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Abstract- In this paper, we consider a new class of variational inequalities which is.
called the general mixed multivalued nonlinear quasi-variational inequality. We define
an iterative algorithm and prove the existence solution for our general mixed
multivalued nonlinear quasi-variational inequality by using the updating projection
method and convergence criteria for iterative sequences generated by algorithm are also
discussed. -
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1. INTRODUCTION

In the last twenty years nonlinear variational inequalities have assumed great
importance both from the theoretical and practical points of view due to their
applicability in the calculus of variation and different branches of engineering sciences.
In recent years, variational inequalities have been extended and generalized in many
directions, see [1-9].

In this paper, we define and study a new class of general mixed multivalued
nonlinear quasi-variztional inequality, which includes a number of known classes of
variational inequalities studied previously by many authors in this field. A general and
unified iterative algorithm for finding the approximate solutions to this problem is
considered by projection method. We prove that the existence of solutions for this
problem and convergence of the iterative sequences generated by this algorithm.

Throughout this paper H stands for a real Hilbert space whose norm and inner
product are denoted by |}.|| and (.,.), respectively. Let K be a nonempty closed convex
subset of H. Let A, f, g be the single-valued mappings from H into itself and M, T
:H—2" be the multivalued mappings where 2 denotes the power set of H,

For a nonlinear operator N(.,.):HxH—H, we consider the problem of finding
- ue kK, xe M(u), ye T(u) such that g(u)e K and

(Adg)), v~ g(u)) +p blu, v) ~ pb(u, g(w)) 2 (A(f (u)),v — g(w))
_ ~p{Nx,y),v—g()),forall veK, (1.1)
where p > 0 is a constant and the form b(.,.):HxH—R satisfying the following
properties: '
(1) b(u,v) is linear in first argument,
(2 b(u,v) is bounded, that is, there exists a constant © > 0 such that
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lbu,v) | <voflu|l || v ], for alluve H, (1.2)
3 b(u,v) — b(u,w) < b(u, v — w), for all u,v,weH, (1.3)
(4) b(u,v) is convex in the second argument.
Then problem (1.1) is called general mixed multivalued nonlinear variational inequality
problem.

For appropriate and suitable choice of operators g, f, A, T, M and N, a number
of known classes of variational inequalities can be obtained as special cases of problem
(1.1) studied previously by many authors including Zeng [15], Lions and Stampacchia
[11], Cohen [3], Noor [13], Glowinski et al {8] etc.

If the convex set K depends upon the solution, i.e., K is a pomt-to -set mapping
from H into itself, then problem (1.1) becomes the general mixed multivalued nonlinear
quasi-variational inequality problem of finding ueK, xeM(u), yeT(u) such that
g(u)e K(u) and

