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Abstract- We have given a structure theorem for the GCD-Reciprocal LCM matrix and

then we have calculated the value of the determinant of the GCD-Reciprocal LCM

matrix. We have obtained formula for the determinant and the inverse of the GCD-
Reciprocal LCM matrix defined on ged-closed sets.
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LINTRODUCTION
Let §={x,,x,,.,x,} be an ordered set of distinct positive integers. The
matrix (S) whose {j-entry is the greatest common divisor (x;,x;) of x; and x; is called

the GCD matrix on S [4]. The LCM matrix [S] on S is defined analogously [5].

In 1876, H.J.S. Smith [1] shown that the determinant of the GCD matrix defined
on S={1,2,...,n }(Smith's determinant) is equal to O)®(2)...p(n), where ¢ is Euler's
totient function. He also noted that this result remains valid if S is replaced by a factor
closed (FC) set (i.e., all positive factors of any member of S belong to S). The S is said
to be ged-closed if (x;,x;) € S whenever x;,x, € S [3].

(xl.,xj)

[x,%,]

In this paper, we define an nxn matrix A={a,], where q; = and cail

it to be the GCD-Reciprocal LCM matrix on § = {x,x,,..,x,}. Inthe second section,

we give a structure theorem for the GCD-Reciprocal LCM matrix  defined on S and
then we have calculated the value of the determinant of the GCD-Reciprocal LCM
matrix. If S ged-closed, we have calculated the determinant and the inverse of the
GCD-Reciprocal LCM matrix defined on S.

2. THE STRUCTURE OF GCD-RECIPROCAL LCM MATRIX
Definition 1. Let §={x,x,,.,x,} be an ordered set of distinct positive

(.X'I-,}Cj)

integers. The nXn matrix [A}={(a;) having a; = as its ij-entry is called

[x;,x;]

GCD-Reciprocal LCM matrix on S where (x;,x,) is the greatest common divisor of
x; and x;, [x;,x;] is the least common multiple of x, and x;.

Clearly GCD-Reciprocal LCM matrices are symmetric. Furthermore
rearrangements of the elements of S yield similar matrices. Hence we may always
assume X, <x, <..<JX,.

We let B(x;) denote the sum,
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B(x,) =Y J,(d)
n:l]xl-
dt:“'l

for all i = 1,2,...,n; where Jx(n) is Jordan's totient function as
2
n
T,(n) = Eu(d)(—] :
d|n d
We note that B(x,)=J,(x,) foralli=1,2,...,nif and only if S is factor closed .
Now we prove a structure theorem for GCD-Reciprocal LCM matrices defined
on S ={X,X0s X, } -
Theorem 1. Let S=1{d,.d,,...,d_} be the minimal ged-closed ordered  set
containing § ={x,X,,...,x,} where x, <x, <..<zx, and d, <d, <..d, . Define the
nxm matrix E = (e;) by

—

eij - x_iv dj ixi
0, otherwise
and the mxm diagonal matrix by
A = diag(B(d,), B(d,),.... B(d,)).
Then, [A] = EAE" .

Proof. The ij-entry of EAE" is equal to

i 11 1 1 )
(EAET),; =Y B(d)eye, = 3 Bld,)——= Sy Bd)=— 3 J,d), it
%=1 §k|xi X Xy XXy dna) XX dlnxp
3T
is well known ZJ ,(d) = n® . Then,
dir
X, X,
(EAE"), = w}w(x,.,xj)z = L x) =a;.
X [xi, %]

~ Theorem 2. Let S= {dl,d2,...,dm} be the minimal gcd-closed ordered set

containing S = {x,,x,,...,x, } where d, <d, <..d, and x, <x, <..<x,. Then
detfAl=  ZdetEy p s, f BOG IB(x, ) B(x, )
18k, <k, <<k, Sm
where E, , , , is the submatrix of E consisting of the ky th, k th,..., ko th columns
of E.
Proof. Theorem 1 says that [A] = (EA*WEA'*)". We can write C = EA"?.
Then [A]l=CC". So by the Cauchy-Binet formula, we obtain
det[A]=det(CCT)= Y detCy, , . detCT bty

1sk <k, < <k, sm

= 2 (det Cltr byt )2

1€k <k, < <k S
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where C . ., is the submatrix of C consisting of the ki th, Kz th, ..., kn th columns of
C.

