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Abstract - This study deals with an elastic-plastic behavior of woven steel fibers
reinforced thermoplastic matrix laminated composite beam subjected to a bending
moment. The beam consists of symmetric four orthotropic layers and its material is
assumed to be strain hardening. The Tsai-Hill theory is used as a yield criterion in the
solution. The Bernoulli-Euler hypotheses are utilized for small plastic deformations.
The beam lay-up sequences are chosen as [0°}4, [15°/-15°], [30°/-30°)s and [45°/-45°],.
The bending moment values that begin plastic flow at the upper and lower surfaces of
the beam are carried out for various stacking sequences. The variations of the elastic,
elastic-plastic and residual stress components versus increasing plastic region spread are
given in tables and figures. The transverse displacement is obtained at the free end,
numerically.

Key Words - Laminated composite beam, elastic-plastic stres analysis, small plastic
deformation.

1 INTRODUCTION

There is a growing need to combine metals with polymeric composites in order
to optimize the strength, weight and durability of components in aircraft, railway
vehicle and spacecraft applications. Thermoplastic composites offer high specific
stiffness and specific strength, improved interlaminar fracture toughness, increased
impact resistance. Moreover, they may be remelted, reprocessed and reformed.
Therefore, woven composite materials are being used as primary structural components
in many applications such as automobile, construction, marine equipment, etc. Zhang
and Harding [1] studied the elastic material properties of woven composites by
numerical models, Ishikawa and Chou [2,3] studied one-dimensional linear and
nonlinear micromechanical properties of woven composites. Cantwell [4] investigated
the influence of stamping temperature on the properties of a glass mat thermoplastic
composite.

The behavior of laminated composite structures can be effectively and efficiently
tailored by changing the lay-up parameters. Icardi [5] presented a three-dimensional zig-
zag theory for accurate stress and failure analysis of thick laminated and sandwich
beams. Bhate et al. [6] presented a refined flexural theory for laminated composite
beams subjected to mechanical and thermal loading. Rand [7] studied the relative
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unportance of the cross-sectional warping components in solid orthotropic beam
undergoing a bending moment. Khdeir and Reddy [8] presented an exact solution for
the bending of thin and thick cross-ply laminated beams by using the classical first-
order, second-order and third-order theories in the analysis.

Briinig [9] presented an elastic-plastic analysis of work-hardening materials
based on a quadratic approximation of the Tsai-Wu criterion. Dadras [10] presented an
elastic~-plastic stress analysis of plane strain pure bending of a strain-hardening curved
beam. In that study only a linear hardening case has been analyzed. Chattopadhyay and
Guo [11] developed non-linear structural design sensitivity analysis for structures
undergoing elastoplastic deformation. Kojic et al. [12] analyzed elastic-plastic
deformation of a beam, composite of layers with material orthotropic in elastic and
plastic domains. Fares [13] presented a modified version of Reissner’s mixed variational
formula for investigating generalized non-linear thermoelasticity problem in composite
laminated beam, Karakuzu and Ozcan [14] carried out an elasto-plastic stress analysis
on aluminum composite cantilever beam loaded by a single force at the free end and a
uniformly distributed force at the upper surface by using an analytical solution. Sayman
and Zor [15] investigated elastic-plastic stresses in a thermoplastic cantilever beam
loaded uniformly.

In this study, an elastic-plastic stress analysis is carried out on woven steel fibers
reinforced symmetric thermoplastic matrix laminated beams consisted of four layers
subjected to a bending moment by using Bernoulli-Euler hypotheses. The Tsai-Hill
theory is used as a yield criterion during the solution.

2. ELASTIC SOLUTION
Analysis of laminated beam subjected to pure bending can be developed from
the Bernoulli-Euler theory [16]. According to this theory, the longitudinal normal strain
at a distance z from the neutral surface is given as

g == (1)

Top
where p is the radius of curvature of the neutral surface during flexure, as shown in
Figure 1.
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Figure 1. A laminated composite cantilever beam and its dimensions.
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The longitudinal stress can be written by using,
¥4
@, =)~ @)

where j is the plies number. (Ey); is the Young’s modulus of jth ply.
The bending moment M can be related to the longitudinal stress because of the
static equilibrium as,