(Algw)) , v~ gw) + p b(u , v) ~ pb(u , g(w) = (A(f (u)),v - g(u))
—p{N(x,y), v~— g, forall ve K(u), (1.4)
and a constant p > 0.
In many important applications, the set K(u) is of the form
K(u) =m(u) + K, (1.5)
where.m is a point-to-point mapping and K is a closed convex set, see [2].
To prove our main result, we need the following lemmas.
Lemma 1.1 [10]- Let K ¢ H be a closed convex subset. Then given z€ H, we have
u = Proj x(z) (1.6)
if and only if u € K and
{u-z,v-u)=0,foralvek ' (1.7)
where Proj g is a projection of H onto K.
Lemma 1.2 [10] - Proj g is nonexpansive, that is ,
I| Proj x (u) = Proj x (W} || < [Ju~-v|,foralluve H (1.8)
Lemma 1.3 [12] - If K(u) is of type (1.5), then for each u,ve H
Proj xan (v) = m(u) + Proj x ( v — m(u)).
Lemma 1.4 - Let K(u) be of type (1.5). Then ue K, xe M(u), ye T(u) is a solution of
problem (1.4) if and only if ue K, xe M(u), ye T(u) satisfies g(u)e K(u) and
(a—duy, v—g) =0, forall ve K(u), (1.9)
where o(u):H—2" and for some constant p >0,
(OW).V) = (W,v) - p (NELY),V) = p b(uy) + (Ao ~2)I(W)v),  (1.10)
for all ve K(u) and the operator Ao(f ~g) is defined as
[ Ao(f —g)](u) = A(f (u)) —A(g(u)), for all ue K. (1.11)
Proof - Let (u, X, y) be a solution set of problem (1.4). Then we derive g(u)e K(u) and
(Alg(w)) , v — g(W) +p bu, v) — pb(u, gw) = (A(f (w),v — g(w)
—p{N(x,y),v— g, forall ve K(u), (1.12)
and a constant p > 0. Using (1.10) and (1.12), we obtain
<u - @(H), V- g(u) > = <u A g(u)> - ((i)(U),V) + (q)(u),g(u))
=, v)—{(u,gw) -, v)-pMNxy), v)-p buy) + {{Ao(f -g)l(u),v)]
+{u, gu) )y~ pNY) , g(W) ) = p blu,g(w) + [Ao(f ~g)l(w) , g(w))
= ([Ao(f ~)}(u) , g} —v) + p b(u,v) — p bu,gw)) + p (N(x,Y) , v — g(u)) =0,
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for all ve K(u), which infers that (1.9) holds.
Conversely, let ue K, xe M(u), ye T(u) satisfy g(wye K(u) and (1.9). Then we have
u, v-g) (o), v-g))
={ o), v) - {du), glw))
=(u,v)—p NGy, V) —p buv) + Aol —)Iw),v) - [u, gu) )
- pAN,Y) , g) ) - p blu,g(u)) + {[Ao(f —g)}(u} , gu))]
=, v-gw)-plN(xKY) , v — gW) + b(u,v) ~ blu,g(w))]
+ {[Ao(f ~g)](u) , v ~ g(u)), for all ve K(u).
It follows that
(Alg(w)), v —gu)) + p blu, v) —pbu, gu)) = (A (u)) , v — g(u))
~p{N(x,y), v— gy, for all ve K(u).
Thus (u, X, y) is a solution of problem (1.4).
Lemma 1.5 - Let K(u) be defined as (1.5). Then, ue K, xe M(u), ye T(u) is a solution of
the problem (1.4) if and only if ue K, xe M(u), ye T(u) satisfies g(u)e K(u) and
g(u) = m(u) + Proj g [g(u) ~ u + ¢(u) —~ m(u)], (1.13)
where m:H—H and ¢(u) is defined as (1.10).
Proof - By Lemma 1.4, ue K, xe M(u), ye T(u) is a solution of the problem (1.4) if and
only if (1.9) holds. We deduce
( gu) = [g(u)—(u — d(u)], v — glu)) = {u — ¢(u) , v — g(u)} = 0, for all ve K(u).
