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Abstract- The forced, in-plane and out-of-plane vibrations of frames comprised of
straight and curved members are investigated using Finite Element Methods. The
straight and curved beams are assumed as Euler-Bernoulli type and they have circular
cross-sections. The frame lies in a single plane. In the analysis, elongation, bending and
rotary inertia effects are included. Four degrees of freedom for in-plane vibrations and
i three degrees of freedom for out-of-plane vibrations are assumed. The in-plane and out-
of-plane point and transfer receptances are obtained in order to determine the sensitive
and non-sensitive frequency interval of the frame system.
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1. INTRODUCTION

The vibrations of straight and curved beams have been studied by many
scientists. They can be used in structures such as gears, electrical machines, pumps and
turbines, ships, to model the behaviour of horizontally curved multispan continuous
bridges or in the design of ribs, edge stiffeners in bridge deck slabs and stiffened shell
characteristics of turbomachines and rockets, etc. In addition to them, there are many
general and special areas. The governing equations for these problems were presented
together with their solutions in the book by Love [1]. The dynamic responses of curved
beams were investigated widely. Ojalvo et al. [2] studicd the clastic stability of ring
segments with a thrust or a pull directed along the chord neglecting warping effect. Irie
et al. [3] analyzed the steady state response of a Timoshenko curved beam with internal
damping. Silva and Urgueira [4] used an analytical model for out-of-plane vibrations.
Ibrahimbegovi¢ [5] discussed the beam elements whose reference axes were arbitrary
space-curved lines including forcing effect. Khdeir and Reddy [6] presented a
generalized modal approach to solve the dynamic response of cross-ply laminated
arches with arbitrary boundary conditions and for arbitrary loadings. Khan and Pise [7]
presented an analytical model and associated computer program which was developed
to investigate the dynamic behavior of curved piles embedded in a homogeneous elastic
half-space and subjected to forced harmonic vertical vibrations, wherein the movement
of piles in the axial and lateral directions were considered. Kang and Bert [8] applied
DQM for computation of the eigenvalues of flexural-torsional buckling of arches
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including a warping contribution and bending moments and radial loads. Bozhevolnaya
and Kildegaard [9] investigated a sandwich curved beam subjected to a uniform loading
experimentally. Load-deflection and thrust-deflection dependencies are shown to be
nonlinear, while load-deformation dependencies for sandwich faces are found to be
linear.

Dynamic stiffness method was used to analyze the transient response of the
curved beams [10]. Walsh and White [11] investigated coupled extensional-flexural
wave propagation by considering the mobility of a semi-infinite beam with a constant
radius of curvature. Both theoretical and experimental results were discussed and
formulae for the point and cross mobilities of the structure were presented. Huang [12]
presented a systematic method for analyzing the out-of-plane dynamic behaviours of
non-circular curved beams by taking into account the effects of shear deformation,
rotary inertia, and viscous damping.

The studies about vibrations of frames having both curved and straight members
are as follows. Cortinez et al. [13] calculated the inextensional natural frequencies of a
fixed-free straight-curved beam system having a concentrated mass at the end of curved
member for in-plane vibrations by excluding rotary inertia. The authors used Rayleigh-
Schmidt technique, and compared the results with the results of Dunkerley’s approach
and FEM. Wang et al. [14] presented theoretical and numerical analyses for the
combined system of a spatial curved rod and straight rods (spiral rods) in free vibration
using transfer matrix method. Kashimoto et al. [15] presented the dynamic stress
concentration problem of an inhomogeneous rod of infinite length, consisting of two
infinite straight portions and one finite portion of arbitrary curvature by using transfer
matrix method. The authors gave natural frequency values for only curved part. Wang
[16,17] set up the displacements, which are three displacement components; two
bending slopes and one twist angle, for a curved frame to derive the governing
equations of a T-type curved frame via the same beam theory. An analytical method for
both the in-plane motion and out-of-plane motion of a curved hollow shaft was
presented for two types of shaft structures, which were a curved hollow shaft and a
fixed-fixed straight-curved-straight-hollow shaft by considering torsion and bending.
The author found that the first in-plane modal frequency of a structure was greater than
the first out-of-plane modal frequency of the same structure using transfer matrix
method. Petrolito and Legge [18] developed a general nonlinear analysis method for
structural frames with curved members to calculate the complete load-deflection
response.