M=2[c, ztdz | (3)
0
or
2 al2 3 R
M=% (E,), (2}~ 2}) @)
3p 3 :

where 2¢ and t are the height and thickness of the beam, and ¢ is the total number of
plies and z; is the distance from the neutral surface to the outside of the jth ply. The
moment-curvature relation in a laminated beam can be evaluated as,

E. I
M = f (5)
Y
where Iy, is the inertia moment of the cross-section of the beam, E; is the effective

fiexural modulus of the beam; E; is written as,

I of2 N s
Ef:;;{z:‘(}}:x)j (ijzjq) : (6)
. Jje=
The stress component can be also written without using the radius of curvature;
M M z|(E.);
(Ux),-="§““}**“(Ex)jzﬂ - [Wg’"ﬁ" (7)
f oy ¥y f
The strain-stress relation in the laminated composite beam is written as,
gx a11 EEZ alé Ux
E 0= Gy Gy Gy |10 (8)
En| 1D %x Zes || O
2 2 2

where 4, are the components of the compliance matrix [17]:

o 4 2.2 4
a, = a,r +(2a, tag)r s” +a,s

4 4 2.2
= aplrt s )y Ha) ta,, ~ag)r’s

o

Gy = a, s’ +(2a,, +ag)r’s® +a,rt ©)
Ty = (2a,, ~2a, ~ A )sr° ~ (20, —2a, — ag)s'F

Gy = (20, =2y, —ag)s’r —(2ay, —2ay, —ag)sr’

ags = 2(2a,, +2a,, —4a, "asﬁ)r232 +a.ss(?"4 +5*)

where r=cos0, s=sinf, a;;=1/Ey, an=1/E;, a;;=-V12/E|, ag=1/G2. Eq. (2) can be also
written in terms of the compliance matrix as,
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Z
p(am“)j

(0= (10)

3. ELASTIC-PLASTIC SOLUTION
In the elastic-plastic solution, the Bernoulli-Euler hypotheses are protected.
According to these assumptions, plane sections remain plane and normal during flexure.
Thus the unit strain in the longitudinal direction in the plastic region can be also written
as, ‘

g, == (11)
P

where p is the radius of the curvature of the beam.

The Tsai-Hill theory is used as a yield criterion due to the same yield strengths
of the composite beams in tension and compression. X and Y are the yield strengths in
the 1% and 2™ principal material directions. S is shear strength in 1-2 plane. It is
assumed Z the yield strength in the 3" direction to be equal to Y in the 2™ direction. It
is also assumed that the shear strengths in the 1-3 and 2-3 planes to be equal to S in 1-2
plane. Under these assumptions, the yield condition according to this criterion can be
evaluated as,

x* x* vy s
multiplying it by X gives the equivalent stress in the first principal material direction
as,

=1 (12)

o xc’)’m\/af _o,0, +G;M§;+Tg§_ (13)
For a strain hardening material, the yield stress according to the Ludwik

equation is written as,

o, =0, +Ke, (14)

where o is nearly equal to X which is the yield strength in the first principal material

direction, K, n andg, are the plasticity constant, strain-hardening parameter and

equivalent plastic strain, respectively. In the plastic region, the equations of equilibrium
are written as,

do, ot
lx )

dt,, 00,
Do 992 g

9x dz

After integration of the first equation oy is determined as C{z). As a result of
this, at any section, in the plastic region oy is only a function of z. The stress
components in the principal material directions for the orientation angle @ are written
as,

o, =0_r, o0,=0,5°, T,

X

-, 1§ (16)
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where r=cosf, s=sinf. Substituting them in Eq. (13) gives the yield strength for the
orientation angle 6,

X
X=X an
where,
X2S4 X252r2
Nm\/r4~szr2+ 7 + e (18)

The plastic strain increments in the material directions can be obtained by using
the potential function f =& —o,(g,) [18]as,

9f
def %‘}";
o
12 -—Qf—dﬂ
o7,

The total strain increments in the principal material directions are the summation
of the elastic and plastic strain increments as [19],

20,~C
de,=det+del =a, do \+a,,d 0 ,+———rd),
Y

20,X*
—O"l'}"———T“
de,=de+del =a ,do +a,,do, +——————dA (20)
20,
X2
a..dt 27y, g2
de, =de}, +def, =—%—At 4 dA
2 20,