Hence, by Lemma 1.1, Lemma 1.3 and (1.9) holds if and only if ue K, xe M(u), ye T(u)
satisfies g(u)e K(u) and
g(u) = Proj xqu [gu) —u + ¢(w) ]
= m(u) + Proj  [g(w) —u + ¢(u) - m(u)].
We need the following concepts.
Definition 1.1 {14] - For all v, uzeH, the operator N(.,.:HxH—H is said to be strongly
monotone and Lipschitz continuous with respect to first argument if there exist
constants & > 0 and 1, > 0 such that-
(N(x1,.) ~ N(Xz2,) , up~uzy 2E fuy—ua || %, 2 forall X1€ M(uy), X2 M(uz)
and
| N, = N ) < =
Definition 1.2 [5] - The multivalued operator M:H—>2H is said to be H-Lipschitz
continuous if there exists a constant € > 0 such that
HM(up) , M(up)) <€l u; —uz ||, for all u;, weH,
where H(.,.) is the Hausdorff metric on Hilbert space.
Lemma 1.6 - Let N:HxH—H be strongly monotone and Lipschitz continuous with
respect to first argument with constants & > 0 and 1 > 0, respectively; and A, g, fH—H
be the Lipschitz continuous with constants o > 0, p > 0 and v> 0, respectively. Let
N:HxH—H be a Lipschitz continuous with respect to second argument with constant ¢
> 0, Let M,T:H—2" be H-Lipschitz continuous with constants € > 0 and y > 0,
respectively. Then for any constant p > 0 there exists 8 > 0 such that
| dur) — §Cu2) | < 0 [fus - uz ||, for all ug,meH,
where ¢(u) is defined as (1.10). It turn out that
0=(1-2pE +p™’e®) P +pvrpoy+ay+p) (1.14)
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Proof- For all ug,uze H, x;€ M(uy), x26€ M(u2) v1€ T(u; ), v2€ T(ua), by (1.10) and
property (1) of b(u,v), we obtain
H{0(u1) = 0u2)v ) | <10y — u3— p(NGeiyD) = Nixa,y),vh [+ p [b(ug - uz,v) |
+ [ (NG2y)-NGa,y2),v) |+ HAE @) — AT () - (Adg(ur)) —Agu))).v) |
<l ur= v~ pNGLY:) = N2y [ v [+ p v lu —w | v
+ PINGYD-NGyI| V] + AL @))-Adf (W) - (Algun) —Au) IVl . (1.15)
Since operator N is Lipschitz continuous with respect to first argument and M is H-
Lipschitz continuous, we have
| NGy = Nexoy) | s x - x2 |
<1 HM(u).M(uy))
<ne o ~uy . (1.16)
Further, since operator N is strongly monotone with respect to first argument and (1.16),
we have
Il w1 =v2 = p(NGra,y D) = NOay) | = ur = wa ||
=20 (NG,y1) = NGy, wi =g ) + 07 || N(xuyn) = NGy |2
- <[1-2p& +pM? e u~uw]® (1.17)
Again, operator N is Lipschitz continuous with respect to second argument and T is H-
Lipschitz continuous, we have
| N(x2,y1) —N(xa,y2) | o flyi=y2 ]
< o H(T(uy), T(u2)
SO‘%” i — U2 “ l (118)
Since A, g and f are Lipschitz continuous, we have ‘
1L ACE () — ACE (u2)) — (Alg(un) ~Ag)l < | A () — AC () |
+ || Alg)) ~Agu)
<o | f ) — (o) [ + o [ glur) —glui]
Sayfu-vf+op fu—uw
S(X(W{+B)tiu1—U2”. (1.19)
Adding (1.15), (1.17), (1.18) and (1.19), we have
() - dua),v) 1< 0 Jur —ua || v,
where 6 is given by (1.14), it follows that
[ o) — ) || < supver [{dCur) = du,v) N v |
<Ofw ~ufl. (1.20)

