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Abstract- In this study, phase-plane analysis is carried out for a simplified model of
Purkinje cell dendrite in terms of voltage-gated ionic channels involved. State variables,
nullclines and equilibrium points of the model are determined, and effects of ionic
channel conductance and injected current on the shape of nuliclines and the equilibrivm
points are investigated. '
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1. INTRODUCTION

Purkinje cell is one output neurone of cerebellar cortex. Dendritic tree of rat cerebellar
Purkinje cell receives around 175000 excitatory inputs from granule cells and 1500
GABA, inputs from local neurones[1]. Many different types of voltage-gated ionic
currents are found in Purkinje cell dendrite{2]. Voltage-gated ionic currents are of great
importance in integrating the information received by the neurones{3]. ‘

The analysis of realistic neuronal models is very complex due to too many variables in
the models. So the analysis of the neurone with a simplified model captured the
complex behaviour of a realistic model provides valuable insight into the information
processing capabilities of the nervous system[4]. In this context, Yuen et al. used a
single-compartmental model of the dendrite with high threshold calcium and delayed
rectifier potassium conductances to investigate bistability in cerebellar Purkinje cell
dendrites using phase-plane analysis[5]. Pinsky and Rinzel{6] used a simplified model
of Traub et al.[7] with just two compartments. Mainem and Sejnowski[8] used another
simple model similar to that of Pinsky and Rinzel{6] for neocortical neurones.

2. DENDRITIC CELL MODEL

Many different types of voltage-dependent calcium and voltage- and calcium-
concentration dependent potassium channels are present in Purkinje cell dendrite. In this
study, we use a simplified model described by Yuen et al.[S]. So the model has only one
compartment and consists of high threshold calcium and delayed rectifier potassium
channels. Voltage-gated ionic current used in the model obey Hodgkin-Huxley
mathematical formalism[9]. Ionic channel parameters are based on a recent study[10].
The model can be described by the following equations: :
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where « =1 pF/em’, g =047 mS/ cm?, grg=12 mSicm?, gru=0.03 mS/ e, V=120
mV, Via,=-90 mV, V,,=-70 mV. The interaction between lear and resting Tx,, gave rise
to a resting dendritic membrane potential of —65.76 mV in confrast to the study given in
[10] due to calcium-activated potassium currents involved in that study.

Current equation (1) indicates that change in dendritic membrane potential is
proportional to sum of ionic and injected currents. Ve, ,Vian and Vi, are Nernst
equilibrium potential for calcium, potassium and leakage currents respectively. m and »
are voltage-dependent probability of being open state for activation gates for calcim
and potassium channel respectively. Gating variables (m, n) take values between 0 and
1. mw and n. are steady-state activation and inactivation for calcium and potassium
channel respectively. t,(v) shows voltage-dependent potassium activation time
constant which is the time taken to reach a steady-state value for a given potential,

3. PHASE-PLANE ANALYSIS

Phase-plane analysis allows us to view the response of multiple variables and their
relation with physiological functions at the same time, and can be used to analyze the
complex dynamics of the neurones during simulations[11]. The dendritic model given
above is described by two differential equations, so it has just two state variables:
dendritic membrane potential (V) and delayed rectifier potassium channel gating
variable (n). In the first step, system nullclines are estimated., Nuliclines are derived by
setting time derivative of the state variables to zero: o
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Equation (9) shows the voltage nullcline. Delayed rectifier potassium gating variable(n)
nullcline is obtained as: |

f{ﬂz()mnwnm(‘/): !

dt ] 4 o (VFIO/I0 (10)

System nullclines are shown in Figure 1.
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Figure 1. System nullclines and equilibrium points

The intersections of the nullclines are defined as equilibrium points where both of the
time derivative of the state variables are equal to zero. Therefore the system state isn’t
changing . There are three equilibrium points (V, n) for our system as seen in Figure 1:
A(-65.76,0.01), B(-57.94, 0.022) and ((-23.837,0.4052). Phase trajectories converge
toward the equilibrium points. Negative values on n-axis indicate unrealizable
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imaginary values. The shape of the voltage nullcline includes a dip between about ~65
and —58 mV, and a hump between about -538 and 110 mV.

In the second step, local stability procedure is applied for three equihbrzum points.
The procedure is given by Rinzel and Ermentrout explicitly[11]. It aims to determine if
small disturbances from an equilibrium point are converging toward it. Therefore the
procedure linearizes differential equations of the system, and evaluates the partial
derivatives at the equilibrium points(Jacobian matrix). Linearized equations describing
small disturbances from an equilibrium point(Vy , ng) assuming V=Vg+x ; n=ng+y as
follow:

- —=Ax+B ; —=Cx+D 1
dt ¢ dt ey | (11)
where
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- Eigenvalues of the Jacobian matrix are roots of the quadratic form as:
A* —(A+ D)L +(AD - BC)=0 _ (16)

Calculated values of coefficients and eigenvalues for A, B and C equilibrium points are
given in Table 1. ‘

Table 1. Calculated values of coefficients and roots for Equation (16)

A B C D A A
(:65.76,0.01) | -0.01205 | -1.1635e-3 | 4.82601e-4 | -0.47842 04784 0.013
(-57.94,0.022) | 0.01828 | -0.01638 | 1.07020e-3 | -0.49717 0.4971 0.0183
(:33.837,0.4052) | 1.59837 | -211.28308 | 0.02012 | -0.83484 | 0.3818+11.6647 | 0.3818-11.6647

