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RESPONSE OF A PARAMETRICALLY EXCITED SYSTEM
WITH QUADRATIC AND CUBIC NON-L}NEARITIES
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Absrtact- An investigation is presented of the respoﬁse of a three-degree-of-freedom
system with quadratic and cubic non-linearities under parametric excitations. The
problem of suppressing the vibration of a structure that is subjected to combination
parametric excitation is considered , where the vibration amplitudes resulting from such
resonance can not be controlled. The fixed points of the three equations are obtained
and their stability are determined. Numerical solutions are conducted to obtain the
response of the three modes and their stability. Effects of the different parameters on
both response and stablhty of the system are also mvestigated
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1-INTRODUCTION

A non-linear system of three-degree-of- freedom with quadratic and cubic dampmg
and stiffness representing the vibration of a cantilever beam is studied and solved using
multiple scale perturbation technique. The oscillations of this beam are modeled by
three differential equations with non-linear quadratic damping and cubic stiffness under
the interaction of parametric excitation [1]. The governing equations of motion are:

¥, +ec,X,+eu,|X, ; J)XZCOS(QI) =0 (1)

J=1

where u, and ¢, are damping coefficients (n=1,2,3), «, are cubic non-linear
parameters, € is a small perturbation parameter, @, and £ are the natural and
excitation frequencies, N any natural number and (s=1,2,3),.

Dugundij and Mukhopodhyay [2] studied experimentally and theoretically the
influence of some types of combination resonances involving bending and torsion
modes of vibration on the instability region near forcing frequencies. Cartmell and
Roberts [3] derived an expression to describe the stability boundary for another type of
combination resonance, in which only bending is apparent.

The study of three-degree-of-freedom, non-linear systems has not received much
attention. The response of non-linear system to harmonic excitations often exhibits
complicated behaviors when their natural frequencies are commensurable [4,5] at
internal (auto-parametric) resonance. Nayfeh et. al [6] considered a theoretical and
experimental investigation of two-degree-of-freedom structure exhibiting an auto-
parametric combination resonance of the additive type.
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El-Bassiouny and Eissa [7] studied the response of three-degree-of-freedom system
with cubic non-linearities and auto-parametric resonances to, a harmonic excitation of
the third mode. Effects of the different parameters on the system response, stability and
dynamic chaos are studied applying well known numerical techniques [8,9,10].

In this work, the behavior of a three-degree-of freedom-system with non-linear
quadratic damping and cubic stiffness is studied. The method of multiple scales [11,12]
is applied to study the - stability boundary for ‘the combination resonance
Q=z=zw +0,,Q =0, +o,and Q, =w, +w,of the three modes of vibrations. The
periodic solution and its stability are obtained and studied. Effects of the different

parameters on both response and stability of the oscﬂlatzon are investigated and
reported

 2MATHEMATICAL ANALYSIS -
A géneral uniform expression of the solution of Eq. (1) is sought in the form :

X, (€)= "%, (T,.T;) o @
k=1
where Ty = ¢ is a fast time scale associated with changes occurring at the frequency
w, and £, ,and Ty = £¢ is a slow time scale associated with modulations in both the
amplitude and phase caused by the non-linearities of both damping, spring stiffness and
parametric resonance. Substituting Eq.(2) and its derivatives into Eq.(1),and equating
the coefficients of the same power ef g .for both 31des we get the following:

(DY +w,”) x,,=0 - | - 3)
| (D{? _-f_a)n ) X - 2D Dlxn() Cn DGan $Jun(DG.xn0)2wanx30

3 4
-3 Sk, cos(Q.7;) | - 4)

j=1 s=1

(Dg * a)nz) Knz =7 ‘Dl2 Xao ~ 2‘DO D% X — Cn (Dl Xno .+ DO xnl)$ Zumx(D{)xn{J)(Dlan

3
+ Dyx,) =3¢t X X Eka cosQ, T, © (5)

n n0 el niv il
j=ls. =1 .

The general solution of Eq. (3) can be expressed in the form . : y
%,0(T0,T) = O, €xp(i @, Ty) +0, exp(~i @, T;). | ©6)
where Q,,, 0, are conjugate complex functions in 7} .