\/B(xk )B(x,)..B(x, ydetE, , .,

.....

and hence,
det[A] = E(detE(H ,,,,, LV BGx, )B(x, ) Bx, ).

18k <oy <.k, Sm

Corollary 1. Let S ={x,,x,,...,x,} be a finite ordered set of distinct positive

integers. If S is ged-closed, then the determinant of the GCD-Reciprocal I.LCM  matrix
[Aldefinedon S is

detfA] = 2%

k=1 X
Theorem 3. Let §={x,x,,..,x,} be a finite ordered set of distinct positive

integers. If S is gcd-closed set, then the inverse of the GCD-Reciprocal LCM  matrix
[A] defined on S is the matrix N = (n;), where

p!k pﬂc
= e ln
x;|;xx Xy

Proof. We will calculate the inverse of the GCD-Reciprocal LCM matrix
defined on a ged-closed set. Let E =(¢;) and P=(p;) be defined as follows:

0, otherwise

Py =X E“(d) or Py =X, EM(@
dxlx, X
FR37 dl'i‘_l‘

Xy<Xj
i, - o N
(If —~ is not an integer then no d divides —. )
X, X,

i ¢

Calculating the ij-entry of the product EP" gives

(BPT), = Yeup, = 2 2u<d>~ Zu(d)~ fzum { Y

oy & (szgx,‘ X; d! 0, otherwise
dx b
I,“—*’-,(

I

Hence E™' =PT.
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fA= (:liatg(B(x1 3, B(x,),...,B(x, )) then by Theorem 1, we write [A] = EAE” .
Therefore, [A]'= BN A E'= (BN ATE'=P AP" = (n;) where
Pu Py

EAEA B('xk )

251%
3. NUMERICAL RESULTS
Example 1. Let $={4,6,8}. The GCD-Reciprocal LCM matrix [A] defined on S

18

L1

6 2

1 1

A== 1 1.

A5 12
L
2 12

S is not ged-closed set and S = {2,4,6,8} is the minimal ged-closed set
containing S. The 3x4 matrix E = (¢;) defined in Theorem 1 is

L
4 4
B o 1 o
6 6
LN N
3.8 8 |

From Theorem 2,
detfA]= Y (detE, , . PB(x, )B(x,)B(x,).

1Sk <hy <k, <4

2z 2
11, 11
4 4 4 4
detlA] = é 0 «é B(2)B(4)B(6)+é 0 0Of B(2)B(4)B(8)+
11y 111
8 8 g 8 8
z 2
~1— 0 0 —1- 0 0
4 4
+~é— é 0| B(2)B(6)B(8)+|0 -é 0i B(4)B(6)B(8)
1,1 L1
8 8 8 8
where
B(2) mzlz(d) =J,(D+],(2)=4 B4)= 212(d) =J,(4)=12
42 dld

dar
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B(6) = ij(d)=12(3)+12(6)=32 B(8) = ZJ (8)=48.
g'}(}z,zs diﬂé(:
Thus
35
det[A] = i

Example 2. Let S={5,15,30}. The GCD-Reciprocal LCM matrix [A] defined on
Sis

v LI =
B w3

S is ged-closed set where
B(5) mEJz(d)m D) + 1:(5)=25 , B(15) = ZJ (d)=J2(3) + J2(15)=200

s dJI5
a5

B(30) = ZJz(d) = Jo(2) + Jo(6) + Jo(10) + J2(30) = 675.

dBo
415,15

Then ‘
2 B(x,) B(S).B(lS).B(BO) 2
det[A * ==,
[4)= 1;}[ x 5%15%30° 3
Example 3. Let S={5,15,30}. The GCD-Reciprocal LCM matrix [A] defined on

Sis
11
3 6
1 1
Al=|—- 1 ~|.
[A] 3 5
11
6 2 ]
S is ged-closed set but not factor-closed. From Theorem 3, we obtain [A] = {ny)
where
p1= 5, prz= -3, p13 = 0, pu=0, pn=15, pa=-15, p31=0, p32=0, p33=30
and
Pf; plzz p123 9 PuPrn , PPy _ —3
11= + + ===, Niz= + =m=n2]’
B(5) B(5 B30 8 B({15) B(30) 8
2 2 _
np=tPn _goy  op= Pz Po 35 = PaPn —2_ ny, |
B(30) B(15) B30y 24 B(30) 3
2
4
Ny Py . %

" B(30) 3
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Thus
2 -3
8 8
N=i 23 3 2]
8 24 3
0 I
L 33
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