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Abstract- Here we use a more convenient technique to generate a faster convergent
Green's function needed for solving Laplace's equation in two cases: the first domain is
bounded by two parallel planes; and the second is an infinite open rectangular prism.
Green's function usually is expressed as a series of images which is slowly convergent,
and that is why we transform it into an integral representation which is rapidly
convergent and stable. Many examples are herein given and discussed for the numerical
applications of the above two cases; and then we make a comparison between our
calculations and some others.

1. INTRODUCTION

Various authors are interested in Green’s function, which has numerous
applications in different fields of engineering and science. Green’s function from one
dimension up to three dimension have been discussed and deduced throughout [1, 2, 3,
4] by means of different techniques, e.g., eigenfunction expansion, series of images,
integral representation, etc. Many implementations of Green’s function are found
throughout the solution of boundary value problems (heat equation, wave equation,
Laplace equation,). In this paper we deduce a good suitable convergent formula of
Green’s function which is needed in solving Laplace equation for two domains, namely,
one between two parallel walls and the second in an infinite open rectangular prism
[5.7]; both sketched in Fig (1).
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Fig (1-1) Parallel plates Fig (1-2) Rectangular channel
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Here G, is the Green’s function, which satisfies the periodic boundary conditions on
Parallel planes z =+N /2, and with the potential of a source located half way between
the parallel planes. The subscript of G indicates that G,is periodic in one direction.

Likewise G, is the potential of a source located at the center of the rectangular prism
defined by the two pairs of parallel planes y=4M /2 and z=+N/2; and in this case
G, satisfies the periodic boundary conditions in two directions. The Green’s function
G, can be constructed from the free-space singularity 1/  such that

re= { x=EY +(y=m+z~)? ] where (x, y, 2) is the Cartesian coordinate system
and (£,71,{ ) is the location of source point inside the prism. However we must note

that Green’s function in terms of sums of images usually contain series, which converge
very slowly and so are unsuitable for numerical work.

2. FORMULATION OF THE PROBLEM

Green’s functions, which satisfy homogenous Neumann or Dirichlet boundary
conditions on z =+N/2can be constructed from G, by the method of images, where

G, with V| satisfy the Laplace equation

V3(G, +V,)=0, 1)

2 2 2
such that V2 m[aa + 9 J

757 +——] and V| is the free-space Green’s function that
X y:  dz

satisfies

VIV, = -4n8(0)8(y) 3.8(z~kN), @

k=—co

where & is the Dirac delta function. Similarly for G,, we obtain that

V3G, +V,)=0, (3)
V2V, = —47 §(x) i i&(y—-jM)é'(zmkN). 4)

j=—00 f=-—ca

The resulting infinite series in (2) and (4), as we mentioned above, are not suitable for
computation but we take them as the starting point for our discussion. Equivalently we
can define G, and G, respectively the solutions of Poisson equations

VG, = ~4n8 (x)5(y) i(s(z —kN)Y, &)

km—oa

V3G, = —4m5(x) Y. 38(y- M)S(z—kN). ©)

. J=—co k=—oo
By using the method of images [1-5, 7], the solutions of (5) and (6) are then given
respectively by
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G (RN =R+ 225+ 3[R + (c i P T i ], 7
koo

G, (x, .M, N) = R“*+Z{[x (= MY + =k T = [Gmyr + a2, 8

where R, =+/x* + y" =4x* +y*+z%, and in (8) the summation is take over all

combinations of posmve and negative integers j, k except j = k = 0. In the infinite series

" and [( MY + (kN Y Tm, respectively, is subtract from

each term to make them converge. In the next section a rectangular channel was taken
to be of width M. Without loss of generality its height N can be assumed to be equal to
unity, with unbounded length. And also our discussion focuses on derivation of
alternative forms of Green’s function, which converge more rapidly than those, given by
(7) and (8). The first form of Green’s function is the improvement eigenfunctions
expansion and the second one is the integral representations for the two cases under
consideration.

in (7) and (8), a constant,

3. FORMS OF THE SOLUTION

The classical forms of Green’s function (7) and (8)- are the eigenfunction
expansions and methods of deriving them are found throughout [1-4]. In the next part of
this section we deduce their integral representations by aid of [8].

