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- Abstract-In this work the control of a spatial robot by sliding mode control is studied.
The robot model has three degrees of freedom. These robots are usually used in
material handling in remote dangerous environments and production line. First, the
mathematical model of the system is formulated. The equations of motion are driven by
employing Lagrangian formulation based on the energy equations. Then the sliding
mode control theory is applied. Special care is given to the chattering problem. The
chattering may have serious damaging effect on gear systems as well as motor drive
systems. Hence, the chattering character of classical sliding mode control is overcome
and a new version of the control method is applied on robot. The simulation results are
presented in graphical form and the robust character of the selected control method is
shown to be capable of controlling the robots successfully agamst the . disturbances as
well as having the robot follow the desired trajectory.
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'_"i.INTRO_'D'fUCTION: |

uncertainties, nonlinearities and external disturbances Generaﬂy, a MIMO linear shdmg
mode is first designed to describe the desired system error dynamics, a robust controller
drwes the swithching. piane variables to reach the sliding mode and the convergence of
error dynamics can be obtained on the linear sliding mode. The apphcatmn of non-
chattering and robust sliding mode control {1] is the goal of this study. Shdmg mode
control has been proposed by Emelyanov and friends in Soviet Union in 1950 [2], [3].
‘The reasons of preferring the sliding mode-control theory in this study was the
applicability on linear and non-linear systems$, multi inport-outport systems and the
improvement of the discrete time techniques besides its non-chattering and robust
character. The most important character of this method is its robustness. In other words,
its insensitiveness to system parameter changes and disturbances from outside [4], [5].
Nowadays, shdmg mode control has been applied in the design of robot control [6]-{8],
flight control, motor control and power systems. The studies on sliding mode control
can be classified under two main subject: First, the new application areas and second,
the chattering reduction.
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2.ROBOT MODEL

The physical model of the Spatial Robot has been shown in Figure 1. The robot model
has three degrees of freedom. In this model, joint frictions have been neglected.

At .

Figure 1. Three Degrees of Freedom Spatial Robot Model.

Considering the model, my, I;, L, represent the mass, angular inertia and length of the
first arm; my, I, L, represent the mass, angular inertia, length of the second arm;
finally, ms, I5, Ls represent the mass, angular inertia, length of the third arm. The
position of the center of mass of the arms are at half length. The system parameters are
given at the Appendlx The angular positions are represented by 01, 02 and 8;. The uy, v
and uj are thé control moment inputs to thé robot to have it follow the desired trajectory
‘with or W1thout the existance of the any disturbance. Let ( px , Py, pz) show the end
point carteswn coordinates of the spatial robot following the desired trajectory. Making
necessary kinematic arrangements, the angular mot1ons to follow the desn*ed robot
traj ectory can be obtamed as follows ‘
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Since the cartesian coordinates of the mass centers of the arms are:
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Using the Lagrange Formulae, the equauons of the mouon of the. three degrees of
freedom spaual robot are obtamed ' :

| L3 \ , L3 12
I, +m, chz-a—mim(:23 b, + 2m3(L C,S, + =2 - CBL S,)-m, = =208,
(6)
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In these equations CI;, S:i, Cy and Sy stand fo.r' cosb;, sin@;,.cos(ﬂi—ﬂj) and sin(6;-6;)
respectively.
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3.CHATTERING FREE SLIDING MODE CONTROLLER PESIGN

Sliding mode controller provides an effective control in the presence of parameter
uncertainties and unmodeled dynamics. The method is based on transforming an n"
order tracking problem into first order stability problem. In theory, successful
performance is obtained but the uncertainties in the model structure makes a
compromise between tracking performance in a given band width and parametric
uncertainty. In practise, it is equal to replace a control method in which the direction of
the control changes too fast with a smoother one. A controlled non-linear dynamic
system is described by Equation (9) as

i=£(x)+[Blu ©)
The aim of the controller is to control the variable x under the system uncertainties and

hold the system on a sliding surface S as shown in Figure 2. This surface is described
as:

(10)
Figure 2. The Trajectory of the Controlled System on the Phase Plane
The sliding surface éciuatidn for a system can be selected as follows:
o=[G]Ax an

AX = X, - X i8 the difference between the reference value and the system response. [G] is
the matrix which represents the sliding surface slope. For stability, the following
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Lyapunov function candidate has to be posmve definite and its derivative has to be
negative semi-definite: AR TR - :

| _;v;(c_f);%g S0
dvle) 65 0’6 o gy
de 2 2

The equation (11) is seperated as follows:

o= @(t) 0() (14)
where: e PR A VIR
o-@x a9
a®)=[Glx ()

If the limit condition is applied to (13), then:
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Ueq is the controller force Of tﬁé.lii’rﬁi:cé.se and fro.m.-the .équation (18), .~ .

-lonT [-—‘33{9[ clix >) e 4

with the condition that [GB]" must exist. For mechanical systems, . [GB]? is always
pseudo inverse and equals to mass matrix. Since the equwaiem control in Equation (18)
is only valid on the sliding surface an additional term must be found in order to induce
the system to follow the constraints by holding it on the surface. The derivative of
another Lyapunov function candidate may be chosen as follows:

y=-g'[rJo<0 (20)

The equations (13) and (20) have to be equal By substltutmg the necessary terms, the
following expressmn is-obtained: : _ :

u=u, +Klo @)
Here,
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[K]=[GB]" [T'] (22)