In this study, the linear, forced in-plane and out-of-plane vibrations of the frames
comprised of a straight and a curved member are investigated by using Finite Elements
Method, FEM. The curvature of the curved member is on a single plane. The bending,
torsion effects for the straight part and bending, torsion and rotatory inertia effects for
the curved part are included. The system is modelled using energy equations and
analysis is made for different cases. The energy equations of the straight beam are
written in cartesian coordinates and those of the curved beam are written in radial-
tangential coordinates. The in-plane and out-of-plane point and transfer receptances are
plotted and the effect of loss factor is studied.
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2. FINITE ELEMENT FORMULATION

The finite element method [19] will be used to obtain the response of vibrating
frame. The frame is comprised of one straight and one curved beam as shown in Figure
1. The beams have rigid connection to each other, and Ly, S are the lengths of straight
and curved members respectively. R is the radius of curvature, and ¥ is arch angle of the

curved beam. E is modulus of elasticity, / is mass moment of inertia, J is polar moment
of inertia, A is cross-sectional area.
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Figure 1. The Frame System
Sub-indices s and ¢ denote straight and curved members respectively. The cubic
interpolation functions for tangential, radial displacements in in-plane vibrations and
linear torsional and cubic transverse displacements in out-of-plane vibrations are
assumed.

The elastic and kinetic energies of the frame can be expressed as follows

Sin

U, :%EI[Aejm+hc3m]ds+%}~:£[;a g2 +1Ix2 Jix (1)

T, =5 pflaciz, +2,)+ 182, s+ pflate, +2,)+ 162} @



e et e e L Y LR RGO 21T

U —151jxjwdx+iojj(o2 dx+iE1jfods+iGJj<o2 ds 3)
L 2 L 2 § 2 §

our 5 s out ¢ out
-I . 2 I g 2 } v 2 ] o] } 5]
Tou =5 PA[V2,,, de+—pu [#2,. e+ pA [#2,, ds+= B, dstpil[02,, ds  (4)
E L h S §

In these equations (')denotes differentiation with respect to time 7. In-plane strain, net
cross-sectional rotation and curvature change of the curved and straight member in
equations (1) and (2), and out-of-plane curvature change and torsion in equations (3)
and (4) are as follows
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3. FORCED VIBRATIONS

The characteristics of forced vibrations have importance due to the need of
controlling of vibration amplitudes. That's why, the point and transfer receptances of
the frame by forcing at the free end are calculated by including the structural damping.
The general equation of motion for a harmonically forced system is as follows [19]:

Mii+ Cii + Ku = fexp(iot) (11)
where u is the nodal displacement vector, C is viscous damping matrix and [ is the
vector formed by forces on the nodes. There are some mathematical models for the
damping expressing energy losses in mechanical systems [20,21]. The structural
damping can be considered by replacing K(1+i1) with the viscous damping. In this case,
equation (11) becomes
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u=K-wM+ink[" f explior) (12)
where i =+/—1 and 7 is the loss factor. Equation (12) can be written as
u=[A, +iA, T fexpior) (13)

where K —@’M = A, and nK = A, . In the analysis the material properties are assumed

as follows: E=2*10"" Pa, G=0.84*10"' Pa, p=7800 kg/m’, S and Ly=1 m, y is 30°, cross-
sectional radii are 0.02 m,

3.1. In-Plane Vibrations

In this section, an external force is assumed at free end which has effects in radial
and tangential directions of curved part. The point receptance models due to the force
acting in tangential, radial directions are shown in Figures 2a-b. The transfer receptance
model for the displacement of tangential direction due to the force acting in radial
direction is shown in Figure 2c.

(a) Point receptance (u/f) (b) Point receptance (v /)  (c) Transfer receptance (u /1)
Figure 2. Receptances for in-plane vibrations

In Figure 3 and 4, the point receptance amplitudes of tangential and radial
directions at the free end are shown respectively as functions of the forcing frequencies.
0.01, 0.05 and 0.2 are taken as loss factor. The large amplitudes obviously show the
natural frequencies, and as it’s seen, the increase of loss factor limits the amplitudes. In
Figure 5, the transfer receptance amplitudes of frame is shown corresponding to the
mode 1 seen in Figure 2c.
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Figure 3. The in-plane point receptance amplitudes of tangential displacement (u / f)
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Figure 4. The in-plane point receptance amplitudes of radial displacement ( v/ f)
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forcing frequency (Hz)

Figure 5. The in-plane transfer receptance amplitudes of tangential displacement due to
the force acting on the direction of radial displacement (u/f)

3.2. Out-of-Plane Vibrations

The external force is also applied in the direction of out-of-plane displacement
w. In Figure 6, the point receptance (a) and the transfer receptance (b) models for free
end are shown. In Figures 7 and 8, the changes of point and transfer receptances due to
the forcing frequencies are shown respectively. The point receptance of the
displacement w is shown in Figure 7, and the torsional transfer receptance due to the
force acting on the direction of w in Figure 8. As seen, the characteristics of the
receptances are naturally similar to those of the previous section. The increase of the
loss factor again reduces the amplitudes.