3.1 Eigenfunction expansions of G, and G,

An alternative representation of G, as an eigenfunction expansion given
throughout {5, 7] and repeated here for convenience as

G,(R,2)=-2(C+In %) +4Y K, (2nkR, ) cos(2mkz), )]
) k=1

where C is the Euler constant and K|, is the modified Bessel function of second kind of

order zero. For G, we start by taking the Fourier transform of equation (6) with respect
1o X, thus obtaining

[M(zmﬁ +-§-{+§ }G (A, y,z)—-~47t2 25()7 M) (z kN, (10)

Jummon Jfrzeno

G, (x,y,2) = [ G, (A,y,2)dA

iy

where ~ T . an
GZ(As y’Z) = j‘e ZmGZ(‘x’ y,z)dx

e



218 I. A. Ismail and E. E. Elbehady

For the right hand side of equation (10) we use the Poisson summation formula [1,
8,10}, which can be formally write as

36+ 27) = ZF(u)
joen LyT==_

(12)
F(u) = [ ™50+ 2m) ),

—

Then equation (10) takes the form

9* 0 Wy
[ (27A)> +a 2+a }G (A, y,2) =~ M{1+22003(M }[l+2k2—icos(2ﬂkz)} (13)

A solution can be given by the formula
&, an=33 a,) cos(=%- 2%) ) cos(2rkz) (14)
j=20 k=0
where the unknown coefficients 4, can be obtamed by substituting from (14) into (13)
and collecting the coefficients of like terms giving
N a.a ) 1ifl=0
G, () =LA +(GIMP +E ], a =1 " . 15
=Bt G el a=q) (15)
Therefore to obtain the eigenfunction expansion of G,, we take the inverse Fourier

transform of (14) with respect to A, where we use Cauchy integral formula and gamma
function properties in our calculations

2y (1M P2 |
G,{x,y, ;M) = (x-————|xf Zaa ¢ :

o T MA(IM) +E

where ¢ is an additional constant to make equation {16) compatible with (8); and as in

[5]

cos( 2;3” Yeos(27tkz), (16)

o= 2{1n(4—ﬂ) - C}SEEKO(MA:M). (17)
M j=l k=1

During our calculations when we use equation (16); ¢ can be calculated once and for
all for a given M value,

3.2 Integral representation

A more suitable formula for Green’s function, for the above mentioned two
cases, can be obtained by deriving the integral representations of G, and G,;
respectively. This method represents transforming Green’s function into a more
convergent and suitable form for calculation.
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For G, we start from the eigenfunction expansion (9) of G, and the integral
form of the modified Bessel function

Ky = |
i

e»—kxu

2
vu® -1
Therefore to obtain the integral representation of G,, we begin with the summed
geometric progression

du . (18)

oo i2mz

Fimhy | -2mkRy e
e e " 2mRu izm (19)
1

b= =4 —&

Multiplying both sides, of the preceding equation, by

and integrating with
2

. u -1
respect to u from 1 to eo, we obtain that

o ei2nz

J; Vu? -1 (em'“ — e )du} . .

The above integral has an integrable singularity at u=1, and to avoid this singularity we

> K,(27kR, ) cos(27tkz) = Re
4551

can generate an alternative form by making the substitution ¢ = (u2 - 1)”2 . Therefore the
final expression of G, takes the form

_ T cos(277) — & P
Gi(Ry2) = -2C +In(R, 1)+ 2! ﬁ(ccgsh(ZarRl p)- cos(gﬂz)

)dt, 2D
Where B = (* +1)¥* and C=. 577215665. We must noté that, the integrand in the left-
hand-side of above equation tends to zero as ¢ tends to infinity, and also absolutely
convergent for any real values of R, and z. Moreover, solving
cosh(27R, 8) —cos{2mz) =0 gives four imaginary roots only; therefore the integral has

no poles on the real f-axis. Hence there is no difficulty in evaluating the integral and
consequently Green’s function using equation (21).

