ON THE PROPERTIES OF (k+1)-DIMENSIONAL TIME-LIKE RULED SURFACES WITH THE SPACE-LIKE GENERATING SPACE IN THE MINKOWSKI SPACE IR_1^n

S.Can, B.Uyar and İ.Aydemir

Ondokuz Mayıs University, Science and Arts Faculty, Department of Mathematics. Kurupelit 55139, Samsun, Turkey. iaydemir@omu.edu.tr

Abstract-The purpose of this paper is to introduce a summary of known results and the definition of the time-like ruled surface with the space-like generating space in the Minkowski space IR_1^n , and to present some characteristic results related with minimality and total developability of the ruled surface in the n-dimensional Minkowski space IR_1^n .

Keywords-Time-Like Surface, Minkowski Space

1. INTRODUCTION

We will assume throughout this paper that all manifolds, maps, vector field, etc. ... are differentiable of class C^{∞} .

First of all, we give some properties of a general submanifold M of the Minkowski n-space IR_1^n , [1]. Let \overline{D} be a Levi-Civita connection of IR_1^n and D be a Levi-Civita connection of M. If $X,Y \in \chi(M)$ and V is the second fundamental tensor of M, we have by decomposing D_XY in tangential and normal components:

$$\overline{D}_X Y = D_X Y + V(X, Y). \tag{1.1}$$

The equation (1.1) is called Gauss equation.

If ζ is any normal vector field on M, we find the Weingarten equation by decomposing $\overline{D}_X \zeta$ into tangential component and normal components as

$$\overline{D}_{X}\zeta = -A_{\zeta}(X) + D_{X}^{\perp}\zeta. \tag{1.2}$$

 A_{ζ} determines a self-adjoint linear map at each point and D^{\perp} is a metric connection in the normal bundle $\chi^{\perp}(M)$. In this paper, we note that A_{ζ} will be used for the linear map and the corresponding matrix of the linear map.

If the metric tensor of IR_1^n is denoted by \langle , \rangle , from the equation (1.1) and (1.2), it follows that

$$\langle V(X,Y),\zeta\rangle = \langle A_{\zeta}(X),Y\rangle$$
 (1.3)

If $\zeta_1, \zeta_2, ..., \zeta_{n-m}$ constitute an orthonormal basis of $\chi^{\perp}(M)$, then we set

$$V(X,Y) = \sum_{j=1}^{n-m} \langle A_{\zeta}(X), Y \rangle \zeta_{j}.$$
 (1.4)

The mean curvature H of M at the point P is given by

S.Can, B.Uyar and I.Aydemir

$$H = \sum_{j=1}^{n-m} \frac{tr A_{\zeta_j}}{\dim M} \zeta_j. \tag{1.5}$$

For every $X_i \in \chi(M)$, $1 \le i \le 4$, the 4th order covariant tensor field defined by R as

$$R(X_1, X_2, X_3, X_4) = \langle X_1, R(X_3, X_4) X_2 \rangle$$

is called the Riemann curvature tensor field and its value at a point $P \in M$, is called Riemann curvature of M at the point P.

If V is the second fundamental tensor, then we have

$$\langle Y, R(X,Y)X \rangle = \langle V(X,X), V(Y,Y) \rangle - \langle V(X,Y), V(X,Y) \rangle. \tag{1.6}$$

Let \prod be a tangent plane of M at P. For all $X_P,Y_P \in \prod$, the real function K defined by

$$K(X_{P}, Y_{P}) = \frac{\langle R(X_{P}, Y_{P}) X_{P}, Y_{P} \rangle}{\langle X_{P}, X_{P} \rangle \langle Y_{P}, Y_{P} \rangle - \langle X_{P}, Y_{P} \rangle^{2}}$$
(1.7)

is called the section curvature function. $K(X_P, Y_P)$ is called the sectional curvature of M at P.

Let R be the Riemann curvature tensor and $\{e_1, e_2, ..., e_m\}$ be a system of orthonormal basis of $T_M(P)$. The tensor field S defined in the form

$$S(X,Y) = \sum_{i=1}^{m} \varepsilon_i \langle R(X,e_i)Y,e_i \rangle$$
 (1.8)

is called the Ricci curvature tensor field and the value of S(X,Y) at $P \in M$ is also called the Ricci curvature, where

$$\varepsilon_i = \left\langle \begin{array}{ccc} e_i, e_i \right\rangle \ , \quad \varepsilon_i = \begin{cases} -1 & , & if & e_i & time-like, \\ +1 & , & if & e_i & space-like. \end{cases}$$

The real number r_{sk} defined in the form

$$r_{sk} = \sum_{i \neq j} K(e_i, e_j) = 2\sum_{i \leq j} K(e_i, e_j)$$
 (1.9)

is called the scalar curvature tensor field of M.