Substituting’ frOth_Eq. {6) into Eq. .(4),we get' the following: | _ |
(D¢ +w,7) x, == 2i0,(DQ,)expio,T,) —i C,m,0,,explio,T,) + 1,0 (0% expRin,T,)

A 7

- QHUQ,,O)W (0}, expBio, T)+3Q,;0Qna exPé  T))— 22{ ;j(Q,,o exp@(sz +0, )T)

J=l 5=l

+ Qno exp@(ﬂ - )T, ))]-§~ ce . N . (7)

Hence, ehmmatmg the secular terms, the general solution of Eq.(7) is obtalned as:
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%) = 0, explio 1) + £20T exp Qi T,) + . Oy exp(3i0,T,)/80,” + B

3 N
=Y DIE, exp(i(Q, + »,) Ty) + E,, exp(i(Q, - @,) T,)] +cc. (8)

j=l s =1
where E,,,E,,,,Q,,and B, are complex conjugate functions in Tj, and cc denotes
the complex conjugate of the preceding terms.

.- Substituting Eqs (6) and (8) into Eq. (5) and following the same procedure, the
third order approximate solution is obtained as:

5alTy 1) =0 XG0T + Fexpl )+ expiTy) + Fyexpldia,Ty) + Fgexp(SioT;)

+2 Z{E,U3 exp(i(Q, +w)T,)+ E s exp(i(Q, —w.)T)+Ej5 exp(i(Q, +3a>j)T0)

i
+ E exp(z(Q -3, )T )+Enj7 exp(t(.Q ~+~2a) Ly )~4~E,yE exp(i(L2, - 2w, )T}
4+ Fy, exp (i(2Q, +o, )T )+ w2 €XP (1(252 ~w )T+ F,, exp (zQ T Y+ B -
+ H,, exp(i(€, + o, +w; )T)+Hnﬂex-p(z(£2 -, +aJ-.)T)+Hn.sexp(L(§z-+a)- a).)T);
+ H,; exp(i(€2, — @), —0;)T,) + H 5 expli(Q, +20, +@,)T) + H,, exp(i(L, + 20, - =0, Y1)
+H,expli(Q, — 20, + Y1)+ H g expli(€, ~ -20, ~, ) 10) + 0, expl(€2, +€2,  +@)T)

+ 0 eXpUQ, +Q  — W) + 0, expi(Q, ~ Q. + @) + 0, expli(Q, ~Q,_, —w)T)}

o kee . L)
Wh@l‘eﬂz, F;zS’Enﬁ’ En;G’Eul’Ey.’Z’szl’ HRJS’QJUI’ Qn]4 L andQ are

complex functions in T; and cc denotes complex conjugate of the precedmg terms

The general solutaon of Eq. (1) 1s obtamed as:
X, (t:8)=x,(T,,T)) +ex, (T, 1)+ €%, (T, T,)+€°(0) | (10)

To describe quantitativély the nearness of the combination resonance cases Q, =, +@,
Gz, +0, ,Q = 0 + 0y, We introduce detunmg parameters o, 0, and 0y,such
that: Q, = o, +, + 0, ,Q, =@, %a)3+sc72 Q, = a)+003+50'3 1

Substituting Eqgs. (11) into Eq.(7) and setting the: coefficients of secular terms to zero,
yields the solvab1hty conditions as: ‘

1, = s 1 ““‘,‘U"“.-"' S
1o (2D, Qw + CxQ10)+ 3“ Ql() Qw 3 k_l.zfgzo.e . +_\"§“ k3B €7 =0 - (12)
: _ S R 1 = . 5
LWy (2D, Qy + C2Q20)+ 3 052 on Q20+ ”5 kyB, € firs “5 kyBy € .3T§ =0 (13)

% kpBg € >+ % kyyByy € =0 (14)

i W, (ZD} Qs + €050+ 30,05 Oy +
Substitﬁting the polar‘florm QIHO = % a, (T[) @' P (T”; into .Eqs. (12) and (13) and

separating the coefficients of real and imaginary parts yields the modulation equations:
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» + _ ’ 4 — !

