PARAMETRIZATION OF TORSION UNITS IN $U_1(ZS_3)$

Tevfik Bilgin

Department of Mathematics, University of Yüzüncü Yıl, Van, Turkey

Abstract-In this study, a representation of the group ring ZS_3 is obtained by using a faithful irreducible representation of S_3 of degree 2. In ZS_3 , all torsion units are expressed in terms of parameters by means of this representation. It is shown that any torsion unit in $U_1(ZS_3)$ can be expressed in terms of two parameters.

Key words- Parametrization, torsion units

1.INTRODUCTION

Let G be a finite group and $U_1(ZG)$ be the unit group of integral group ring ZG with augmentation 1. In mid-sixties, Zassenhaus made seemingly very strong conjectures. The first one is:

 $\gamma \in U_1(ZG)$ and $|\gamma| < \infty \implies$ for some $g \in G$ $\gamma = \alpha g \alpha^I$, $\exists \alpha \in QG$, where QG is a rational group algebra. (ZC1)

This conjecture has been proved for metacyclic groups $\langle a \rangle$ $\langle x \rangle$ with (|a|, |x|) = 1 by Milies-Sehgal[1]. Here, all metacyclic groups can be considered as a split extention of two cyclic groups. On the other hand, for nilpotent class-two groups the conjecture has been proved by Sehgal[2]. The special case |G| = pq of the next result goes back to Bhandari-Luthar[3].

Theorem 1.1 (Milies-Sehgal [1]). Let G be a split extension of a cyclic p-group and a cyclic p'-group with faithful action. Let $u \in U_1(ZG)$ be an element of finite order. Then, there exist an $\alpha \in QG$, $g \in G$ such that $u = \alpha^{-1}g\alpha$.

So far, it has not been given a concrete construction about torsion units satisfying the first conjecture. In this study, we deal with the unit group of the integral group ring of symmetric group S_3 . The unit group of ZS_3 was first characterized by Hughes and Pearson[5] and another description was given by Allen and Hobby[6]. The last description was given by Jespers and Parmenter[7]. But none of them characterized the torsion units explicitly. We have investigated the construction of the torsion units in the integral group ring of the group S_3 in terms of parameters.

Now, let us write the representation of ZS_3 obtained by using faithful irreducible representation of $S_3 = \langle a, b : a^3 = b^2 = 1, bab^{-1} = a^{-1} \rangle$ (James and Liebeck [4]).

$$\begin{split} \rho: S_3 &\to GL(2,Z) \\ a &\mapsto \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \\ b &\mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. \end{split}$$

By extending the representation ρ of S_3 linearly over Z, we can get a representation $\overline{\rho}$ from ZS_3 to $Z^{2\times 2}$, a matrix ring of integers as follows:

$$\overline{\rho}: ZS_3 \longrightarrow Z^{2x^2}
\sum \gamma_g g \mapsto \sum \gamma_g \rho(g).$$

For an arbitrary $\gamma = \alpha_0 + \alpha_1 a + \alpha_2 a^2 + \beta_0 b + \beta_1 b a + \beta_2 b a^2 \in ZS_3$, the image of γ is

$$\overline{\rho}(\gamma) = \begin{bmatrix} \alpha_0 - \alpha_2 - \beta_1 + \beta_2 & \alpha_1 - \alpha_2 + \beta_0 - \beta_1 \\ -\alpha_1 + \alpha_2 + \beta_0 - \beta_2 & \alpha_0 - \alpha_1 + \beta_1 - \beta_2 \end{bmatrix}.$$

2. SOME BASIC RESULTS

Now, let us state some results which will be used to characterize torsion units in the unit group of the integral group ring of S_3 .

Lemma 2.1 Let G be a metacyclic group and N = G', its commutator subgroup. Consider the following natural ring homomorphism:

$$\varphi: ZG \longrightarrow Z(G/N)$$

$$\sum \gamma_{g}g \mapsto \sum \gamma_{g}(gN).$$

If $\gamma \in U_1(ZG)$ is a torsion unit then $\varphi(\gamma) = gN$, for some $g \in G$.

