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Abstract In this study we censzdered and analyzed the d1fferent cases of node-
and link-faults in a hypercube multiprocessor. We revealed that, the direct use of
sharp product operation is not sufficient to discard only computational part
(processor and memory), when only this part of node is faulty. We also showed
that in case when some links in communication part (router) incident to a healthy
node are faulty, the sharp product operation does not allow to leave the healthy
links and the node incident to these links in the set of healthy subc¢ubes. In order
to'remove this lack we propose in this study the formal procedures with aid of
which we can subtract first only the faulty node, excluding the healthy links
incident to this node and second only the faulty links; excludmg also the healthy
nodes 1ncxdent to these hnks of such systems FREIA SRS

Keywords Hypercube fault 101erance, healthy subcubes, cube algebra computatlonal
pan commumcahon part s
ot 1 INTRODUCTION _ s :

A hypercube is a distributed parailei system consisting of 27 xdentmal processors,
each provided with its own sizable memory and intérconnectéd with 7 neighbors, It has'
a homogeneous symmetric structuré and has necéessarily rich connectxv:ty 4,51, It also
has useful topology in which many other topologies, such as meshes, rings, trees, etc.
can be embedded. In the 1980’s such systems have been designed and started to be
used. The Ncube s 3200 and 6400, Intel's iPSC series (PSC/1, iPSC/2, iPSC/860), the
Amatek’s series (S-14), etc. are among them that can have frem 128 up to 4096
processors {14, 21, 30]. '

* . As'the size of a hypercube grows, the probablhty of some processors or links in
the system ‘may have fault increases. One of the important issues in these systems is
how to communicate messages in the presence of component failures. Reliable data
communication is essential, espeeiaily when hypercubes are used for safety-critical and
time-critical apphcatmns requlrmg high reliability-[7]. It is very important to detect and
isolate faulty processors to ensure - correct completxon of computatlon 1n such
apphcatzons [7,-11, 35, 36].- - :

~In this paper, we attempt to prowde procedures to ‘6vercome the effects ef faulty
components ‘and to exploit a fault-free architecture in the presence of node and link
- faults. We consider node: design, where each node contains two ‘uinits, namely, a
~ computational ‘part '(CPP) and 4 ' communication part' (CMP) ‘that ‘can 'operate
independently [21,:30; 20, 24]. The CMP often is called a router. The rottes have the
ca’pabi}ity of forwarding the messages that are received from other routes toward the
destination nodé. ‘'We assume that all the faults are static and detected before the
reconfiguration data procedure starts.
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In some studies [7] only node faults are considered and, as a result, the links
incident on these faulty nodes are discarded from the further manipulation, whereas
these links are non-faulty and can participate in data communication process. Like this,
if links are faulty, then fault-free nodes incident on these links are also discarded and
due to this, these nodes can not participate in computational and communicational
processes, though they are non-faulty.

Formally, the operation of node or link discarded from any cube can be executed
by the help an operation named coordinate subtraction (sharp product). But this
operation does not directly allow the subtraction of only fault node or only fault link
from the cube (or subcube). Dealing with this, we attempt to exploit a procedure where
only faulty nodes and only faulty links can be discarded from the cube (subcube) with
application of operations of cube algebra. With this we extend a set of non-faulty
components of cube. Two procedures are developed which we call node only
coordinate subtraction and link only coordinate subtraction. These procedures help
formally to determine a set of fault-free subcubes upon which subcube allocation, data
communication processes such as a routing, broadcasting, etc may be performed.