, al(g1 PR R j/?’) _3 a a’ - Ez~‘°’—kn cos ¥, —ﬁk13 cosy, =0  (15)
2 4 4

o, a, + o, ca, /2 +& . 2k, sin ¥, + 2 fc13 siny,=0 : (16)

O, +0,— 05—y, ~y, +

N i T Yot et 5t LA G WL S NN Sk, cosy, =0 (17)
2 8 4 4

o, d, +0,c,a,/2 +%k21 S +~§~3—k23 siny, =0 (18)

0,0 (DDA Ty 3 s Gy sy %k cosy, =0 (19)
2 8 4 4

W, a5 +0, c,a 2 + 4y sm}/ +224 sin ¥, =0 (20)

3 3 3 4 31 3 4 2 2

where, ¥, = o‘1 T, ~By=B v, =0, T, = B,-B, and v, =0, T ﬁs B .

For- steady-state solutions, a, =7, =0 , and the periodic solution at the fixed point
corresponding to Egs. (15)-(20) are obtained. We have the following three possibilities:
(i) g, =a,=a,=0

(i) a, #0 , a, =0 and a; =0 . Hence from Eq. (15) we get which has solution

gieven by:
al =4, (0, -0, +0,)/3¢, (20
(iii) «a #0, a, #0 and a, =0 , and hence from Egs. (15) and (16) , we get
-g—aa 305(0(0' -0, +0,)a +[w? (o, ~0, +0,) +wic)lal wE—a =0
16 LT R 2 34 1\ 2 3 Ll 1y 2 . (22
and from Eqgs. (17) and (18) ,we get
9 3 k?

Tg“?“z —Zazwz(cz ~0, +0,)a; i (o, -0, +0,) +wlc)H)a; —«i—‘_af =0 (23)

3-STABILITY OF THE PERIODIC SOLUTION

To determine the local stability of the various fixed points and hence the various
steady state solutions of the linear equation ,one canlet @ = = %( p, ~iq Je" " where

p,andg, are real and v =(0,-0,+0,)/2,v,=(0,~0,+0,)/2 and
v, =(0, -0, +0,)/2 . Substituting into equations (12) and (13) and equating the real
and imaginary parts we get

’ k, k, ’ k k
P, +c1p1/2+4w 42+V191/2+4w g, =0, gq, wv1p1/2+clq1/2+z(i)3—p2+—ﬁ—q3mO,
1 H 1 1
’ k k ’ k
P "i“czpz/z"‘ﬁ% +V2Q2/2+j4“§“% =0, g —v2p2/2+02q2/2~%~%p1 "*“?45)‘3'% =0

3 2 2 2
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k, ks, " k, S
ps +Cap3/2+4w 41’*"’3‘]3/2“'460 4, =0, % V3P3/2'§'C3%/2+EP1 Pz":O

3 3 T e

The stability of a particular fixed point with respect to a perturbation proportlonal to
exp( AT, ) is determined by zeros of the characteristic equation:

Ate 2 v, 0 o, /4, 0 o, 4w,

-y, A+c /2 o, 14w, 0 o, /4w, 0
0 O, /40 Ate /2 v 0 O, /40

o tdo, 0 —w. ase2  antde, o |70 @4
0 0, /4w, 0: Uy ldw, ~ At+cy/2 Vs

ay 14w, 0 oy, 140, 0 ~V, A+, /2

4- RESULTS AND DISCUSSION
The frequency response equation (21), is a non-linear algebraic equation in the
amplitude a,. This equation is solved numerically and the results are shown in Fig. 1,

which represent the variation of the amplitude a, against the detuing parameter o; and

at the glven values of the other parameters From Figs.la, we find that the amphtude
ais a monotonlc 1ncreas1ng functlon in the natural frequency a)i , whlle the amplitude

a, against tbe_detumg_ parax_neter a2, Flg 1b, we fmd _tha;_.the _amphtuc_ie._;c_z1 is a
monotonic decreasing function in the natural frequency @,. But Figs:lc and 1d , we
find that the amplitude ., is a monotonic decreasing function in the non-linear
coefficient ¢, . | | '

The frequency réspohse equation (22), is a non-linear algebraic equation in the
amplitude @, . This equation is solved numerically and the results are shown in Fig.1
which represent the variation of the amplitude @, against the detuing parameters for the
given values of the other parameters . From Fig 2a, we find that the amplitude g, is a
monotomc decreasmg funcnon in the dampmg coefficient c,. Fig.2b, shows that the

amphtude aisa monotonic decreasing funcuon in the natural frequency w, .