The oy stress component for the orientation angle 8 can be written in the form
of strain hardening as, ¢, =0, /N and dA is equal to the equivalent plastic

increment d¢ . Putting o, 0, and 7,, info Eq. (20) and integrating them produces
a2

_ Is
£ =a,0,+a,0, +W2N €, + C

2

——Jf'z-l—ZSZ—X—2
€, = a,0, +a,0, +w----§-N——fi—sp +C, (21)
2
a.T ZI”S*E“Z““
g, = —0dt . g +C
12 2 2N P 7

At the elastic and plastic boundary, elastic and plastic strain components are equal.
By using this relation and writing €, is zero at the boundary determines Cs, Cg and Cr
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integration constants. The strain components in the principal material directions for the
elastic region can be written as,
2 2

£, Feos 2rs €, _
g, 1= s* r*  =2rs g, | (22)
En| |—rs s rP-s| e,

£,=0, (E” PP d, st +ag rs)
g, =0 (@, s* +ay, 1> G, 15) (23)
- " a,
€, :o'x{— d, rs+d,7rs +?16(r2 - 52)}
where 0x = X; which is the yield strength of a ply for the orientation angle 6. Equating

the strain components at the boundary of the elastic and plastic regions gives: the
integration constants. Then the strain components in the plastic region are written as,

— ( 2 2) [«w» 2 g - ] 2]”2—52
&=0,\ayrita,s )+ X, (aii—an)r +(a12—a12)s Tt +WW§M]\?WSP
X2
-«»r‘z«+~232————Y:z
- 2 2 o 2, f s .
ez_o-x(alz” +a22S )+X1[(a“”‘"‘a22)s +(a12“‘a12)r —a, rS]+TEP
(24)
2
—_— 21".3‘““5““’”2*'
a — — a a
€y == ag 15+ X, _ailrs+axzrs'z'_m(’”z“Sz)“?"——-éﬁ rs | ————£,
2 2 2 2N

The strain components in the x and z directions are obtained by using the
transformation formula,

e | |r* & =2rm ||[¢g
€, t=| s’ e 2rs £, 25)
g, |rs —rs rP-st g,

They are determined as

€=a,0,+Bg,, €=0a,0,+Be¢,, €,=—%0, +B¢, (26)
where
2 2
X
2r4—-2rzsz—z—2s4m}%-+4r2s2wﬁw
B =
2N
X2
2rtst—st =t 2t - d P s
B,= S @7)
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x? X2
3rts —rs? -—2rs?’-~5-+ (-2r's+ 2rs3)j37

B,=
) 2N
The o, stress component in the elastic region varies linearly in terms of the
curvature of the radius as,

o, = (28)
P ay
Therefore, the distance between the plastic region and the x-axis are equal to h
as seen from Figure 1.

h _
At the yield point, o is equal to X, and X, =-——, hence, the curvature of

P ay

the radius is determined as,

h
p = (29)

X, a,

3.1. Displacement Components

i) Elastic Case

The oy stress component in the laminated beam is written as,
o, =Eg, =—— (30)

Pa,
writing ~— = d | ox becomes
Pag

o,=dz (3D

and strain component can be written in terms of displacement components u and w,

du

gx = Ewa‘“o‘x = dall Z
d _ .
ezﬂa—y:— =q,0,=dd,z (32)

du dw) & a.
s iaz é’x] 2 OxTET

where u and w are the longitudinal and transverse displacements, respectively.
After integration the above equations, the displacement components are obtained
in terms of the integration constants. The boundary conditions at the fixed end -

dw . . . .
H=w= ™ =(Qat x=L and z=0, give the integration constants. Then the displacements
X

are found as,
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da,.z*

u=d a,x+ —da,l z

(33)

o Bpde’  dayx’ da, I*

2

+da, l x~

ii) Elastic-Plastic Case
For small deformations, the relation between the strain and displacement
components can be written as,

e, m«g{«:ﬁ =G,0, +Be, (34)
or

R (35)
similarly, &, is related to w as,

85%3 d, O, +B,¢€, (36)

o, O,+K¢g’
where O'X=——Y=—O~i—\}———i.