If all exponential solutions of the forms ' and &' have growing modes, then
equilibrium point is unstable. If all exponential solutions have decaying modes, then
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equilibrium point is stable. So A equilibrium point is stable and B equilibrium point is
unstable. C equilibrium point has complex conjugate eigenvalues, It is hopf bifurcation
point, and gives rise to a limit cycle. As it is unstable, bifurcation is subcritical{10],

In the third step, effects of the ionic conductance and injected current on the shape of
nullclines and equilibrium points are investigated. The shape of the voltage nullcline is
a result of calcium, delayed rectifier potassium and leakage conductance while the
shape of delayed rectifier potassium gating variable nulicline is a result of just dendritic
membrane potential. '

The effect of specific conductance for calcium channel on voltage nullcline is shown
in Figure 2. The hump in the voltage nullcline attenuates and narrows on the voltage
axis, also the dip widens when the calcium conductance is decreased as seen in FigureZ.
Sufficient decreased calcium conductance moves the lowest equilibrium point(A)
leftward. It also moves the hump below the potassium gating variable nulicline.
Therefore it eliminates the other two equilibrium points.
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Figure 2. Effect of calcium conductance on voltage nullcline and equilibrium points

The effect of specific conductance for delayed rectifier potassium channel on voltage
nullcline is shown in Figure 3. The voltage nullcline shifts upward when the potassium
conductance is decreased as seen in Figure 3. So the highest equilibriom point moves
upward. But the other lower equilibrium points and voltage range which corresponds to
the hump don’t change. This also shows that the shape of the hump is dependent on
calcium current. ‘

The effect of steady depolarizing current on the voltage nullcline is shown in Figure 4.
Steady depolarizing current attenuates the dip and shifts voltage nullcline upward as
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seen in Figure 4. This results in elimination of the lower equilibrium points and
remaining the highest equilibrium point elevated slightly.
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Figure 3. Effect of potassium conductance on voltage nullcline and équilibrium points
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The effect of steady hyperpolarizing current on voltage nullcline is shown in Figure 5.
Steady hyperpolarizing current accentuates the dip in the voltage nullcline, And it afso
shifts the voltage nullcline downward. This result in elimination of the upper
equilibrium points. '
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Figure 5. Effect of steady hyperpolarizing current on voltage nullcline and equilibrium
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4. CONCLUSION

In this study, phase plane analysis is carried out for Purkinje cell dendrite using 2
simplified model reported in literature. Nullclines are determined, and three equitibrium
points of the model are obtained. Then stability of the equilibrium points is studied.
Stability analysis indicates that the model has one stable, one unstable and one
bifurcation points. Then effects of the ionic channel conductances involved in the model
and steady depolarizing and hyperpolarizing currents on equilibrium points are
investigated. Results show that the lowest equilibrium point moves leftward and the
other two equilibrium point is eliminated when calcium conductance is decreased, the
highest equilibrium point moves upward and the other lower equilibrium points don’t
change when potassium™ conductance is decreased, increasing steady depolarizing
current eliminates the lower equilibrium points and elevates the highest equilibrium
point slightly, and increasing steady hyperpolarizing current eliminates the upper
equilibrium points.



78

Mahmut Ozer

REFERENCES

- R. M. A. Napper and R. J. Harvey, Number of parallel fiber synapses on an

individual Purkinje cell in cerebellum of the rat, J.Comp. Neurol., 274, 167-177,
1988.

E. De Schutter and J.M. Bower, An active membrane model of the cerebellar
Purkinje cell: L Simulation of current clamps in slice, J. Neurophysiol., 71, 375-400,
1994. :

M. Tsugumichi, T. Hiroshi, S. Hideo, W. Shigeo, I. Masashi, K. Yoshihisa and M.
Hiroyoshi, Low threshold potassium channels and a low-threshold calcium channel
regulate Ca® spike firing in the dendrites of cerebellar Purkinje neurones: a
modelling study, Brain Research, 891, 106-115, 2001,

Z. F. Mainen and T. J. Sejnowski, Modeling Active Dendritic Processes in
Pyramidal Neurons. In: C. Koch and L. Segev, eds. Methods in Neuronal Modeling:
From lons to Networks, 2™ ed., 171-209, MIT Press, Cambridge, Mass., 1998,

G. L. Yuen, P. E. Hockberger and J. C. Houk, Bistability in cerebellar Purkinje cell
dendrites modelled with high-threshold calcium and delayed-rectifier potassium
channels, Biological Cybernetics, 73, 375-388, 1995.

P. F. Pinsky and J. Rinzel, Intrinsic and network rythmogenesis in a reduced Traub
model for CA3 neurons, J. Comput. Neuroscience, 1, 39-60, 1994,

R. D. Traub, R. K. S. Wong, R. Miles and H. Michelson, A model of a CA3
hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic
conductances, J. Neurophysiology, 66, 635-650, 1991.

Z. F. Mainen and T. J. Sejnowski, Influence of dendritic structure on flrmg pattern

- in model neocortical neurons, Nature, 382, 363-366, 1996.

10.

11.

M. Ozer, Analysis of dynamics of ionic currents in Purkinje cell based on
compartmental modeling, Ph.D. Dissertation, Karadeniz Technical University, 2001,
Y. Mandelblat, Y. Etzion, Y. Grossman and D. Golomb, Period doubling of calciu.
spike firing in a model of Purkinje cell dendrite, J. Computational Neuroscience, 11,
43-62, 2001.

J. Rinzel and B. Ermentrout, Analysis of Neural Excitability and Oscillation. In: C.
Koch and 1. Segev, eds. Methods in Neuronal Modeling: From lons to Netwarks 2"
ed., 251-291, MIT Press Cambridge, Mass., 1998.