For G,, its integral representation can be deduced using that of G; since G,

can be viewed as the superposition of an infinite number of G, functions rowed in the
z-direction. Therefore the two-equation (7) and (8) give

G,(x,y, 2;M) =G,(R,,2) + i[@i (,/x2 +(y- jM)z,z)— G| le,o)] (22)

J#0

Here we also must note that, a finite constant G,Q M ,O), which independent of any

variable, subtracted from each term in infinite series to secure convergence. The
infinite summation in the right hand side of (22), after substitution from (21) into (22)
for the two occurrences of G,, becomes
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—Zi[ln\/xz +(y+ jM)? +1an2 +(y— jM)? —21n(jM)]

=1
i SZJ‘ f cos(2mz) — eﬁmmﬁ ¥it >
i=1 {J_{W-ﬂ }’"“"”°°0 ﬁ[COsh(Zﬂ:\/xz .|.(y—-jM)2ﬁ)—-COS(2ﬂJZ)_ -

For the first infinite summation in above equation, we can replace it in (23) by the
infinite product

—2In

H[l (—-—~) } (24)

j=1

where we use the complex variable Z = y +ix , and finally using the sine identity

- = 6
in@) =6 [{1-(—)*"!. 25
sin(@) H{ (jn)} (25)

For the second infinite summation in (23), by taking f§, = 2zMf such that M must be
greater than zero and the different real values of § starting from one, therefore

> iegﬂ, VB, >l (26)
]

j=1 €

The left-hand-side of above equation is a geometric series and its sum equal to
1/(e” ~1). Therefore the second infinite summation in (23) can be replaced by the
very well known approximate formula:

- 1 1

P i i @
And from our numericai experiment we have found that the two sides of above equation
are identical up to 12 decimal places when j sufficiently tends to infinity (j210).

Finally we found that the last infinite summation in (23) can be rearranged and can be
expressed by the formula

i[ sioh(B,) _ smh(B) 2} 08

cosh(f,;) ~cos(2nz) cosh(B_;) —cos(2mz)

J=1

Where f,; = 272:\/ x* +(y+ jM)* B. Therefore equation (22) can be rearranged as

G,(x,y, ;M)=G(R,2)-2In Sm(ﬂZ/M)| SJ‘

=7 sinh(f, j) sinh(f3._,) _
¥ 2; !; [ﬁ Lash(ﬁ,r ;) —cos(2mz) * cosh(B_,) —cos(27z) 2

where G is computed using (21). The above two formulae (21) and (29) for G, and G,
respectively are rapidly convergent and more suitable for numerical work.

27|:M,3

(29)
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4. APPLICATIONS AND DISCUSSION

We shall introduce here a comparison between our integral representation
technique which was described in the preceding section for G, and G,, and those
expressions given by (9) and (16); see [5, 7]. During our calculations, we have used four
Fortran subroutines. The first two are developed to evaluate Green’s function G, for
two infinite parallel plates (N =1)using eigenfunction expansion (9) and integral
representation (21) respectively. We have used the Fortran 77 program for the special
function K, from the Numerical Recipes Fortran package, which was found among the

version 4.0 of Fortran Power Station. The other two Fortran programs are used to
evaluate G, for an infinite rectangular prism, its high N equal unity, by mean of
equation (16) and (29) respectively. As an illustrative example, our calculations for that
case have been performed with the width of the prism M equal 0.5. The two
subroutines for equation (21) and (29) depend on the numerical integration subroutine
- that evaluates the integral terms. Since Green’s function is difficult to compute in the
neighborhood of the singularity (x =y =z =0), then for the integrals we have used a
double-precision version of Quadpack routine [9], which are designed especially for
computing the singular integrals by adaptive algorithms.

A comparison for the solution of a variety of problems is conveniently made to
test the difference between the various techmiques of the solution. The maximum
absolute error for both single and double precisions between the eigenfunction
expansions and integral representations, for G, and G,, is shown in Table (1) for the
illustrative examples given below. To test the result of each of the equation (9), (16),
(21), and (29), we list the computed values of G, and G, over the selected regions

Table (1). Max. Abs. errors for the illustrative examples.

Method Single precision Double precision
Egs. (9) and (21) 6.41001 x10 3,752081 »10~°
Eqgs. (16) and (29) 1.28798 %10~ 9.893472 X 10

in Table (2) and (3) respectively. Each table contains the two calculated values of
Green’s function computed by the above two methods, eigenfunction expansion and
integral representation. We note that, the infinity value of the index j, in any sum of the

form Z;;O , is restricted to be less than or equal 300, to achieve seven significant

digits convergence. It is also noteworthy that the values of integration when the upper
limit of integration are equal or greater than 20 converge. It must be noted that the
eigenfunction expansions (9) and (16) are better than that integral representations (21)
and (29) for the points which are close to the singularity, and for the complementary
domain, the transformed equations (21} and (29) converge faster than that eigenfunction
expansions (9) and (i6).
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Table (2). The computed values of G, —~ (Ri2 +22)"% for the two parallel plates

using the two equations (9) and (21), respectively.