.On the other. hand, the number and the scattering of faulty components in
hypercube are very important. In many cases, to achieve % 100 fault tolerances, the
number of faulty components is limited by »n or near n [6-11, 16, 17, 24-26, 31-36].
Latterly this limit was risen to 2r-k; where k =1,2,3. If the number of faulty elements
becomes greater than n, the developed algorithms are insufficient for routing,
broadcasting, subcube and task allocation and deallocation, etc. processes in hypercube.
We deal with the question: has any path from a source node to a target node in presence
of arbitrary number of faulty elements, when these faulty elements are placed randomly
in hypercube? It is obvious, that there is not a general solution of this problem. Only it
may be possible to calculate a minimum number of faulty nodes (or links) that cause
the destruction of the paths in rn-dimensional cube. Graban at all [18] calculated these
values of the number of such nodes and links in worst cases. They determined, for
example, for n=4 the communication between all nodes in hypercube is remained
noninjured, while in the first case 5 nodes and in the second case 8 links are faulty.
Clearly, the communication topology depends on the place of faulty. components in
hypercube. and it may be happen randomly. On the other hand the following question
remains open: what is the minimum number of faulty nodes and links mixed in general
that cause to injure the paths in n-dimensional cube?

Our developed formal procedures, early and short version which has described i in
[2], allow calculating a set of fault-free paths in faulty hypercube, without answering
this question. After executing these procedures one receives a configuration that has
only non-faulty components and due to it can realize a data communication between
fault-free nodes. It is clear, the source node and the target node must not be placed in
isolated . subcubes. These procedures do not depend on the number of faulty
components and it is indifferent from scattering of these components in hypercube.

- To develop these procedures we use the operations of cube algebra, considered
briefly in section 2. In section 3 we consider the structure of a hypercube node. The
procedures that we developed are described in section 4. The paper concludes in
section 5.
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2. ON OPERATIONS OF CUBE ALGEBRA

The cube algebra was developed to execute some operations on the binary cubes
(hypercubes) It includes almost - all ‘operations: of the  set: theory and- three own
operations, that are called coordinate: product (star prodiict, “consensus or -
opeération),” coordinate’ subrracfzon (sharp product or # operanon) and coordmate
intersection (M- operation). o o Coo

" Earlier, the cube algebra was used the Boolean functions in the form of cubes.
Later, the operatlons of cube algebra were used for minimization of switching functions
[12, 29, 22]. Now these operations are also use for subcube allocation problem [15] and
for routing of the information over fault-free nodes and links in hypercube [3, 4] and
for determination of neighborhood of subcubes in a faulty hypercube [1]. In these
studies, it is shown that these operations are a good tool for definition of complete non-
faulty subcubes of hypercube with faulty, prohibition or bused components, also for
definition of the paths mcludmg the shortest path from any vertex to other vertex in
hypercube R : :

“'The operatlons of ‘cube algebra were ‘explained in detail in [13, 28]. We also
modified the interpretation of these operations; dividing of its execution to ‘two parts,
where first we define vector of respective operation, second we define the ending result
based on the vector. Thus we can apply these intermediate results (vectors) to
determine on some other parameters in hypercube, for example; Hamming dlstance [28,
. 23]. Since, we also use these operations, let us consider them briefly.

Following [28, 13, 12, 23, 31, the coordinate subtraction of two cubes C; and C; ,
denoted by C; # C;, is the set of subcubes including the nodes from C;, but not from
Cz. For example, **0#»5:11 #%0  or  {xx0, 1**}#110 ={020,%00,10%,1x1}. The

coordinate product of two cubes Cr and C,, denoted by C; #* C,, 1s the subcube
founded in C; and C; s_zmultaneeusly_or the subcube. one part of which is in C; and the
other is in C3. For example, %00 #1x1=10%. The coordinate intersection of two cubes

C; and Cz, denoted by €; M Cy, is the subcube presented in C; and in C, at the same
time. For example, 0¥0M10x= & or 10*M141=101.

After executing these operations, one can obtain repeated cubes and cubes with
smaller dimensions which can be included in the cubes with bigger dimensions.
Everywhere in this study, we will assume that the repeated cubes and the cubes with
smaller dimensions included in the cubes with bigger dimensions are avoided.