The integration of u and w gives the displacement components as

w="x+ C(2)

P 37

M_ o,+ KE; 37)
w=| Gy =+ B, |de+ G ()

k
u and w must satisfy the following relation as,

1(du ow) &g
g wm—| —+— =g +B.g 38
IZ 2[82 axJ 2 xR (38)
where €, is a function of z, as a result of this, this relation is obtained
‘ ' . o, +Ke"
X, 408) 400 o 8 Tt R, | p (39)
0 dz dx 2
and
d o, + K¢’
BN SNC) + 200 _ Ty — L4 2B, |=0 (40)
I, dz dx N !
o,+Kg’!
dC](Z)_a—m 0 P’“ZB3€ :Gl
dz N ¢

ic (4D
i+—éﬂ=K
0 dx

K, +G =0
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(C, is obtained as
2

C2=K1x—Z+C3 (42)
w is much higher than u, therefore w is calculated only,
o, +Ke, 2
W= j Gy, ——L 4+ B,e, [+ Kx-2—+C, 43)
N 2p

If the plastic region expands in the first and second plies, at the boundary of the
elastic and plastic regions; displacement components and their slopes must be equal,

(w), = (w), and [awl =[-a_‘i"-l at x=L and z=h

ox ox
using these relations, they are found as,
L “h* ] L? | oph
Kiy=—, C;= e =3
Y Zpa Y N
where subscript 1 is the first ply number.

w) is equal to w, at the boundary of first and second plies. The transverse displacement
component in the second ply can be written as,

| Oy +KE} i oy +KE]
w xf }ammmmw +1B,),&, ldz +_{ oy ——
N , :

ol
2
— h

. 2pa;

(44)

1

+1B,| e, ldz +
: (45)

Lz
Y !
This integration is performed numerically. First, the Eq. (35) is solved
numerically by the Newton-Raphson method, and then €, is obtained. By using ¢, the
integration (Eq. 45) is camed out by Newton-Cotes Formulas numerically.
Subsequently, the transverse displacement component at the lower surface (x=0 and
z=c) is obtained approximately.

3.2. Determination of Bending Moment

The moment at any section can be evaluated according to the boundary of the
plastic region. The moment of the oy stress component has to be equal to the bending
moment M. If the plastic region is expanded only in the first ply, the bending moment

X +Ke"

; — atde [t Iztdz} (46)

z=0 pla;s| =3 p|a“]
where t is the thickness of the beam. The curvature is evaluated from the yield strength
of the second ply (Eq.10) as,

S PR @)
|a“| p’ .|, X,
where X is the yield strength of the first ply and is equal to X /N . This integration is
performed numerically by Newton-Cotes Formulas.

M=2 J ztdz%f
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If the plastic region is spread from the lower surface into the second ply, the
bending moment

Mz?[J'h L ardz+ [

¢

X+ Keg"

P

X +Ke"
zrdz+J _

. 4h

@0 piau{z

where indices show the mechanical properties of the plies. The above integration is
carried out numerically, by using Newton-Cotes Formulas.

=L
Z

zt dz] (48)
i

2

4. RESIDUAL STRESSES
If h is known, the bending moment M in Eqgs. (46) and (48) can be calculated.
Afterwards, elastic and elastic-plastic stress components of o, for a each ply can be
calculated from following equations, respectively:

_MZ (Ex)j

(Gx)e— ] Ii Ef i| (49)
_ Oy _ o, + K¢,

©.), = =" j (50)

The superposition of the elastic and elastic-plastic stresses gives the residual
stress components as,

(@), =(0,),-.), (51)
where subscripts r, p and e indicate residual stress, elastic-plastic stress and elastic
stress, respectively. :
5. DISCUSSION ON A SAMPLE

A polyethylene thermoplastic matrix laminated composite cantilever beam
reinforced woven steel fibers symmetrically is analyzed analytically. The mechanical
properties and yield strengths of a ply are given in Table 1.

Table 1. Mechanical properties and yield strengths of a ply.