The tlme history of the given system has been studied applymg Runge- Kutta
fourth order method. The numerical solution and its stability for both modes of
vibration are obtained as shown in Figs 3a, 3b and 3¢ . From these figures , it can be
noticed that for three modes, we have decreasing amplitudes with some chaos . The

steady state amplitude forxias about +0.08 , for x,is about £0.06 and for x, is
about £0.1. '

From Eqn.(9) the theoretical resonance conditions are determined and classified
into the following categories:
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(1) Primary resonance cases: ;= @, (n=12,3 and s=1,2).

(ii) Sub - harmonic resonance: Q, = 20_,Q. =30, ,Q =4dw,.

(iii) Super - harmonic resonance: Q, = o, /2 .
(iv)Combined resonance ; some of them are :

Q, =t(w,+w,), Q, =xw tw,), Q, =w,Fo,),
(@ 10,)/2, Q= ( tw,)/2, Q =t (@, +0,)/2,
=+(20 t0,), Q220 tw,), Q,=xQ20, te,), Q =120, tw,)

Q=0,0-Q,=20,0 -Q, =20,Q,~Q, =20,
(v) Simultaneous or incident resonance

Any combination of the two resonance cases are classified as simultancous resonance.

In the following, some selected resonance cases are discussed, while Tablel,
summarizes other possible resonance cases :

i) combined resonance

a)If Q =0, +o, Fig 4a, illustrates the results of this case. It can be seen that the

steady state amplitudes of both the first and second modes have increased to about
625% and 1150% compared with the basic case in Figs. 3a and 3b respectively , with
increasing dynamic chaos. The steady state amphtude of the third mode has no
significant changes. ‘

b) If Q, =3w, +@,, . It can be seen from Fig.4b, that the steady state amplitudes of the

first and third modes have become time dependent the maximum. steady state
amplitudes are increased to about 625% and 360% compared to the basic case shown in
Figs.3a and 3c respectively, with increasing dynamic chaos. The steady state amplitude
of the second mode has no significant changes.

ii) simultaneous resonance

a) If Ql =d)_1 and Q, =, +®,. Fig.5a, illustrates the results of this case. It can be

seen that the steady state amplitude of the first and second modes have increased to
about 400% and 330% compared to the basic case shown in Figs.3a and 3b
respectively, with increasing the dynamic chaos, while the steady state amphtude of the
third mode has no significant effects.

b) If &, =8, =, +w,. Fig 5b illustrates the results of this case. It can be seen that the

steady state amplitude of the first mode has increased to about 350% with increasing the
dynamic chaos, while the steady state amplitude of the second mode is increased to
about 330% with increasing the dynamic chaos, and the steady state amplitade of the
third mode is increased to about 270% compared to the basic case shown in Fzgs 3a, 3b
and 3c respectively .
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O I @, =0, +0,and Q, =0, +o, . Fig5c illustrates the results of this case. It can

be seen that the steady state amphtude of the first mode has increased.to about 625%
“with increasing the dynamic chaos, while:the steady state.amplitude of the second mode
is increased to about 300% with . increasing the dynamic chaos, and the steady state -
amplitude of the third, mode is increased to about 200% compared to . the basic case
shown in Figs. 3a, 3b and 3¢ respectively.

Other posmple resonance cases are summerized in Table 1.

B ' 5-CONCLUSIONS

_ A system of non-linear . parametrically coupled differential equations
representing the vibration of a cantilever beam have been solved applying the multiple
time scale method . Different resonance cases are obtained and the. numerical solutions
of the given system and its stability are determined. The effects of the different
parameters are mvesugated From this study the following conclusions may be written:

1.The amplitude a,is.a monotonic increasing function in the naturai_frequency o, .
2.The amplitude a, is'a monotonic decreasing function in the non-linear coefficient o,
3. For the damping coefficients c, we find that the amplitude of the state is monotonic
decreasmg function in the dampmg coefficients .

4.We find that the amphtude of the state is monotonic decreasmg function in the

damping coefficients i, .