Proof. Let $\gamma \in U_1(ZG)$ be a torsion unit. From Theorem1.1 γ is a rational conjugate to $g \in G$. That is, $\gamma = \alpha g \alpha^{-1}$ for some $\alpha \in QG$ and $g \in G$. Since G/N is abelian and φ is the natural ring homomorphism, we have

$$\varphi(\gamma) = \varphi(\alpha g \alpha^{-1}) = \varphi(\alpha)\varphi(g)\varphi(\alpha)^{-1} = \varphi(g) = gN.$$

Lemma 2.2 Let $\overline{\rho}$ be the representation of ZG obtained by extending linearly, by a representation ρ of finite degree of a group G. If $\gamma \in U_1(ZG)$ is a rational conjugate to $g \in G$ then $|\overline{\rho}(\gamma)| = |\rho(g)|$.

Proof. Clear.

Preposition 2.3 (Berman-Higman[2]) Let G be a finite group. Suppose $\gamma \in U(ZG)$ is a torsion unit, namely, $\gamma^n = 1$ for some natural number n. If $\gamma_e \neq 0$ then $\gamma = \pm 1$.

Corollary 2.4 $\gamma \in U_1(ZG)$ is a torsion unit and $\gamma \neq 1$ then $\gamma_e = 0$.

Corollary 2.5 If $\gamma \in U_1(ZG)$ is a rational conjugate to $g \in Z(G)$, then $\gamma = g$. That is, any torsion unit which is rational conjugate to an element in the center of a group is trivial.

3. PARAMETRIZATION OF TORSION UNITS

 $S_3 = \{1\} \cup \{a,a^2\} \cup \{b,ba,ba^2\}$ has three conjugacy classes. By Theorem1.1, we can say that any torsion unit must be conjugate to one of the conjugacy classes above. As a result, a torsion unit of order 3 is conjugate to a and a torsion unit of order 2 is conjugate to a. Now let us characterize these two types of torsion units.

Teorem 3.1 Let $\gamma_3 \in U_1(ZS_3)$ be a torsion unit of order 3. γ_3 can be expressed in terms of two parameters as follows

$$\gamma_{3} = [n - 3k + 2 + \frac{3k^{2} - 3k + 1}{n}]a + [1 - n + 3k - 2 - \frac{3k^{2} - 3k + 1}{n}]a^{2} + [n - 4k + 2 + \frac{3k^{2} - 3k + 1}{n}]b + [2k - 1 - n]ba + [1 - 2k + \frac{3k^{2} - 3k + 1}{n}]ba^{2},$$

where $k \in \mathbb{Z}$ is an arbitrary parameter and n is a divisor of $3k^2-3k+1$.

Proof. Let $\gamma_3 \in U_1(ZS_3)$ be a torsion unit of order 3. Since S_3 is a split extesion of $\langle a \rangle$ and $\langle b \rangle$ with faithful action, by Theorem1.1, γ_3 is a rational conjugate to $a \in S_3$. In this case, by Lemma 2.1, we have

$$\varphi(\gamma_3)=aN=\begin{cases}\alpha_0+\alpha_1+\alpha_2=1\\\beta_0+\beta_1+\beta_2=0.\end{cases}$$

By proposition 2.3 and Corollary 2.4, we can write all coefficients in terms of the three parameters α_1 , β_0 and β_1 as follows:

$$\alpha_0 = 0$$
, $\alpha_2 = 1 - \alpha_1$, $\beta_2 = -\beta_0 - \beta_1$.

Now, if we consider the representation $\overline{\rho}$ then, we get

$$\overline{\rho}(\gamma_3) = \begin{bmatrix} -1 + \alpha_1 - \beta_0 - 2\beta_1 & -1 + 2\alpha_1 + \beta_0 - \beta_1 \\ 1 - 2\alpha_1 + 2\beta_0 + \beta_1 & -\alpha_1 + \beta_0 + 2\beta_1 \end{bmatrix}.$$

By Lemma 2.2, we have

$$\left|\overline{\rho}(\gamma_3)\right| = 1 \ \Rightarrow \ \beta_0^2 + \beta_0\beta_1 + \beta_1^2 = \alpha_1^2 - \alpha_1.$$

If we use the substitution $\alpha_1 - \beta_0 = k \in \mathbb{Z}$, then

$$(\beta_0 + k)^2 - (\beta_0 + k) = \beta_0^2 + \beta_0 \beta_1 + \beta_1^2 \Longrightarrow (2k - 1 - \beta_1) \beta_0 = \beta_1^2 - k^2 + k$$

$$\Longrightarrow n\beta_0 = (2k - 1 - n)^2 - k^2 + k, \quad (n \in \mathbb{Z} \text{ ve } \beta_1 = 2k - 1 - n)$$

$$\Longrightarrow n\beta_0 = n(n - 4k + 2) + 3k^2 - 3k + 1$$

$$\Longrightarrow n | (3k^2 - 3k + 1).$$

Hence, we can write free coefficients in terms of the parameters of n, k as follows:

$$\beta_0 = n - 4k + 2 + \frac{3k^2 - 3k + 1}{n}$$
, $\beta_1 = 2k - 1 - n$ and $\alpha_1 = n - 3k + 2 + \frac{3k^2 - 3k + 1}{n}$.