Let V be the second fundamental tensor of M. If

$$V(X,X) = 0 \tag{1.10}$$

for $X \in \chi(M)$, then X is called asymptotic vector field on M. If

$$V(X,Y) = 0 \tag{1.11}$$

for all $X, Y \in \chi(M)$, then M is totally geodesic.

Let M be a (k+1)-dimensional ruled surface in IR_1^n . Then M can be locally represented by

$$\phi(s, u_1, u_2, \dots u_k) = \alpha(s) + \sum_{i=1}^k u_i e_i(s), \quad u_i \in IR, \quad 1 \le i \le k.$$
 (1.12)

If the generating space $E_k(s) = sp\{e_1, e_2, ..., e_k\}$ of M is a space-like subspace and the base curve α is time-like, then this surface is called the (k+1)-dimensional time-like ruled surface in IR_1^n ,[2].

334

If

$$rank[e_0, e_1, ..., e_k, \overline{D}_{e_0}e_1, ... \overline{D}_{e_0}e_k] = 2k - m$$
 (1.13)

at each point P of M, then M is called m-developable. If m=-1, then generalized the time-like ruled surface M is called as non-developable. If m=k-1, M is called as total developable, where e_0 is the tangent vector of the base curve.

Suppose that $\{e_0, e_1, ..., e_k\}$ is an orthonormal base field of the tangential bundle $\chi(M)$ and $\{\zeta_1, \zeta_2, ..., \zeta_{n-k-1}\}$ an orthonormal base field of the normal bundle $\chi^{\perp}(M)$. Then an orthonormal base field of $\chi(IR_1^n)$ is

$$\{e_0, e_1, \dots, e_k, \zeta_1, \dots, \zeta_{n-k-1}\}.$$

If we write the Weingarten derivative equation for the base vectors ζ_j we have

$$\overline{D}_{e_i}\zeta_j = A_{\zeta_j}(e_i) + D_{e_i}^{\perp}\zeta_j \tag{1.14}$$

or

$$\begin{split} \overline{D}_{e_0}\zeta_j &= a_{00}^j e_0 + \sum_{r=1}^k a_{0r}^j e_r + \sum_{s=1}^{n-k-1} b_{0s}^j \zeta_s, \quad 1 \leq j \leq n-k-1 \\ \overline{D}_{e_i}\zeta_j &= a_{i0}^j e_0 + \sum_{r=1}^k a_{ir}^j e_r + \sum_{s=1}^{n-k-1} b_{is}^j \zeta_s, \quad 1 \leq i \leq k \end{split} \tag{1.15}$$

From the above derivative equation we have

$$A_{\zeta_{j}} = -\begin{bmatrix} a_{00}^{j} & a_{01}^{j} & \cdots & a_{0k}^{j} \\ -a_{01}^{j} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -a_{0k}^{j} & 0 & \cdots & 0 \end{bmatrix}_{(k+1) \times (k+1)}$$

$$(1.16)$$

The Riemann curvature of the 2-dimensional cross section spanned by the vectors $(e_i)|_P$, $1 \le i \le k$, of M and $(e_0)|_P$ can be given by

$$K(e_i, e_0) = \langle \overline{D}_{e_i} e_0, \overline{D}_{e_i} e_0 \rangle = \sum_{i=1}^{n-k-1} (a_{0i}^j)^2$$
 (1.17)

The mean curvature of M is

$$H = -\frac{1}{k+1}V(e_0, e_0) . {(1.18)}$$

2. ON THE PROPERTIES AND SOME CHARACTERIZATION OF (k+1)-DIMENSIONAL TIME-LIKE RULED SURFACES WITH THE SPACE-LIKE GENERATING SPACE IN THE MINKOWSKI SPACE.

Theorem 1 Let M be (k+1)-dimensional time-like ruled surface and $\{e_1, e_2, ..., e_k\}$ be an orthonormal base field of the space-like generating space $E_k(s)$. Then the lines corresponding to $e_1, e_2, ..., e_k$ are asymptotics and geodesics of M.

Proof: Since the lines corresponding to the orthonormal base field vectors $e_1, e_2, ..., e_k$ of the space-like generating space $E_k(s)$ are geodesics of IR_1^n , we have

$$\overline{D}_{e_i}e_i=0 \ , 1\leq i\leq k \; .$$

From (1.1) we have

$$D_{e_i}e_i = -V(e_i, e_i)$$

and thus

$$D_{e_i}e_i=0,$$
 $V(e_i,e_i)=0.$

Therefore the lines corresponding to $e_1, e_2, ..., e_k$ are asymptotics and geodesics of M.