5.From the reported resonance cases, it is clear that the worst cases are the combined
and simultanous cases, we can see this from Tablel, which must be avmded in the
design of such system. -

Tablel -
Resonance cases Plncreases Phase plane | %Increase Phrage plane %lncreases | Phase plane
v of X, [of X, of X, of X, of Xy {of X,
QO =m 125% Multi limit - Chaotie - Chaotic
= cycle
chaotic -
_ £ n e o N ~ :
Qn =0, {haotic 200% Multi limit Chaotic
! cycle
. chaotic
- Chaolic Chaotic 220% Multi limit
‘Q'l = s eycle
e chaotic
o 400% | Tuned nult - Increasing - Chactic
‘Ql - 2601 limit cycle chaotic
,(:Z — 2 w 1090% More 330% More - Chaotic
== chaotic and chaotic and ’
multi limit multi limit
- cycle cycle
s 125% More Chaotic .. 580% i Tuned multi
Ql = 2_&_}3 chaotic and : limit cycles
o mudlh Hmit
cycle
=2 (1) 400% Iv'!?re - Incrcas_irzg Chaotic
Z i chaotic and chaotic
multi limit
cycle
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8 — 250% Multi limit - Chaotic - Chaotic
Q, =30, cycles
9 - 250% Multi limit - Chaotic - Chaotic
Ql - 4601 cycles
10 R 400% Tuned muiti - Chaotie 5G0% Tuened muiti
Ql =0, + 1, ; | limit cycles limit eyele
it —~ 625% . - Tuned multi 1150% Tuned multi - Chaotic
Q'i =0, + 0, C L limit eyeles ) limit cycle
12 —~ - Chaotic 330% Tuned muit - Tuned muiti
Qi =0, + 0, limit cycle limit cycle
13 ~  400% - .| Tuned muolti - Chaotic 500% .. i Tuned multi
92 =0, + 0y . {imnit cycele ) Hmit cyele
14 ~ 125% Chaotic 250% Multi limit 500% Tuned multi
Q2 =, + 0, cycle Co Hmit cycles
15 ~ 330% Multi limit 450% More - Chaotic
Q‘Z = 30)2 T, cycle o chaotic
16 ~ : : 160% Mualti limit 330% Multi limit 1000%. . 7 Maukti limit
Q2 - 36{)2 T, : cycle cycle cycle
17 —~ 8509~ | Multi limit - More 280% Multi limit
Q‘Z - 30)3 + W, Cl cycle chaotic cyele
- ; — - -
18 Ql = (0, ~ @, Non chactic 1000% Non chaotic 200% Non chaotic
19 Ql = 3602 + o, 250% Chaotic 330% Chaotic - Chaotic
20 ~ P 5259 Increase - Chaotic 360% Increase
Q, =3w, +m, : chaotic chaotic
21 o \ 125% Increase 280% more chaotic 700%. | rmore chaotic
Ql - 3503 + Ci)z chactic : and multi .| and muli
fmit cyeles S 4| limit eyeles
22 — 250% More - Multi limit 270% More chaotic
Ql - 30)1 T, chaotic and cycle and multi
mulii limit limit cyele
cycle
23 — 125% Tuned and . Tuned and - Chaoctic
Q + ’gz =20, muli limit muldd limit
cycle cycle
24 QI - Q‘z =@, 300% Chaotic - - - -
25 _ - 125% TFured and 560% chaotic and - Chaotic
Q, ~Q, =20, moulti Jimit st Himit
cyele cycle
26 — o~ 125% Tuned and “ Chaotic 500% Chaotic and
Q, ~Q, =20, mylt limit ' mult} limit
cycle cycle
27 _ ~ 400% More - Chaotic 300% More chaotic
. 'Q'l QZ =0, + 0, IO chaotic and and multi
multi {imit lisnit cycie
- cycle
28 ~ ~ " 350% Tuned and - - - -
Q =0,,Q, =20, multi it
cycle
29 Q W <o 400%. Tuned and 330% Tuned and “ Chaotic
L= SO multi limit multi limit
Qz =W, + 0, . . cyele eycle
30 Q. =w o 600% - Tuned and 415% Tuned and - Chaotic
R & SR multi limit : multi limnit
Q=@+w,)/2 | | s || s
31 ~ 2 450% Tuned and 300% Tuned and 200% Tuned and
. Qi S+, multi Limit multi fimit multi limit
Q‘z =W, I o, e eycle cycle aycle
32 - ~ 330% Tened and 330% Tuned and 210% Tuned and
Q =0, =0, +0, multi limit rult fimit multi Himit
cycie cycle cycle
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