Theorem 3.2 Let $\gamma_2 \in U_1(ZS_3)$ be a torsion unit of order 2. Then, γ_2 can be expressed in terms of two parameters as follows:

$$\gamma_2 = [n - 3k - 1 + \frac{3k^2 + 2k}{n}](a - a^2) + [n - 4k - 1 + \frac{3k^2 + 2k}{n}]b + [2k + 1 - n]ba + [2k + 1 - \frac{3k^2 + 2k}{n}]ba^2,$$

where $k \in \mathbb{Z}$ an arbitrary parameter and n is a divisor of $3k^2 + 2k$.

Poof. Let $\gamma_2 \in U_1(ZS_3)$ be a torsion unit of order 2. By Theorem1.1, γ_2 is a rational conjugate to $b \in S_3$. In this case, by Lemma 2.1, we have

$$\varphi(\gamma_2) = bN \implies \frac{\alpha_0 + \alpha_1 + \alpha_2 = 0}{\beta_0 + \beta_1 + \beta_2 = 1} \implies \alpha_0 = 0, \quad \alpha_2 = -\alpha_1, \quad \beta_2 = 1 - \beta_0 - \beta_1.$$

Rewriting the representation $\overline{\rho}$ in terms of the parameters α_1,β_0 and β_1 , we have

$$\overline{\rho}(\gamma_2) = \begin{bmatrix} 1 - \alpha_1 - \beta_0 - 2\beta_1 & 2\alpha_1 + \beta_0 - \beta_1 \\ -1 - 2\alpha_1 - 2\beta_0 + \beta_1 & -1 - \alpha_1 + \beta_0 + 2\beta_2 \end{bmatrix}.$$

On the other hand, by Lemma 2.2

$$|\overline{\rho}(\gamma_2)| = -1 \implies \beta_0^2 + \beta_0\beta_1 + \beta_1^2 - \beta_0 - \beta_1 = \alpha_1^2$$

For $\alpha_1 - \beta_0 = k \in \mathbb{Z}$, we get

$$(\beta_0 + k)^2 = \beta_0^2 + \beta_0 \beta_1 + \beta_1^2 - \beta_0 - \beta_1 \Longrightarrow (2k + 1 - \beta_1) \beta_0 = \beta_1^2 - \beta_1 - k^2$$

$$\implies n\beta_0 = (2k + 1 - n)^2 - (2k + 1 - n) - k^2, \ (n \in \mathbb{Z} \ \text{ve} \beta_1 = 2k + 1 - n)$$

$$\implies n\beta_0 = n(n - 4k - 1) + 3k^2 + 2k$$

$$\implies n | (3k^2 + 2k) .$$

So,
$$\beta_0 = n - 4k - 1 + \frac{3k^2 + 2k}{n}$$
, $\beta_1 = 2k + 1 - n$, $\alpha_1 = n - 3k - 1 + \frac{3k^2 + 2k}{n}$.

Corollary 3.3 Any torsion unit in $U_1(ZS_3)$ can be exspressed in terms of two parameters; one of them is free and the other one depends on free parameter.

REFERENCES

- 1. C.P. Milies and S.K. Sehgal, Torsion units in integral group rings of metacyclic groups, *J.Number Theory*, 19, 103-114,1984.
- 2. S.K. Sehgal, Units in integral group rings, Marcel Dekker, New york, Basel, 1993.
- 3. A.K. Bhandari and I.S. Luthar, Torsion units of integral group rings of metacyclic

- groups, J.Number Theory, 17,170-183,1993.
- 4. D.G. James and M.W. Liebeck, *Representations and characters of groups*, Cambridge University Press, 1993.
- 5. I. Hughes and K.R. Pearson, The group of units of the integral group ring ZS₃, Canad. Math.Bull. 15, 529 534, 1972.
- 6. P.J. Allen and C.A. Hobby, A note on the unit group of ZS₃, *Proc.Amer.Math.Soc.*99, 9-14, 1987.
- 7. E.Jespers and M.M. Parmenter, Bicyclic units in ZS₃, Bull.Belg.Math.Soc. 44, 141-146, 1992.