Theorem 2 M is total developable iff $\overline{D}_{e_i}e_0 = 0$, $1 \le i \le k$.

Proof: Let $\{e_0, e_1, ..., e_k\}$ be an orthonormal basis of M and M be total developable. Since the system $\{e_0, e_1, ..., e_k\}$ is linearly independent, $\overline{D}_{e_i}e_0$ has no component in the normal bundle $\chi^{\perp}(M)$, that is $V(e_i, e_0) = 0$.

We know that

$$\overline{D}_{e_0} e_i = V(e_0, e_i). \tag{2.1}$$

Since V is symmetric, from (2.1) we have

$$\overline{D}_{e_i}e_0=0,\quad 1\leq i\leq k\;.$$

Conversely, assume that $\overline{D}_{e_i}e_0=0$. By (1.1) and (2.1) we have $V(e_i,e_0)=0$. If we set this in the Gauss equation, we find

$$\overline{D}_{\boldsymbol{e}_{\boldsymbol{0}}}\boldsymbol{e}_{\boldsymbol{i}}=D_{\boldsymbol{e}_{\boldsymbol{0}}}\boldsymbol{e}_{\boldsymbol{i}}\,.$$

and

$$\overline{D}_{e_0}e_i\in sp\big\{e_0,e_1,\ldots,e_k\big\}$$

Thus we observe that

$$rank[e_0,e_1,\ldots,e_k,\overline{D}_{e_0}e_1,\overline{D}_{e_0}e_2,\ldots,\overline{D}_{e_0}e_k]=k+1.$$

Theorem 3 M is total developable and minimal iff M is totally geodesic. **Proof:** We assume that M is total developable and minimal. If $X, Y \in \chi(M)$, we have

$$X = \sum_{i=1}^{k} a_i e_i + a e_0, \qquad Y = \sum_{i=1}^{k} b_i e_i + b e_0$$

Therefore we find

$$V(X,Y) = \sum_{i=1}^{k} (a_i b + b_i a) V(e_0, e_i) + ab V(e_0, e_0) + \sum_{i,j=1}^{k} a_i b_j V(e_i, e_j).$$

Since $V(e_i, e_j) = 0$ and M is minimal and total developable we have

$$V(X,Y)=0$$
, for all $X,Y \in \chi(M)$.

Conversely, let V(X,Y)=0, for all $X,Y\in\chi(M)$. Then we have the following relations:

$$V(e_0, e_i) = 0$$
, $V(e_0, e_0) = 0$ and $V(e_i, e_j) = 0$, $1 \le i, j \le k$

By using these equations and (2.1), we find $\overline{D}_{e_i}e_0 = 0$ and so, M is total developable. Moreover, $V(e_0, e_0) = 0$ implies that H = 0. Therefore M is minimal.

Let $\{e_0, e_1, ..., e_k\}$ an orthonormal basis of $\chi(M)$ and $\{\zeta_1, \zeta_2, ..., \zeta_{n-k-1}\}$ an orthonormal basis of $\chi^{\perp}(M)$. Moreover, we can give covariant derivative equations of the orthonormal basis $\{e_0, e_1, ..., e_k, \zeta_1, ..., \zeta_{n-k-1}\}$ of $\chi(IR_1^n)$ as follows:

$$\begin{split} \overline{D}_{e_0} e_r &= \sum_{i=0}^k c_{ri} e_i + \sum_{m=1}^{n-k-1} c_{r(k+m)} \zeta_m, & 0 \le r \le k \\ \overline{D}_{e_0} \zeta_j &= \sum_{i=0}^k c_{(k+j)i} e_i + \sum_{m=1}^{n-k-1} c_{(k+j)(k+m)} \zeta_m, & 1 \le j \le n-k-1. \end{split} \tag{2.2}$$