{I"] is assumed to be constant matrix. The value of the terms are determined at the
design stage by trial. Higher values give better results but restricted by actuator limits
and other conflicting criteria. If f{(x) and [B] matrices are not well known, then the
equivalent control inputs will be too far from the actual equivalent control inputs. In the
literature a number of approaches are proposed for the estimation of ., rather than
calculating it. In this study, it is suggested that the equivalent control is the average of
the total control. The design of an averaging filter for the calculation of the equivalent
control can be as below:
1

G = ' 23
S =774 {(23)

This means that the control input enters a low-pass filter. The value of 1/7 gives the cut-
off frequency. Low frequencies determine the characteristics of the signal and high
frequencies come from unmodeled dynamics. So the filter smoothens the control input.
The resultant controller input is: :

=i, +[Klg L (24)

4.CONTROL OF THE SPATIAL ROBOT AND ROBUSTNESS VERIFICATION

The simulation has been resulted using the sliding mode control technique proposed. In
classical sliding mode control, the control parameter value has been found by adding a
constant number K times the sign of sliding function to the equivalent control value [1],
[2], [3]. Since the sign of sliding function has been used, a high frequency chattering
having the value of % K has been added to the equivalent control. If such motions are
expected from robot arm, the gear mechanism fails. Therefore.soft: torque transition
output must be expected from motor drives. That means chattering must be prevented.
Since the controller proposed in this study is selected as the equivalent control value
plus a constant K, a non-chattering motion has been obtained. Besides, equivalent
control has been estimated and the need for system knowledge has been minimized.

To observe the performance of the controller, a trajectory on the workmg space hmits of
the robot is defmed as shown in Figure 3. where

- P-x =Xf+(x X )e-sc}; _ U
P, =¥ +(Y_1_”ys)e (25)
p, =% +. (Z] Ly )62-.50t3
(Xp,¥1,20) and (Xs,¥e,25) are the caftesian c:(.).ordinates. of- tfle ,s,ta',rt aﬁd end -poiﬁts of -the
trajectory where robot arm end point is to follow and given at the Appendix.

y y P
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Figﬁlre 3. Desired Robot Arm Trajectory

The block diagram of the system is presented in Figure 4. Using the trajectory desired
and performing inverse kinematic manipulations, necessary robot joint motions are
calculated and used as referance motions. The differance between these referance values
and values of the spatial robot angular motions become the error, values used in sliding
mode controller which produces joint torques necessary to maintain the trajectory.

..Bzr R - SRl e BL
83 e : 82 .
T k]

Robot Arm Trajectory Siding Mode . Spatiel Robet "
Cortroller .

Figure 4. Block Diagram of the System.

In Figure 5, the simulation results are presented. Instead of using dynamic relations in
producing necessary joint torques, sliding mode controller is used to produce them.
Necessary joint angular motions as a result of control process are shown in Figure 5.a.
The error of angular motions are presented in Figure 5.b. Figure 5.c gives the phase
plane plot of the error of the angular displacement of the second joint. The necessary
control inputs to follow the desired trajectory are plotted in Figure 5.d.
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Figure 5. Simulation Results, (a) The output trackings of joint 1, joint 2 and joint 3, (b)
The output tracking errors of joint 1, joint 2 and joint 3, (c) Phase plane plot of tracking
error of jomt 2, (d) The control mputs of joint 1 Jomt 2 and Jomt 3

On the other hand, robot mechanisms are under the effect of dlfferent disturbances and
the system parameters may change because of any problem or loading. Under these
circumstances, the controller must be able to drive the robot and realize the trajectory
motion successfully. In order to verify this ability of the sliding mode controller, it is
assumed that the mass of the third link changes after a certain time of the motion on the

trajectory as shown in Figure 6.
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Figure 6. Change at the Mass of the Third Link
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When the mass of the third link changes at 0.1% second, the simulation is performed and
results are presented in Figure 7. In this Figure, it is observed that the necessary joint
angular motions are produced successfully verifying the robust character of the sliding
mode controller. Only the control torque inputs change as expected when compared
w1th the ones in F1gure 5 as shown in Figure 7.d. :
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Figure 7 When Mass of the Third Link Changes Suddenly, (a) The output trackings of
joint 1, joint 2 and joint 3, (b) The output tracking errors of joint 1, joint 2 and joint 3,

(c) Phase plane plot of tracking error of joint 2, (d) The control inputs of joint 1, joint 2
and joint 3. '

When the control torque inputs both in Figure 5.d and Figure 7.d are checked, the non-
chattering character of the proposed sliding mode controller is witnessed, This is very
important since chattering torque profile can harm the joint motors and system
components. e

5.CONCLUSIONS

In this study, a robust non-chattering sliding mode controller has been designed for a
spatial robot and the simulation results have been presented. The main reason in
proposing sliding mode control for the robot systems was :its robustness and non-
chattering character. Since the robot dynamics might change a lot depending on position
and load, the approach in control stralegy necessitates robust character. Causing a
sudden change at the mass of the third link of the robot, the robust character of the
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controller has been checked. It is observed that the sliding mode controller is insensitive
to the parameter changes of the dynamic system and continiues to control the robot with
high performance and success. Additionally, if sudden changes are expected from robot
arm motors as is the case in classical sliding mode theory, the gear mechanism fails.
Therefore soft torque transition output must be expected from motor drives. That means
chattering must be prevented. In this study, a chattering free sliding mode control
technique is introduced to overcome this problem. The smooth character of the control
torque inputs of the control action in this study also verified the non-chattering character
of the proposed sliding mode control approach.
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APPENDIX

Spatial robot parameters:

=3 kg
ms = 2 kg.
ma= 1 kg.
Li=025m.
L= 0.30 m.
=0.25m.
L =1/12mL32

(x,¥5,2) = (0.55,0.00,0.25)
(xe,95,20) = (0.00,0.25,0.55)



