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Abstract-The purpose of this paper is to introduce a summary of known results and thie
definition of the time-like ruled surface with the space-like generating space in the

Minkowski space IR|', and to present some characteristic results related with
minimality and total developability of the ruled surface in the n-dimensional Minkowski
space IR[ .
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1. INTRODUCTION
We will assume throughout this paper that all manifolds, maps, vector licld. ¢t
... are differentiable of class C~.
First of all, we give some properties of a general submanifold M ol the

Minkowski n-space /R;, [1]. Let D be a Levi-Civita connection of IR and D be a
Levi-Civita connection of M . If X,Ye y(M) and V is the second fundamental
tensor of M, we have by decomposing D, Y in tangential and normal components:
D,Y=D,Y+V(X,Y). (1.1)
The equation (1.1) is called Gauss equation.
If ¢ is any normal vector field on M,we find the Weingarten equation by

decomposing D, ¢ into tangential component and normal components as
D,{=-A.(X)+Dsl . (1.2)

A, determines a self-adjoint linear map at each point and D" is a metric connection in

the normal bundle x* (M ) In this paper, we note that A, will be used for the linear

map and the corresponding matrix of the linear map.

If the metric tensor of IR{" is denoted by () from the equation (1.1) and (1.2), it

follows that

(v(x.7).)=(A(x)¥) (1.3)
If ¢,.¢,,....G, , constitute an orthonormal basis of x*(M ), then we set
v(x,¥)= (4, (x)7)¢, . (1.4)
=

The mean curvature H of M at the point P is given by
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n—m trAg
““dimM
Forevery X,€ y(M) , 1<i<4, the 4" order covariant tensor field defined by R as
i J
R(XUX?.’Xa’X-i):(X:=R(X3’X4)X2)

is called the Riemann curvature tensor field and its value at a point P€ M , is called
Riemann curvature of M at the point P.
If V is the second fundamental tensor, then we have

(Y,R(X,Y)X)=(V(X,X)V(Y.Y)-(V(X,Y)V(X,Y). (1.6)
Let J] be a tangent plane of M at P. For all X,,Y,€]l, the real function K
defined by

(1.5)

(R(X,.Y,)X .Y, )

(XP’X.")(YP?YP)“(XP*YP)z
is called the section curvature function. K( X ,,Y, ) is called the sectional curvature of
M at P.

Let R be the Riemann curvature tensor and {el,ez,...,em} be a system of

orthonormal basis of 7}, (P). The tensor field S defined in the form

S(X.Y)= isf(R(X,e,.)Y,eJ (1.8)

K(X..Y.)= (1.7)

is called the Ricci curvature tensor field and the value of S(X,Y) at Pe M is also

called the Ricci curvature, where
-1 , i e time—like,
£i=< e;"ei) y &F . .
+1 , if e space-like.

The real number r,, defined in the form
i =EK(ef,ej)=2EK(ei,ej) (1.9)
i i<j
1s called the scalar curvature tensor ficld of M .
Let V be the second fundamental tensor of M . If

V(X,X)=0 (1.10)
for X e z(M ) then X is called asymptotic vector field on M . If
Vix.Y)=0 (1.11)

forall X,Ye y(M), then M is totally geodesic.

Let M be a (k+1)-dimensional ruled surface in IR{'. Then M can be locally
represented by

k
O( s.u,uy,e.. w)=0t(s)+ Zuie‘. (s), welR, 1<isk. (1.12)
i=1
If the generating space E, (s)=sp{e, ,€5,...,¢, } of M is a space-like subspace and the

base curve o is time-like, then this surface is called the (k+1)-dimensional time-like
ruled surface in IR;",[2].
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If
rank[eo,el,...,ek,ﬁ%el,...l—)euek] =2k-m (1.13)

at each point P of M, then M is called m—developable. If m =-1, then generalized
the time-like ruled surface M is called as non-developable. If m=k—1, M is callcd as
total developable, where e, is the tangent vector of the base curve.

Suppose that  {e,,e,,...,e, } is an orthonormal base field of the tangential
bundle x(M ) and {{;,¢5,...,{,—4;} an orthonormal base field of the normal bundle
%*(M ). Then an orthonormal base field of x(IR!) is

{e('._l"el"”'lek'Cl""’gn—k—l}‘

If we write the Weingarten derivative equation for the base vectors £ ; we have

D,&;= 4,(e)1 D¢, (1.14)
or
= F k i Aa=k=t
D, =age,+ Y aje.+ Y bl 1Sj<n-k-1
r=l s=1
(1.15)

k n—k-1
D,C,=a}e,+ Y ale,+ Y bl 1<i<k.
r=1 5=l
From the above derivative equation we have

“t{(} al:‘f] at{k
gl O w= B
= (1.16)
__a-ék g o B J{+1 (k1)

The Ricmann curvature of the 2-dimensional cross section spanned by the vectors
(¢)|p.1<i<k,of M and (e,)|, can be given by

k-1

K(esveo)=<b‘efeuv5e;eo> =) (a{{f)z : (1.17)
j=1
The mean curvature of M is

1
H = —mv(eg,eo) : (1.18)

2. ON THE PROPERTIES AND SOME CHARACTERIZATION OF (k+1)-
DIMENSIONAL TIME-LIKE RULED SURFACES WITH THE SPACE-LIKE
GENERATING SPACE IN THE MINKOWSKI SPACE.