 The coordinaté ‘subtraction operation was “applied 10 fmd the 10cal prame
implicants of the sw1tch1ng functxons It was later known that this operation is a good
tool for definition of complete non-faulty subcubes of hypercube with faulty or
prohibition vertices [15], also for the definition of the paths, including the shortest path
from any vertex to other vertex in hypercube [3]. To discard the faulty components
from the “hypercube the subtraction operation may’ be used. By means of the coordinate
product the followmg operauons may be realized: 1) Determination of the Hamming
distance between the cubes, ‘which is the nurhber of links between them dlong the
shortest path; 2) Intersection of two or more cubes with the aim of definition of their
common parts (subcubes) 3) Unification of two m-cubes A and B in the (m+1) -cube C,
The 1ntersect1on operation is very useful for the determmatzon of the common parts of
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cubes. At first, it was applied to definition of the parts of some prime implicant for
switching functions which are common with other prime implicants. This allows us to
answer the question: is the given prime implicant extreme? From the point of routing in
hypercube, the coordinate intersection operation can be used for revelation: of the
common parts of cubes with the aim of defining the parts of passage from one subcube
to another. But cube algebra’s operations, especially, subtract operation can not directly
take into consideration the fact that the hypercube node consists from two parts:
computational part (a processor and local memory) and communication part (router)

3. NODE STRUCTURE .

Each hypercube node  consists of a computanonal parr (CPP) and a
communication part (CMP) (Fig. 1) [21, 30, 24, 20]. The CPP consists of a node
processor and some local memory. The CMP or router has a crossbar switch with
(nt+1)-inputs and (n+1)-outputs. The neighboring nodes are connected through s-input
and n-output links. The processor, attached to the router, uses the other two lines. The
router can connect multiple inputs to multiple outputs simultaneously as long as there is
no destmahon conflict, If multiple messages.are to be delivered to the processor, it is
assumed that the router can accept all the messages. The router is responsible for all
communications. It sends messages generated by the local processor.over the system to
the destmatxon node. Each router compares the destination address of a message with
its own address. If they match, the message is delivered to the local Processor.
Otherwise, the router chooses one of its neighboring nodes to transfer the message.

_ Qutputs :

l | | ' 0 Tl cee TI :
Computational Part - {- Communication Part -
(Processor and Memory) E (Router) -
1 — Io I1 Ca o
- T | Inputs o

Fzg 1. The structure of hypercube node

Ina fauity node where 1t 1s necessary to perform rehable data commumcation
subcube allocation and smniar processes, a faulty node is generally not considered as a
node consisting of two parts. But in a faulty node, different type of faults may take
place, which must be taken into conszderanon Possible cases of faults in a faulty node
showed in ’I‘able 1. In this Table we show fauit and faultless by 0 and 1, respectively

' When ‘the CPP and CMP are faulty (Case No 1 in Table), that means the node is
faulty Then this node must not participate in computational and communication
processes in hypercube. Therefore, it must be taken out from the other cubes ThlS may
be d1rect1y performed by the aid of the coordinate subtraction operauon

~ Inthe case when the CPP of a node is fauity (Case No 2 in Table), that means the
node. may partlclpate only in communication process, so the respective node itself can
not feceive .and send any information, but jts CMP may organize message
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communication between adjacent nodes to 1tself Tius case w111 be consldered in detail
further, a L :
Table 1. Fault and faultless of CPP and CMP

Case | Computa- Commum» Situatlon of Nodes and LGks
No -|tion Part - |cation Part _
l: . LU . Node is faulty
2 ol 0o o CPPsfaulty; CMP is not faulty
3o pisel ot - O 4 TCPPis not faulty, CMP is: faulty
G 1 <1 INodeisnot faulty 7
5 1 F~H* CPP is not faulty, some links in CMP are faulty
6 0 | - F-H*¥ CPP is faulty, some links in CMP are faulty

“F-H means that some hnks in the router are faulty and the rest: is heaithy, which may act normally

If the whole CMP is faulty (Case No 3 in Table 1), then the respectlve node will
not participate in communication process, i.e. it can not receive and send any
information. Therefore, dite to this fact, the whole node is isolated from the other nodes
in hypercube But since the CPP is not faulty, it may execute any calculation. From the’
parallel processing in hypercube point of view, this case does not play a great role and
therefore, in order to‘achieve 4 set of - healthy subcubes th1s node may be subtracted
from a set of the other subcubes. :

" When the node is not faulty (Case No 4 in TabIe 1) itis clear that the node wdl'_
be included in a set of healthy subcubes.

