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ELLIPTIC AND ULTRA-HYPERBOLIC EQUATION
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Abstract- In this study, in means of the Harnack mequalzues of the harmomc functmns
some Harnack type inequalities are given: for the solutions of GASPT equation with
singular coefficients and for two expanded equations of it.
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I INTRODUCTION
- Let , in xoy-plane, u ( X, y ) be a nonnegative harmonic function in a diSk D of
radius a with center M. Then _fqr_ any Pe D, the following Harnack inequality

+p*

4P ()< (M) (1)
a+p 7
g . A
is hold between the valuesof u (x,v) ¥
at the point P and at the center M. '
(Figure 1) [1,3,4,5].
It should be noted that the
Harnack inequality is hold also for - -
n - dimensional case with the _ ~
inequality O ‘ X
Figure 1.
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where M is the center of the n-dimensional ball B” : x> +...+ x> < a’, P( X;,..,x, )& B"
is a point at distance p < a from the center, and u* is a nonnegative harmonic function’
in B".

In this study, we obtain Harnack type inequalities for some solutions of the
GASPT (Generalized Auxiliary Symmetric Potential Theory ) equation
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where «; (i=12,..., n) are constants, and for some solutions of the equation

rel Ty2 m 2 o, ’

YAt o A ML 0
i=1 8.7(_?? J= ay__; Yi—¥; ayi .

where O ; (j=12,.,m) are constants, bj (j=12,.,m) are nonzero constants and

(¥, yi ) is a constant point in the domain_of I,

Finally, we give Hamack 1nequahty for some soiutxons of the ultra- -hyperbolic

equation
o0’u o, ou B, ou ) 2% o . y
+—+ +—=0 5
;[ax x, Ox, J ;[ayj ¥; ayj} 972 (5)

where o, (i=12,...,n) andlﬁ_}. {j :_1_,2,.,_,m)_are_c_onstants 2.

2. HARNACK TYPE INEQUALITIES
Let us make the transformation x* = x] +...+x; in (3). Then we have
-1+ ) o,
s (9% o, ou | Ju 8 ;’ ' ou
) +— = +
ax; X, ox,

Hence, if the constants «; ({=12,...,n) are chosen as to satisfy the relation e

Coxt x ox

n-1+ Y a, =0, (6)
=1 : i .
then, the equation (3) is reduced to the Laplace equation
2 2 .
9u 9% . | o
an? 8y

Thus, we can give the following theorem.

Theorem 1. Let, in (3), ¢t; (i=1,..,n) be constants satisf_ying the relation (6),
and let u(x,x,,.,x,,y) be a ndnnegative solution of the equation (3) in the ball
Bg :x} 4.+ x> +y" <R?. If the point P(x,,.,x,.y) Is at distance r< R from the
center O of the ball then, o o |

BT o)< (P)<R+" W0}, ®
Rtr . ~

Proof. In the light of above dzscussmn the transformation x*=x] +...+x’

reduces the equation (3) into the two-dimensional Laplace equation. Since
u{ x,,%,,...,%,,y ) is a nonnegative solunon of (3) then ,

u‘(xl"xZ’ o2 n’y) M*(V.x +.. +xn’y) M,*(}C _V)
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is a nonnegative solution of (7). Thus u* - satisfies the inequality (1) and hence u
satisfies the inequality (8).

Theorem 1 gives a bound for u at any point P in the ball By in terms of the center
O of the ball. Now let « be a nonnegative solution of the equation (3) in a domain D, §
be a closed bounded, connected subset of D and R be smaller than the distance of any
point in S to the boundary of D. Then, we can give a bound for u at any point P in
terms of another point O in-D which states the Harnack inequality in general sense. For
if, let @» be any point in a ball B, ¢ § which is at distance less than aR, (o <1) from
the center ;. Then, by (8), we have

2 “Ru(QI) M(Q2)<R+aR
| R‘*.“_

(Ql)

or
u(Q;)<u(Q2)<~1-t3~ (Q,)

Now, if 0; is another pomt at dxstance less than O(,R from Qz , we may apply the same
idea with Q; and hence we derive

1+ o

M(Qz)<u(Q3)<————u(Q2)

which, in turns, gives

1+ :
For any finite number of point, we may continue this process, and for the pomts Q; and

Q.1 in S, we obtain
wl wf
[119‘-) u(Q,)Su(Q, ;){”“) u(Q, ).

(1 0‘] u(Q1)<u(Q3)<(““] W0, ).

1+
(Since S is closed bounded and connected subset, we can cover S by a finite number of
balls). Thus, in general, any two pair of points F and Q in S can be connected by a chain
of a finite , say k-1, number of balls in D, such that the first ball has its center at P and
the last ball has its center at @, and the centers of two successive balls are at distance
less than @R from each other (Figure 2) [3]. Thus, we can give the following result.

@

Figure 2,

Result 1, If u is a nonnegative solution of (3) defined in a domain D under the
condition (6), then, there is a positive constant A depending on S and D but not on u
such that for every pair of points P and Q in S, we have, =

AWQ)SWPISANWQ) O
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An immediate consequence of Result 1 is the following result.

~ Result 2. Let {u} be a nonincreasing sequence of nonnegative solutions of (3)
in a domain D. If the sequence converges at a single point Q of D, it converges
uniformly on every closed bounded subset of D.

