0, foreachn,
e 14t ™

(2.5) sup 3 |1, | <o,
n Tk
(2.6) limz,, =, for cach k,

2.7 lim) |1, —a, |=0
¥ TR

a
where t, =A (k+1) = a""k— ”‘k:’] k+1).
1+ 7% I+r° 1+r"

Next lemma is a special case of the Corollary 5.5 of [2] for s = 1.

Lemma 2.3. A€ (a.,c), " if and only if the conditions (2.5) and (2.6) holds for
oy =0and

2.8) { “""k} ecs, (ne N)
5 & )

(2.9) lim ¥ 2, =1.
e g

Lemma 2.4. A€ (a_, a if and only if the condition (2.8) of Lemma 2.3 holds

reg

and

(2.10) sup Y |AG,, | <o
(2.11) li;n Ak&“nk =0 for each k,
(2.12) lim S AR, =

where k

a a a
Ad, = B _ Ver=| 2 . EEL ey
w A{Hr"} ) {Hrt 1+r*“_( )

Proof. Let x€ a. and consider the equality
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1 n ; m m 1 n .
2.13 —N1+rHYa,x, =Y — )Y Q+r))a,x
(2.13) 1+n§( )2 i émgc ) X

it
= Ednkxk , (m,n e N)
k=0
which yields for m — o that

l—l—i(l+r‘f)(A.x)j =(Dx),, (n€e N)-

+n =0

where D = (d,,) defined by

: i(l+r")aﬁ: , (0<k<n)

'!m\ =3l+n J=0
5 (k > n).

Furthermore, since the spaces a’ and c¢ are linearly isomorphic (see [2]), we deduce

from that A€ (a.,a;),, if and only if De (a.,c),, - Therefore, the necessary and

sufficient conditions are obtained from the Lemma 2.3 by replacing the entries of matrix
A by those of the matrix D.

Lemma 2.5. A€ (a.,a’) if and only if the conditions (2.4) and (2.10) hold and

(2.14) limAd,, =«, for eachk,
(2.15) lim Y| AG,, - @, |=0.
"k

Proof. For x€ a’,, by (2.13), one can easily see that A€ (a’,a]) if and only if

De (a’,c) . Hence, the proof follows from Lemma 2.2,
Following is a Steinhauss type theorem.
Lemma 2.6. The classes (a’., al)and(ay, a;),, are disjoint.

Proof. Suppose, if possible, there exists a matrix A belonging to the two classes.

Then, Lemma 2.4 and 2.5 implies that

lim Y| Az, [=0.
B "k
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But since

SZIA&;& I’

&

2.

lim, ¥ Ad, =0 which contradicts to the condition (2.12). This completes the proof.
Now, we may give our main theorem.

4 Theorem 2.7. Let A€ (al, a! )ieg - Then, K, -core (Ax) C K,-core (x) for all x € I,

if and only if

(2.16) limY'|AG, |=1.
n &

Proof (Necessity). Suppose that the condition (2. 16) does not hold. Then,

lim Y| AG,, > 1.
* Tk

The conditions (2.10)-(2.12) allow us to choose two strictly increasing sequences {n;}

and {k(n;)} (i=1, 2, ...) of positive integers such that

kin ) - 1 k(m) - 1
i IMn,x |<“" ﬁ |Aaul-.k |>1+"“
k=0 4 k=k(n,_; )+ 2
and
- 1
l Aan k R
k=k(2n,)+1 i 4

Now, let us define a sequence x = (xi) by x, =signAd, ,, k(n_)+1<k<k(n,).

Then, since A, is regular, limsup, #; (x) <1. Therefore,

K, —core(x) c{we C:|w[1}.



ST C. Cakan and C. Aydin

Also,
|1, (A0)[=| Y Ad, ,
k
kin,) k(”.‘-” il =
2 Zl Aan,.k | i El Aan‘-,k [_ 2[ Aani,k l
k=k(n;_) k=0 k=k(nm )+
>l4—— L =1
4 4

Since A€ (a,, a,),,. it follows that {#; (Ax)} is bounded and hence {z](Ax)} has a

subsequence whose a_ -limit cannot be in {we C :| w|<1}. This is a contradiction with
the fact that K, -core (Ax) € K, -core (x). Thus, (2.16) must be hold.
(Sufficiency). Let w € K, -core (Ax). Then, for any given z € C, we can write

(2.17) |w-z| < limsup | ¢/ (Ax) - z |

= limsup Zc’z‘nkaqt =
k

n

< limsup| Y @, (x, - 2)
k

n

+limsup | z|

Ea’nk —1‘
k

= limsup

z ank (xk - Z)

k

Now, let limsup |#;(x)—z |=1. Then, for any € > 0 there exists an increasing sequence
k

(k) of positive integers such that, |z ;, (x) -z |£ 1+ €& whenever k, > ko. Hence, one can

write

(2.18)

Y a, @, —2) =Y MG, (] (x)-2)

Y AG, @t (x)-2)+ ¥ AG,, ¢t (x)-2)

k<k, k2k,

< sgplz—r;(x)l ZlAEz'Hk ]+(l+s)2| A&, |.

k<ky %

Therefore, applying the operator limsup, to (2.18) and using the hypothesis with
(2.17), we have
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|w-z| < limsup <l+e.

Z a. (x; =2)
n k

This means that w € K,-core(x) and the proof is completed.

Our next theorem is an application of the Lemma 2.6 and Theorem 2.7. In this
theorem we consider the real bounded sequences. In that case, the K,-core of a sequence

x is the closed interval [liminf, #; (x), limsup, #; (x) ].
Theorem 2.8. Let B be a matrix in the class(a[, a’ ) g Satisfying the condition

(2.16). Then, there is no matrix A such that limsup, ¢/ (Ax) <liminf, ¢’ (Bx) for all x €
Lis

Proof. Suppose, if possible, there exists such a matrix A. Theorem 2.7 implies
that

limsup, ¢ (Bx) <limsup, #; (x),
and so
limsup, 7] (Ax) < limsup, #; (x),
whence A € (al, a:)mg. By the Lemma 2.6, there exists a z € L. such that
liminf, 7 (Az) < limsup, ¢/ (Az).
On the other hand, since
limsup,, 7, (Ax) <limsup, 1] (Bx) for all x € L,
we have
liminf, z; (Bz) =< liminf, ¢’ (Az).
Thus,
liminf, 7, (Bz) < limsup,, 7, (Ax) < liminf, ¢} (Bz)
contradicts to the fact B€ (a(, a;),, . This proves the theorem.

3. R - ABSOLUTE EQUIVALENCE

In this section, we introduced and characterized r-absolutely equivalence
matrices.

Definition 3.1. The matrix A, B € (al, a| )reg 18 said to be r-absolutely
equivalent on l,, if limt, (Ax— Bx) = 0 for all x € ..
Theorem 3.2. The matrices A, B€ (a], a| )wg @re r-absolutely equivalent on I,
if and only if
(3.1 lim Y| @, ~b, |=0.
k
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Proof. (Necessity). Let A and B be r-absolutely equivalent on /. Then, clearly
the matrix D = (d,) defined by dyx = (@ - buy) is in the class (le, @y ). Therefore, the

necessity of the condition (3.1) follows from a result of Lemma 2.1.
(Sufficiency). Let the condition (3.1) hold and x € L. In this case, we have

|Ax — Bx| =

Z(ank _5:-:!: )X

k

S ”x“ Z’ a‘nk '"gmt ‘=
k

which by (3.1) implies the r-absolute equivalence of A and B.
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