If we calculate the coefficient c_{st} , $0 \le s, t \le n-1$, and write the equation (2.3) in the matrix form we obtain:

$$\begin{bmatrix}
\overline{D}_{e_0} e_0 \\
\overline{D}_{e_0} e_1 \\
\vdots \\
\overline{D}_{e_0} e_k \\
\overline{D}_{e_0} \zeta_1 \\
\vdots \\
\overline{D}_{e_0} \zeta_{n-k-1}
\end{bmatrix} = \begin{bmatrix}
0 & c_{01} & \cdots & c_{0k} & c_{0(k+1)} & \cdots & c_{0(n-1)} \\
c_{01} & 0 & \cdots & c_{1k} & c_{1(k+1)} & \cdots & c_{1(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c_{0k} & -c_{1k} & \cdots & 0 & c_{k(k+1)} & \cdots & c_{k(n-1)} \\
c_{0(k+1)} & -c_{1(k+1)} & \cdots & -c_{k(k+1)} & 0 & \cdots & c_{(k+1)(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c_{0(n-1)} & -c_{1(n-1)} & \cdots & -c_{k(n-1)} & -c_{(k+1)(n-1)} & \cdots & 0
\end{bmatrix} \begin{bmatrix} e_0 \\ e_1 \\ \vdots \\ e_k \\ \zeta_1 \\ \vdots \\ \zeta_{n-k-1} \end{bmatrix}. (2.3)$$

By using the equation (2.3) we can give the following theorem.

Theorem 4 Let M be a (k+1)-dimensional time-like ruled surface in IR_1^n , $\{e_1, e_2, ..., e_k\}$ be an orthonormal base field of the space-like generating space $E_k(s)$ and let the base curve $\alpha(s)$ be an orthogonal trajectory of $E_k(s)$. Then the following propositions are equivalent:

(i) M is total developable,

(ii) The Riemanian curvature $K(e_i, e_0)$ of M is zero, $1 \le i \le k$,

(iii) In the equation (2.3) $c_{rs} = 0$, $1 \le i \le k$, $k+1 \le s \le n-1$,

(iv) $A_{\zeta_j}(e_i) = 0$, $1 \le i \le k$, $1 \le j \le n - k - 1$,

(v) $\overline{D}_{e_0}e_i \in \chi(M)$.

Proof:

 $(i \Rightarrow ii)$: We assume that M is total developable. Then by the Theorem 2 and the equation (1.17) we find

$$K(e_i,e_0)=0.$$

$$(ii \Rightarrow iii)$$
: Let $K(e_i, e_0) = 0$.

From (1.15) and (1.16) we find

or curry brog an arma rarry around

$$\langle \overline{D}_{e_0}\zeta_j, e_i \rangle = 0.$$

This equation shows that $\overline{D}_{e_0}\zeta_j$ has no component in the directions of e_1,e_2,\cdots,e_k . Hence we have

$$c_{rs} = 0$$

in the equation (2.3).

(iii \Rightarrow iv): Let's assume that $c_{rs} = 0$. By (2.3) we obtain

$$\langle \overline{D}_{e_0}\zeta_j, e_i \rangle = -\varepsilon_i c_{is} = 0, \quad 1 \le j \le n-k-1.$$

Thus, from (1.17), it is seen that

$$\left\langle \overline{D}_{e_0} \zeta_j, e_i \right\rangle = \varepsilon_i a_{0i}^j$$

and

$$a_{0i}^{j} = 0.$$

By (1.17) we know that

$$\langle \overline{D}_{e_i} \zeta_j, e_r \rangle = 0.$$

Then from last two equations, we obtain

$$A_{\zeta_i}(e_i) = 0.$$

$$(iv \Rightarrow v)$$
: Let $A_{\zeta_i}(e_i) = 0$.

By (1.17) we have

$$a_{0i}^j = 0.$$

and $\overline{D}_{e_0}\zeta_j$ has no component in the directions of e_1, e_2, \dots, e_k , i.e.

$$c_{rs} = 0.$$

Then from (2.3) we have

$$\langle \overline{D}_{e_0} \zeta_j, e_i \rangle = 0$$

Since

$$\langle \overline{D}_{e_0} \zeta_j, e_i \rangle = -\langle \overline{D}_{e_0} e_i, \zeta_j \rangle = 0$$

we may write

$$\overline{D}_{e_0}e_i \in \chi(M)$$
.

 $(v \Rightarrow i)$: Let $\overline{D}_{e_0} e_i \in \chi(M)$. Thus we have

$$\overline{D}_{e_0}e_i \in sp\{e_0, e_1, \dots, e_k\}$$

or

$$rank[e_0, e_1, ..., e_k, \overline{D}_{e_0}e_1, ..., \overline{D}_{e_0}e_k] = k+1.$$

This means that M is total developable.

REFERENCES

1.B.O'Neill, Semi Riemannian Geometry, Academic Press, New York, London, 1983. 2. M. Tosun, N. Kuruoğlu, On (k+1)-Dimensional Time-Like Ruled Surface In The Minkowski Space IR_1^n , Journal of Inst. of Math. & Comp. Sci. (Math. Ser.) 11, 1-9, 1998.