E1 Eg G;g Vi X=Y Z S K n Vf
(MPa) | (MPa) | (MPa) (MPa) (MPa) {MPa) {MPa)
13000 13000 400 0.46 22 16 11 115 0.69 0.09

Lay-up sequences are chosen as [0%]4 [15°/-15°], [30°/-30°]s and [45°/-45°],.
Bending moments initiate plastic yielding at the same values on the upper and lower
surfaces. As seen in Table 2, the bending moment starting plastic yielding is found to be
highest for the [0°]4 orientation, as 5632 Nmm. When the orientation angle is chosen as
[15°/-15°],, [30°/-30°]; and [45°/-45°] its value decreases gradually. The lowest one is
[45°/-45°],, and it is 5037 Nmm.

Table 2. Bending moment values starting plastic yielding in the laminated beam.
Orientation angles 0°1, [15°/-15°], [30°/-30°]; [45°/-45°],

Bending moment (Nmm) 5632 5464 5168 5037
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When the plastic region is expanded from the lower or upper surfaces towards
the neutral surface, plastic, elastic and residual stresses are given at Table 3. The stress
components and plastic flow are given at the lower surfaces and the residual stress
components are also given at the elastic and plastic boundary per h, where h is the
distance between the plastic region and neutral surface. The elastic-plastic and elastic
stress components of o, are found to be maximum at the upper and lower surfaces. The
magnitude of the residual stress component of oy is greatest at the upper and lower
surfaces. However, when plastic region is further expanded from the lower or upper
surfaces towards the neutral surface, the residual stress component of oy becomes the
highest at the elastic and plastic boundary. G, residual stress component is found to be
maximum for [0°]4 orientation. The plastic flow is found to be highest for {45°/-45°],
orientation as 40.6 107, The equivalent stress of the plastic stresses in the principal
material direction is also given at the table. The equivalent stress is found to be highest,
34.60 MPa, for [45°/-45°]; orientation.

Table 3. Plastic, elastic and residual stresses at the lower surface and the residual stress
at the elastic and plastic boundaries.

At the lower surface At the
Orientati M h £,.10 In principal elastic-
on angles | (Nmm) | (rmm) material axes plastic
boundary
(Gx)p (Gx)c {Gx)r (ch)p (Gx)r
(MPa) (MPa) (MPa) {MPa) (MPa)
6310 7 (.2 22,34 24.65 -2.31 22.34 0.43
6927 6 0.5 22.62 27.06 -4.44 22.62 171
[0°], 7484 5 0.9 22.94 29.23 -6.29 22.94 3.73
7991 4 1.6 23.35 31.21 -7.86 23.35 4.80
8470 3 2.7 23.93 33.08 -9.15 23,93 9.59
3984 2 4.9 24.91 35.09 -10.18 24.91 13.23
9810 1 114 27.26 38.32 -11.06 . 27.26 17.21
6132 7 0.4 21.88 23.95 207 22.55 0.38
6758 6 I.1 22.33 26.40 -4.07 23.02 1.54
{159- 7345 5 1.9 22.84 28.69 -5.85 23.55 341
15°), 7907 4 3.3 23.51 30.89 -7.38 24.23 5.90
8483 3 56 24.46 33.14 -8.68 25.21 8.92
9175 2 10.2 26.06 35.84 -9.78 26.86 12.38
10438 1 24.2 29.91 40,77 -10.86 30.83 16.25
5808 7 0.6 20.84 22.68 -1.84 22.71 0.34
6421 6 1.6 21.41 25.08 -3.67 23.33 1.38
[30°/- 7011 5 2.9 22.06 27.39 -5.33 24.04 3.07
30°], 7598 4 5.0 22.90 29.68 -6.78 2495 5.35
8229 3 8.4 24.10 32,14 -8.04 26.26 8.13
9036 2 I5.5 26.13 35.30 -9.17 28.48 11.36
10537 1 37.0 31.03 41.40 -10.37 33.81 15.01
5663 7 0.7 20.35 22.13 -1,78 22,75 0.32
6266 6 1.7 20.94 24.47 -3.54 - 2341 1.32
[45°/- 6850 5 32 21.62 26.76 -5.14 24,17 2.95
45°), 7435 4 5.5 22,49 29.04 -6.55 25,14 5.16
8073 3 9.2 23.73 31.53 ~7.80 26,53 7.85
8898 2 17.0 25.85 34.76 -8.91 28.90 10.99
10515 i 40.6 30.95 41.07 -10.12 34.60 14.54
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The distribution of the elastic-plastic, elastic and residual stresses for h=3 mm is
shown in Figures 2 (a)-(d) for [0°}, [15°/-15%];, [30°/-30°]; and [45°/-45°]; orientations,
respectively. The magnitudes of the plastic and elastic stress components of Gy are
found to be maximum at the upper and lower surfaces. However, the oy residual stress
component is found to be the highest at the elastic and plastic boundary as shown in
Figure 2 (a) for [0°]4 orientation.