Gl_(R12+22)—U2 Gl_(R12+Z2)—UZ
A
R, Using Eigenfunction expansion [Eq. Using integral
(N] representation[Eq. (21}
0.0 0.0 0.0000000 0.6000000
G.1 -0.0118826 -0.0119467
0.2 -0.0468435 -0.0468776
0.5 -0.2600045 -0.0260006
1.0 -0.7644666 -0.7644657
2.0 -1.6544260 -1.6544260
5.0 -3.1870130 -3.1870130
0.0 0.125 0.0380492 0.0380784
0.1 0.0251386 0.0251434
0.2 -0.0125631 -0.0125526
0.5 -0.2387620 -0.2387616
1.0 -0.7578230 -0.7578223
2.0 -1,6534540 -1.6534540
5.0 -3.1869500 -3.1869500
0.0 0.250 0.1588782 {.1588825
0.1 0.1425015 0.1424786
0.2 0.0952126 0.0952133
0.5 -0.1743575 -0.1743584
1.0 -0.7382844 -0.7382844
2.0 -1.6505700 -1.65G5700
5.0 -3.1867630 -3.1867630
0.0 0.375 (.3855276 0.3856086
0.1 0.3612491 0.3612455
0.2 0.2925335 0.2925493
0.5 -0.0652182 -0.0652185
1.0 -0.7070581 -0.7070587
2.0 -1.6458710 -1.6458710
5.0 -3,1864530 -3.1864530
0.0 0.500 0.7725786 0.7725892
0.1 0.7296228 0.7296171
0.2 0.6131608 0.6131377
0.5 0.0894464 0.0894500
1.0 -6.6622475 -6.6622561
2.0 -1.6395080 -1.6395080
50 -3.1860200 -3.1860200
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Table (3). The computed values of G, — (x* + y* + z%)™* for the rectangular
prism, with M =0.5, using equations (16) and (29), respectively.

. , ] (}2 __(x2+y2+z2)-!/2 Gz_(x2+y2+z2)-]l'2
Using Eigenfunction expansion Using integral
[Eq. (16}] representation[Eq. (28)]
00 | 000 | 0.00 0.0000000 0.0000000
0.1 -0.1593445 -0.1594733
0.2 -0.6091952 -0.6096951
0.5 -3.0565170 -3.0567363
1.0 -8.5162640 -8.5164374
5.0 -57.9892300 -57.9896154
0.0 1 006 | 0.10 -0.0277193 -0.0277276
0.1 -0.1838328 -0.1839275
0.2 -0.6259532 -0.6249441
0.5 -3.0543370 -3.0540594
1.0 -8.5127330 -8.5125151
5.0 -57.9891900 -57.9893754
00 | 000 0.20 -0.0825307 -0.0824592
0.1 -0.2313514 -0.2315063
0.2 -0.6561516 -0.6559029
0.5 -3.0428260 -3.0426311
1.0 -8.5020210 -8.5024401
5.0 -57.9850700 -57.9893556
00 | 0.060 | 050 0.2847325 0.2846821
0.1 0.1274853 0.1271886
0.2 -0.3206990 -0.3209362
(.5 -2.8230850 -2.8229236
1.0 -8.4256360 -8.4250198
5.0 -57.9882400 -57.9887022
00 | 005 | 010 0.0160345 0.0168786
0.1 -0.1441912 -0.1446965
0.2 -0.5957882 -0.5958997
0.5 -3.0462070 -3.0455433
1.0 -8.5115060 -8.5115803
5.0 -57.9891900 -57.9892285
00 | 010 | 020 0.0507860 0.0507992
0.1 -0.1098112 -0.1098691
0.2 -0.5614933 -0.5615846
0.5 -3.0146480 -3.0146561
1.0 -8.4973450 -8.4973558
5.0 -57.9890300 -57.9890412
00 [ 0251 050 0.4665427 0.4663428
0.1 0.3020893 0.3020899
0.2 -0.1654895 -0.1654897
8.5 -2.7440410 -2.7440411
1.0 -8.4040890 -8.4040946
5.0 -57.9880000 -57.9880324
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