2. MAIN RESULT

In this section, we define an iterative algorithm for finding the approximate solutions of
the general mixed multivalued nonlinear quasi-variational inequality problem (1.4) and
prove the approximate solutions converge strongly to the exact solution of the problem
(1.4).
Algorithm 2.1- Given ugs H, compute u, by the iterative scheme
Uns1 = Up — £(Un) + M(Us) + Proj x [gun) — uy + §(un) — miun)],

where

<(b(un),V> = (un,v) - p <N(X~n ;Yn),V> - p b(umv) + <{A0(f _g)](un) sV >:
for all ve K and some p > 0, x,& M{uy), yo€T(un), n =0,1,2,....
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Theorem 2.1- Let g:H—H be a strongly monotone and Lipschitz continuous with
constants & > 0 and 3 > 0, respectively. Let M,T:H->2" be H-Lipschitz continuous with.
constants € > 0 and ¢ > 0, respectively. Let A, f, m:H—H be Lipschitz continuous with
constants ¢ > 0, v > 0 and p > 0, respectively. Let N:-HxH—H be a strongly monotone
with respect to first argument with constant & > 0 and Lipschitz continuous with respect
to first and second argument with constants 1} > 0 and & > 0, respectively. Let the form
b(u,v) satisfy the properties (1)-(4). Assume further that
q <2 and &> v+ ol -29) + (e~ (v+o ) 4q(1-q)]"*
where
q=(1-28+BH ™M +p+ a(y + P27,
Then the problem (1.4) has a solution (u*, x*, y*) and for each constant p > 0 with
lp~1&+ (2g-1)(v+ox)]In'e€-(v+ox)*]7]
<[(€+ Qg1 + 0 1)) -4g(1~g) (N’ &’ (v + o)) [ e’ (v + o)™,
the iterative sequences {u,}, {X,} and {y,} generated by Algorithm 2.1, converge
strongly to'u*, x* and y*, respectively.
Proof- By Lemma 1.5, ue H, xe M(u), ye T(u) is a solution set of the problem (1.4) if
and only if veH, xe M(u), ye T(u) satisfies (1.13) and the mapping F:H—>2" is define
by
F(u) = Usxe M Uyet(w (U — g(u) + m(u) + Proj x [g(u) — u + ¢(w) — m(w)]],
for all ue H, where ¢(u) is defined as (1.10). For each uj,u,€ H, we have
| F(un) = F(uo) || £l vi— v — (g(up) ~ g(u2)) + m{uy) — muo) ||
+ || Proj x [g(u;) — uy + ¢(u) — m(uy)] — Proj x [g(uz) ~ w2 + ¢(uz) ~ m(uz)] | .
By Lemma 1.2, we have
| Fup) —Fu2) | €2 {wi~u2— (glu) — gu2) || +2 || m(ur) — m(uo) |
+ | dCar) - ou) || (2.1)
Since g is strongly monotone and Lipschitz continuous, we have
fue—uz—(glu) — g [ 2 ui—uz | * -~ 2{ gluy) — gluz), uy—uy)
+ | gla) - g ||®
<flar—uall?=28 Jlui—uwa || *+ B lus~ vzl

<(1=28+PB%) fu—usyll® (2.2)
Again using the Lipschitz continuity of m, we have
| miCu) —m@u2) < pllui—u2]l. (2.3)

It follows from (2.1), (2.2), (2.3) and Lemma 1.6, that
| FQuy) — Flug) [ 201 =25+ B5)"? [ wi~uall + 2 p flur - 2]
+{(1-2pE+p e 4puvrpoy+a(y+ Bl u—usl
<2{(1~28+ B M P ap+oa(v+ P2 Huw-wl+ {(1-2p5+pn’e) ™
+p(v+ oifw—uzf
<2q+ 0 |fur~uzl,
where
Oi=(1-2pE+p°n’eH) ™ +p(v+0Y)
and '
q=(1-26+BH) " +p+a(y+pR2~".
Since q< 27, me>(v+ oy )and '
E>(v+ oy)(1-2g)+[(n*e = (v+or)")dq(1- gn"?.
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This implies that for each p > 0 with
lp-1E+ (2q-1)v+oy) e~ (u+csx> )3‘ |

<[+ Q2g-D + o 1) * ~4q(1l-q)(n* ™~ (v + oM "2 [
we have

o+ o)

2q+0,=2q+ (1 -2pt+p e M +p(v+ oy )<l

Hence, F is a contraction mapping. Then, it follows that F has a fixed point u*€ H, that
is '
w* = u* - g(u¥) + mu*) + Proj g [5(u*) — u¥ + ¢(u*) — m(u®)] .

Hence by Lemma 1.5, there exist u*e H, x*e M(u*) and y*e T(u*) such that (u*, x*,
y*) is a solution of problem (1.4). Since u*eH, x*¢M(u*) and y*eT(u*) satisfies

(1.13),i.e.,
g(u*) = m(u*) + Proj x [g(u*) —u* + ¢(u*) — m(u*)] . 2.4)
By (2.4) and Algorithm 2.1, we obtain
[ s = [ < [ g = u* - (g(ua) ~ g*) || + || muq) ~ mu*) |
+ || Proj x [g(ua) = ta + $(ua) — m(un)] — Proj x [gu*) — u* + dp(u*) — m(u*)] ||
<2 { un- v - (g(u) — gu®) || +2 || m(un) — m(u*) ||
+ [ dun) ~ u* ) |

<(2q+6) [Jug—u*|

<(2q +0)" |m—u*|].
Noting that 2q + 0; <1, we know that {u,} converges to u*. Now x,& M(u,), x*e M(u*)
and M is H-Lipschitz continuous, we have

| xo —x* || € H(M(up) , M@* N <e || up—u* ]| -> 0 as n -~ oo,

Le., {Xn} strongly converges to x*. Similarly, we can prove that {y,} strongly’ converges
to y*. This completes the proof.
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