If a link or more links (but not all links) in a CMP aré faulty (Case No 5) then
the respective node can communicate only with definite neighbors. In this case, in order
to reach a set of healthy subcubes we must subtract only a link (or links) without the
nodes incident to this link (links) from the set of the subcubes, The coordinate
subtraction operation does not directly allow this procedure. One way' to obtain this
procedure is the splitting of m-cube (m>2) to m pieces of 1-cubes and execute the
subtract operation of only the faulty links from the set of subcubes. But in many cases
the splitting procéss in hypercube is not des1rab1e (for example, in subcube and task
allocation problems). On the contrary, in these cases it is requlred to have the cubes
(subcubes) with the dimensioxs as greater as possible,

If a CPP and some links (but not all links) of CMP of corresponding CPP are
faulty (Case 6), then the respective node can execute only the communication functions
along the healthy links. The CPP of this node can not send and receive any information.
In this case one must subtract both the CPP and the faulty hnks Appar.ently, the Case 6
in Table 1 can be brought to the Case 5. -

Thus, from the analysis of situation of the node we see that in two cases, namely
in Case 2 and in Case 5, we need to exploit the procedures to determine a set of heaithy
subcubes, which will be the set for further manipulation in hypercube

4. THE ONLY NODES AND ONLY LINKS SUBTRACTION
PROCEDURES e
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Every node V in hypercube has label or address v, vp.;...v; with v; € {0,1}, where
vy is called the ith bit or ith dimension of the address. Sometimes, the i is called ith
coordinate. In this case v; is called the value of the coordinate i. The important property
of the hypercube is that it can be constructed recursively from lower dimensional cubes
(subcubes). Each subcube S, {or m-subcube) has a unique address as s, Sp.1....51 with s;
e {0,1,*}, where exactly m (0SmsSn) bits take the value * (* is a don't care symbol). A
complete hypercube itself can be considered as a special subcube where all the bits of
its address take the * value. Each node is also a special subcube in which no bit of its
address takes the * value, and called O-cube. Each link has one bit that takes the value *
and called 1-cube, a quadrangle is called 2-cube and has two bits that take the Value *
A cube is 3-cube, if its address has three * , etc.

There may be faulty nodes and/or fauIty links in a hypercube. In this case, the
hypercube is called a faulty hypercube. In case when the non-faulty nodes and links
exist in n-cube, it is called a complete cube. A cube is called a subcube of complete n-
cube, when at least one dependent (0 or 1) coordinate exists in the cube with dimension
n. A cube S is the subcube of cube Cif C #* S = S. A subcube S is called a maximal
sitbcube, if subcube S is not subcube of any other subcube. Otherwise the subcube § is
called non-maximal, As we note in Section 2, in this study we assume that the repeated
and non-maximal cubes, if they exist, will be avoided after.executing the operations of
cube aigebra A subcube F is caﬂed a complete faulty subcube (cube) if F is a subcube
(cube) including only fauity nodes and/or links. If a subcube does not have any faulty
element, then it is.called a healthy subcube. Though the finding of maximal subcubes is
NP-hard [15], we attempt here to use the cube algebra’s operations for our approach. In
this study we mean that the size of subcube set is the number of elements in this set.

As applied to hypercube vertices of which there are the processors, computers or other
similar active objects, the prime 1mphcant term can be interpreted as maximal subcube
including only non-faulty or forbidden vertices. Theorem 1 allows determining the
method of finding the set of the non-faulty and maximal subcubes (NMS) in faulty
hypercube [3].

Theorem 1. If F is a set of compiete faulty cubes, then the set of NMS of n-cube
including F is determined by the # subtractmg the set F from the complete n- cube and
avoiding non-maximal cubes from the result.

Since in this study we will manipulate only cubes with nodes and links,. 1et
V=vva.v, 18 a vertex (node) and L=ls..I, is a link (edge), where vie {0,1}; Jl=*,
1<;<n and for the remained values i# [, {0,1}.