oint receptance (w / f) (b) Transfer receptance (¢ / f)
Figure 6. Receptances for out-of-plane vibrations
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Figure 7. The out of-plane point receptance amplitudes of out-plane displacement (w / f)
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Figure 8. The out of-plane transfer receptance amplitudes of twist angle (¢) due to the
force acting on the direction of displacementw (¢ /f)
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4. CONCLUSIONS

In this study, the forced vibrations of the frame comprised of a straight and a curved
member are investigated. The in-plane and out-of-plane receptances are obtained due to
the external force acting to the free end of the frame. The changes of the point and
transfer receptance amplitudes are plotted and the effect of loss factor is observed. The
sensitive and non-sensitive frequency intervals are determined for frame system. It
should also be noted that, the in-plane and out-of-plane natural frequencies of the frame
can be obtained from the related figures which show the change of receptances.

10.

11

12.

13.

14.

REFERENCES

A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, New York:
Dover: fourth edition, 1944.

M. Ojalvo, E. Demuts, F. Tokarz, Out-of plane buckling of curved members. ASCE
Journal of Structural Division 95, 2305-2316, 1969.

T.G. Yamada, 1. Takahashi, The steady state out-of-plane response of a Timoshenko
curved beam with internal damping. Journal of sound and Vibration 71, 145-156,
1986.

J.M.M. Silva, A.P.V. Urgueira, Out-of-plane dynamic response of curved beams-an
analytical model, International Journal of Solids and Structures 24, 271-284, 1988.
A. Ibrahimbegovic, On finite element implementation of geometrically nonlinear
Reissner’s beam theory: three dimensional curved beam elements, Computer
Methods in Applied Mechanics and Engineering 122, 11-26, 1995.

A.A. Khdeir and J.N. Reddy, Free and forced vibration of cross-ply laminated
composite shallow arches, Int. J. Solids and Structures 34(10), 1217-1234, 1997.
AK. Khan and P.J. Pise, Dynamic behaviour of curved piles, Computers and
Structures 65(6), 795-807, 1997.

K. Kang and C. W. Bert, Flexural-torsional buckling analysis of arches with
warping using DQM, Engineering Structures 19(3), 247-254, 1997.

E. Bozhevolnaya and A. Kildegaard, Experimental study of a uniformly loaded
curved sandwich beam, Computers and Structures 40(2), 175-185, 1998.

C.S. Huang, Y.P. Tseng, S.H. Chang, Out-of-plane dynamic responses of non-
circular curved beams by numerical Laplace transform. Journal of Sound and
Vibration 215(3), 407-424, 1998.

S.J. Walsh and R.G. White, Mobility of a semi-infinite beam with constant
curvature, Journal of Sound and Vibration 221(5), 887-902, 1999.

C.S. Huang, Y.P. Tseng, S.H. Chang, C.L. Hung, Out-of-plane dynamic analysis of
beams with arbitrarily varying curvature and cross-section by dynamic stiffness
matrix method, Int. Journal of Solids Struct. 37(3), 495-513, 2000.

V.H. Cortinez, P.A.A. Laura, C.P. Filipich, R. Carnicer, In-plane vibrations of a
clamped column-arch system carrying a concentrated mass at the free end, Journal
of Sound and Vibration 112(2), 379-383, 1987.

J. Wang, K. Nagaya and M. Yokota, Vibration of a spiral rod with straight portions
on a number of supports, Journal of Sound and Vibration 162(1), 13-26, 1993.



380 H. A. Ozyigit, H. R. Oz and M. Tekelioglu

15. K. Kashimoto, A. Shiraishi and K. Nagaya, Dynamic stress concentration in and
arbitrary curved and inhomogeneous rod joined with infinite straight rods and
excited by a twisting wave, Journal of Sound and Vibration 178(3), 395-409, 1994.

16. R.T. Wang, Vibration of a T-type curved frame due to a moving force, Journal of
Sound and Vibration 215, 143-165, 1998.

17. R.T. Wang, Vibration of straight-curved-straight hollow shafts, Journal of Sound
and Vibration 234(3), 369-386, 2000.

18. J. Petrolito and K.A. Legge. Nonlinear analysis of frames with curved members,
Computers and Structures 79, 727-735, 2001.

19. M. Petyt, Introduction to finite element vibration analysis, Cambridge University
Press, U.K., 1990.

20. S.H. Crandall, The role of damping in vibration theory, Journal of Sound and
Vibration 11(1), 3-18, 1970.

21. H.T. Banks, D.J. Inman, On damping mechanisms in beams, Transactions of the
ASME 58, 716-723, 1991.