The distributions of the oy stress components for [15°/-15°%;, [30°/-30°]; and
[45°/-45°]; orientations are similar to [0°]4 orientation as shown in Figures 2 (b)-(d),
respectively. Similarly, plastic and elastic stresses are found to be maximum at the
upper and lower surfaces, whereas the residual stress component is found to be highest
at the boundary of the elastic and plastic regions.

When plastic region is expanded step by step from the lower or upper surfaces
towards the neutral surface, that is when his 7, 5, 3 and 1 mumn efc., the distributions of
the o, residual stress components along the cross-sections of the beams are shown in
Figure 3 for the [0°]4 orientation. As shown in Figure 3, the magnitudes of the residual
stress components are found to be highest at the upper and lower surfaces. When the
plastic region is further expanded, the magnitudes of the residual stress components
become the highest at the boundary of the elastic and plastic regions. oy residual stress
components for [15%/-15°];, [30°/-30°); and [45°/-45°]; orientations are shown in
Figures 4-6, respectively. As shown in all the figures, oy residual stress component is
found to be highest at the upper and lower surfaces; whereas, when the plastic region is
further expanded the o, residual stress components reach the highest at the boundary of
the elastic and plastic regions.

Bl ponnn]

—(Ox)
= (Oxe

at =+ (G

—2— (Ox)e
ol J—— (Gx)r
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e (Ox)p
TE(0)e

A (s AN

© (d)
Figure 2. The distributions of the elastic-plastic, elastic and residual stress components
of o, for the a) [0°]4; b) [15°/-15°],; ¢) [30°/-30°],, d) [45°/-45°]; orientations, h=3 mm.

5.1. Transverse Displacement

The transverse displacement, w, is calculated numerically, for the plastic region
expanded in both first and second plies until h=4, 3 and 2 mm is given in Table 4.
According to Table 4, w is found to be highest for [45°/-45°]; orientation. When lay-up
sequences are chosen as [30°/-30°],, [15°/-15°); and [0°]s, w decreases gradually.

Table 4. Transverse displacements of the laminated beam.

Orientation h W Orientation h w
angles {mm) (rmm) angles (mm} (mm)
4 -2.12 4 -12.74
{0°]4 3 -2.83 [30°/-30°], 3 -17.00
2 -4.24 2 -25.52
4 -5.86 4 -15.93
[15°/-15°] 3 -7.82 [45°/-45°], 3 -21.26
2 -11.73 2 -31.91
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Figare 3. The distribution of oy residual stress component for the [0°]; orientation.
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Figure 4. The di'stribution of o residual stress component for the [15/-15°], orientation.

6. CONCLUSION

In this study, elastic-plastic stress distribution on a symmetric woven steel fiber
reinforced thermoplastic matrix laminated composite beam subjected to a bending
moment is analyzed analytically. The following conclusions are made assuming that
composite material is strain hardening and Bernoulli-Euler hypotheses are valid:

The plastic region starts first at the upper and the lower surfaces of the laminated
beam for the chosen orientations.

The elastic-plastic solution gives the highest oy stress at the upper and lower
surfaces of the beams for all orientations.

The magnitudes of the o, residual stress components are obtained to be highest
at the upper and lower surfaces. When the plastic region is further increased, the o,
residual stress components become the highest at the boundary of the elastic and plastic
regions.
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The magnitudes of the o, residual stress components are to be the highest for
[0°]4 orientation comparing to [15°/-15°],, [30°/-30°]; and [45°/-45°]; orientations for
further expansion of the plastic region.

The magnitude of the equivalent plastic strain is found to be the highest for
[45°/-45°]; orientation.

The transverse displacement, w, is found to be highest for [45°/-45°]; orientation
at the free end.
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Figure 5. The distribution of o, residual stress component for the [30°/-30°]; orientation.
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Figure 6. The distribution of o, residual stress component for the [45°/-45°]; orientation.
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