_ When we will subtract the CPP of a node, we will call thlS operation subtract
only node (or subtract CPP), since in this case the links incident to this node will not be
subtracted. Similarly, we call the subtraction only link from the cube as subtract only
link, since the nodes incident to this link (or links) will not subtracted.

A, Subtract Only Nodes -

The connection between the nodes of a hypercube is called communication
topology of an n-cube (or subcube)

Theorem 2. Let only the CPP of node V is faulty and let A is a set of subcubes
including the node V. Then this fault will not destroy the communication topology of
subcubes in the set A,
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Proof: When CPP of node V is faulty and CMP is not faulty, that means this node
may participate in the communication processes only. That is, the CPP can not receive
andsend any information to other nodes. We may say that the CPP is isolated.
Therefore the communication topology W111 remain as before, when CPP of this node
was not faulty. -

From the Theorem 2 we can conclude the followmg corollaries:

Corollary 1. When CPP of a node V, which is included in a set A, is faulty, the
communication topology of subcubes of the set A will not change. :

Corollary 2. When CPP of a node V, which is included in a set 4, is faulty, then
this CPP is isolated from the set A.

Abovementioned judgements mean that, when CPP of a node is faulty, a cube
that includes this node will have the possibility to communicate messages between
adjacent nodes excluding it. It can be seen from here that the fault of a CPP does not
influence to communication processes between the nodes of hypercube. But we must
show this node in the description of the cube, in order to exclude it from further
computational processes. Therefore, we will show it as {AIVY, where VIS a node from
the subcubes in a set A and CPP of this Vis faulty..

Example 1. Let in 3-dimensional cube the CPP of the node 001 is faulty The
little circles show CPP ‘of the nodes and the big circles show CMP (Fig. 2, a). The
shaded circle is faulty CPP of the node 001. If we use the coordinate subtract operation
to define healthy subcubes and communication topology of this 3-cube, then we will
obtain: ***#001={1***1* **0} (Fig. 2,b). As seen from the set {1%%*1* **0}, here
we do not have the links 00%*01 and 0*1, though-they are not faulty. Therefore,
although the set of healthy subcubes is the same, we must take into account fault of
CPP of the node 001. Thus we will have {***/001} (Fig. 2, ¢).

Fig 2. Example for subtracting only the CMP of node

B. Subtract Only Lmks - :

: 'When a CPP is not faulty and one or more links-(but not all lznks) of this nocle S
CMP. are faulty (Case No 5 in Table), in order-to reach a set of healthy subcubes, we
must subtract only a link (or links) from the other set of subcubes. It is clear, that a #-
operation will also discard the nodes incident to these faulty links. But, as a matter of
fact, these nodes are not faulty and they must remain in the set of healthy subcubes, say
A. Consequently, the healthy links incident to these nodes will also discarded from the
set A, If we will add these healthy links to the set A we will obtain the set called partly
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extended set, say Pg. But in the set Py it may be subcubes, which can unite and organize
the subcubes with more dimensions. In the case where we obtain the subcubes with
more dimensions in the set Pg, we call this set the extended set, say E. The following
method allows achieving this procedure. :

Lemma 1. Let V=vvo..vi.v, and U=wuju...u...u, are nodes in an n-cube,
neighboring along the coordinate i (1<i<n). Let L={l,...0...1; is the link between V and
U. Let A 15 a set of subcubes including the link L (L& A). Then, the nodes V and U do
not exist in the set S=A#L.

Proof: From the fact of neighborhood of nodes V and U along the coordinate i, it
is clear, that the link between them will have a form L=v;va.. * ...v, Or L=uuz.. % ...ty
where vi=uy; vo=ug o Visly .o Ve=tt, (15i<n). According to the definition of the # -
subtraction, if we execute the subtracting from the ¢;A a don't care symbeol, we obtain
the same «;, i.e. qi#*=q;. Since the bits in the link L, different from the ith bit, will be
subtracted from the set A (S=A#L) and in result we will have the set S, where the values
of the link Z are absent, hence the nodes V and U will also not exist.