Proof. Letting v = u;- u; , for i < j, vy 15 a nonnegative solution of (3). Hence if
Sisa closed bounded subset of D and P is a point of S then by (9), we have

L 0yy(P)sATy(Q)=aw(Q)-u0)]

Since u, converges at @, for every P, we have v, = 0, (i, J—ee ) and the result
follows.

Remark 1. The Hamack snequahty (9) can be applied to the solutions which are
bounded from below or above. For if u is bounded from below by a constant m, then the
function v=u~m satisfies the equation (3) and is nonnegative and thus the Harnack

inequality (9) is valid for it. Similarly, if « is bounded from above by a constant M, then
the function w= M —u satisfies (9) and is nonnegative.

Remark 2. If u, under the condition (6), is any solution of (3), bounded from
below or above in all of n+1-dimensional space, then u is constant.

Example. Let u=.x’ +x] y. Then, u satisfies the equation (3) with #=2 and
o, +0, =—1. On the other hand, in the disk x] +x] +y* <1, m=-1/2 is a lower

bound for u. Hence, by applying Remark 1 and Theorem 1 to v= u+]/2 we obtain the
Harnack inequality

%v(000)<v(1>)<1—tf- 1w 0,0,0)
of :
_1_3__’:<( )<}mlff;£
21+7 2 1-7

where r<1 and P is any pomt on the sphere x7 +x; +y -.r R
Slmphfymg the last inequality, we get

1-r I+ P
— < 211 ey 1 L
1+7 LR 1-r
Hence, for any point on the sphere x7 + x; + y* = r?, we have the inequality

¥
L alys

1+r 1 r

Now, we state the Harnack inequality for the solutions of (4). ‘
Theorem 2. Let the constants of the equation (4) satisfy the relation
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moof ) : s :

m-1+¥ —L=0 (10)
~iml bj B

and let u( x,,x,,..., Xyt Y10 Y20 Vs ) be a nonnegatlve solutions of the equauon (4) 1n

[(Z b

m

; . _ 0 2
the ellipsoidal domain x2 +x2 +...+ x> +[ylby1) .. {y Y J <R If the
. 1

point P( X, %,,.., X, 1, Y15 Y0 ¥, ) 15 &t distance r<R from the center O of the ellipsoid,
then

Rr _prryo)suyp)<—RET

L R — - n_—2 1
L TR MOISMBSRIER .”(O) - an

Proof. Let us make the' transfonﬁatidn

xjmz Eiit] L aw
p= bj y . I
in the equation (4). A straightforward computation shows that

' m- .+Z——

szau -‘.fdj- du | %u i ou 9w
_ »; v —yi dy; ax X dx, ox,

n " n

Hence under the transformation (12) and the relation (10) the equatlon (4) is reduced to
the n—dlmenswnai Laplace equauon

axl T ox?
Smce uf xl,xz, ,x”_l, yl,yz, 5 ym ) is a nonnegatlve soiutxon of (4) then

=0

b

u(xl)xz’ ’xn—l’yl’yZ’ 'ym) U (xl’x2’ nwi!\/(yible ‘+‘ ‘f“[ym me )
-l ( x19x2""’xn—§’xrl )

is a nonnegative solution of (13). Thus, u Satisfigs the inequaiity (2) and hence u
satisfies the inequality (11).
Now, let us consider the equation (5). Under the transformation

LR W I (14)
i=t =

we have

1 n | " |
i 82u+a ou E +8 ou azu%n“km +§al+§81%
~ ayf o

é;c? xax y; 9,
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Thus, if we assume that the relation
n+m— 1+Za +ZB =0 (15)

holds between the coefficients of the equatwn (5), then the equation is transformed to
the Laplace equation = _

f 3% az
. A az
Hence we can give the following result.

-0 as)

Theorem 3. Let the relation (15) holds for the constants in (5) and let
U( X, X peis X Yys Vaseons Vs 2 ) be a nonnegative solution of the equation (5) in the

hyperboloidal ~ domain  x’+x +..+ x> -y’ —..—y +z°<R*. If the point
P X, Xy 00000 X, V10 Yoo ¥, 2 )18 at distance r<R from the origin O, then we have the
Harnack inequality _

u(0)s (P)<R“*“"u(0) | | a7

Remark 3. The results menuoned in the Remarks 1, 2 and in the Result 1,2 are
also hold for the solutions of the equation (4) and the equation (3).

Acknowledgement-We are thankful to Prof Dr Abduliah ALTIN for h:s valuable
suggestions. ‘

_ REFEREN CES

1. A Mohammed, Weak Harnack's Inequality for non-negative solutions of elliptic
equations with potential, Proc. of Amer. Math. Soc.129, 2617-2621, 2001.

2. A. Altin, Particular solutions for iterated GASPT equations in terms of Bessel
Functions, Bull. Inst. Math. Acad. Sinica 12, 379-387, 1984.

3. H.M. Protter and H.F. Weinberger, Maxzmum Prmczples in Dzﬁerennal Equatlons,
Springer Verlag, New York Inc., 1984

4. J. B. Serrin, On the Harnack mequahty for linear elliptic equations, J. d’Analyse
Math. 4, 292-308, 1954-1956.

5. 1. B. Serrin, The Harnack inequality for elhptlc partial differential equations in
more than two independent variables, Notices of the Amer. Math. Soc., 52-53,
1958. o