Theorem 1 Let M be (k +1)-dimensional time-like ruled surface and {e,,e,,....e, }

be an orthonormal base field of the space-like generating space E, (s). Then the lines
corresponding to e,,e,,...,e, are asymptotics and geodesics of M .
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Proof : Since the lines corresponding to the orthonormal base field vectors ¢, ,e,,...,¢,
of the space-like generating space E, (s) are geodesics of IR]', we have

Be,-ei =0 ,1Ligk.
From (1.1) we have

D,e, =-V(e,e;)

and thus
D,e =0, V( e.¢)=0.

Therefore the lines corresponding to e,,e,,...,e, are asymptotics and geodesics of M .

Theorem 2 M is total developable iff I__),l_ e, =0, 1i<k.
Proof : Let {eo,.rzl,...,ejc } be an orthonormal basis of M and M be total developable.

Since the system {e,.e,,...,e, } is linearly independent, Ee!eo has no component in the

normal bundle y*(M), thatis V(e,,¢,)=0.
We know that
D, ¢, =V(eye) (2.1)

Since V is symmetric, from (2.1) we have

D,e,=0, 1<i<k.
Conversely, assume that D, ey =0 . By (1.1) and (2.1) we have V(e;,¢,)=0. If we set
this in the Gauss equation, we find

Eeoe,. =D, e,.
and

Be,,ef € 51850 € 50enrBi
Thus we observe that

rankl ey vy D, 85D, Cyeens D] =kt 1.

Theorem 3 M is total developable and minimal iff M is totally geodesic.
Proof: We assume that M is total developable and minimal. If X,Y € (M ), we have

k k
X =2aiei+aeo, Y=2L’-jej+£')¢3'0
i=1 j=1

Therefore we find

; k k
VX,¥)=Y (ab+ba)V(ese)+abVe,.e)+ Y abVie.e,).
i=1 i,j=1
Since V(e,.,e j)= 0 and M is minimal and total developable we have
V(X,Y)=0, forall X,Ye y(M).
Conversely, let V(X,Y)=0, for all X,Ye x(M). Then we have the following

relations:
V(eo,e,.)=0.V(eg,eo)=0 and V(ej,ej)=0, 1<i,j<k
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By using these equations and (2.1), we find 58! ep =0 and so, M is total developable.
Moreover, V(e,,e,)=0 implies that H =0. Therefore M is minimal.

Let {e,.e,,....e, } an orthonormal basis of xM) and {C,,¢y0s80un) an
orthonormal basis of x* (M ) Moréover, we can give covariant derivative equations of
the orthonormal basis {e;.€,s-..,€,>&,seres s } OF x(IR;‘) as follows:

_ k n—k=1
Deoer =2Cﬁe£+ 2 Cr(l{+m) m? Oerk

=0 =]

t k i n=k-1 el
Deogj zzc(k+j)r’ef+ 2 C{h-j]{.i’-l-m)gm’ 15 jsp~k-1

i=0 m=1

If we calculate the coefficient ¢,, 0<s,#<n-1 , and write the equation (2.3) in the
matrix form we obtain:

5% ) 0 Co1 = Cok Co(k+1) t Coln-) €
D, e, Cor 0 o Cli Cik+1) S ) €
Ecu ¢ |=| Cu =Ly 0 Chlr+1) v Cplpn) g, |[-1@23)
Deogl Cos1) ~Ciks1) 7 T Cklks1) 0  Clrat)(n-1) £
_Eeu Gty 1 L) ~CG-) 7T Cr(n-1)  ~ Clest)m-1) 7 0 Il _gn—-k—l L

By using the equation (2.3) we can give the following theorem.

Theorem 4 Let M be a (k+1)-dimensional time-like ruled surface in IR},
{81,€2=---=€k} be an orthonormal base field of the space-like generating space E, (s)
and let the base curve cs) be an orthogonal trajectory of E, (s). Then the following

propositions are equivalent:
(i) M is total developable,
(ii) The Riemanian curvature K(e;,e,) of M iszero, 1<i<k,

(iii) In the equation (2.3) ¢, =0, 1<i<k, k+1<s<n-l,
iv) A (¢)=0, 1<isk, 1<jsn-k-1,
(v) D, e € x(M).
Proof:
(i=>ii): We assume that M is total developable. Then by the Theorem 2 and
 the equation (1.17) we find
! K( e.¢)=0.
(ii = iii): Let K( ¢;,¢,)=0.
From (1.15) and (1.16) we find
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< 5g0§;,3;> =0,

This equation shows that 5205 ; has no component in the directions of e,,e,,

Hence we have
¢ =0
in the equation (2.3).
(iii =5 iv): Let’s assume that ¢, =0. By (2.3) we obtain
< ﬁ%gj,ef):—sicu:o, 1<j<n—k-1.
Thus, from (1.17), it is seen that
< Eengj’ei> = ¢,a3;
and
al; =0,
By (1.17) we know that
(Ii,igj,er) ={),
Then from last two equations, we obtain
A, (¢)=0.
(iv=>v): Let A (¢)=0.
By (1.17) we have

a(}'} =0.

and D, {; has no component in the directions of ¢,e,,::*,¢,, 1.e.
¢, =0.

Then from (2.3) we have
<D_ean’ef> =)

Since

<5fo¢f"?f>:—( Deoef.é‘j>=0
we may write
Efaei' € Z(M)

(v=>1i): Let I_);oe,. € x(M ). Thus we have
5%{3,. e sple,.e,....e. }
or rank[eo,el,...,ek,Benel,...ﬁeoek]=k+l.
This means that M is total developable.
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