Lemma 2. Let the CMP of the node V=vv,...v, is not faulty and one or more (but
not all) links Ly={ {1y ... I ... 1]} (k is the number of faulty links I<k<n) incident to
the node V are faulty. Let A be the set of other cubes including Ly (Lye A). Then by
" operation A#Ly one obtams a set of subcubes, where the entire links incident to node V
are absent. :

' Proofis obvious from the Lemma 1.

Lemma 3. (Generatized) Let L= {*1}1] .17, 1 *1] .1], .., /1] .1 *}isa
set of links incident to the node V. Assume that }=k<n links from this set are fauity. Let
L; is a faulty set of links incident to the node V (L? cL"). Then after the operation

S--—:A#L‘}"r in the set S it will absent:

(1) All the links in the set L";
(2) The nodes incident to the faulty links from the set L’ ;

(3) All the links incident to the nodes incident to the faulty links.
, From the Lemma 3 it is shown that, after executing the subtract operation S=A
#Lj in the set S, we will not have some nodes and links although they are non-faulty.

Thus, it becomes clear that formally, in order to include these non-faulty components in
the set S, one have to add these components to this set. We have two types of these
components: nodes and links. It is clear if we will add the link LYV between the nodes U
and V to the set S, then in this set, the nodes U and V will also exist. Thus we have to
add to the set S the non-faulty links as components in order to obtain the extension of
the set of healthy subcubes.

Theorem 3. Let LU Vi 1s the faulty link between the nodes U and V. Let A is the set
of subcubes including LYY, Then in order to obtain the partly extended healthy set Py
we must add to the set S=A # L%V the llnks mc:zdent to the nodes U and V, with the
exception the faulty link L%". - ; :

Proof: According to the Lemma [ (or the Lemma 3 when we waﬂ execute the
subtract operation S=A# L%" in order to obtain the fault-free set, in this set the nodes U
and V will be absent, though they are not faulty. In this manner, according to the
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Lemma 2 (or the Lemma 3) the links incident to the nodes U and V will absent in the
set S, though they are also not faulty, except the link LY. On the other hand, if we will
add these fault-free links incident to the nodes U and V (except the link LU ) we will
obtain all the fault-free links and nodes in the set S. Thus we can execute T
C Pe=SU Y LY LYY, _ _ i
where LY, L are the links incident to- the nodes U and V, respectzvely, LU is the Imk
between the nodes U and V. The symbol / shows exception (subtractlon) the lmk L%
from the set of links incident to the nodes U and V. : :

In this way, we can obtain a partly extended set of healthy (fault free). subcubes
Pg. But in this set we will have subcubes, which can unite and thus, organize the
subcubes with more dimensions. In other words, we have to find the maximal cubes in
the set Pg. This problem arises in the processes of subcubes and tasks deallocation. But
here we have one difference from these problems. In the subcubes and tasks
deallocation problems the subcubes (or tasks) release accidentally and may be not
achieve a subcube with more dimensions. In our partly extension set Pg, since we first
subtract the faulty links and then add the healthy links having incidentity with other
healthy subcubes and with each other, we always may be confident in that we can find
the subcubes with more dimensions, then a link. From here, Theorem 4 follows.

Theorem 4. If we have only link faults and if the number of faulty links is less
then n for n23, in the set P there always exists the subcube (or subcubes) with more
dimensions than a link.

Now we have the problem to find the subcubes with more dimensions in the set E.
By means of the coordinate (star) product operation, unification of two m-cubes A and B
in the (m+1)-cube C may be defined. For this, the cubes A and B must have adjacent
faces, The star product is the coface of these adjacent faces; it is the largest cube
between two cubes [13]. The following examples illustrate it:

01* 3 Q0% = Qk; QF% 3 ks o woks ‘

From Theorem 4, we can see that in the set E, we must have the cubes having
adjacent faces. Therefore, using the star product operatlon we always can obtain a
largest cube, covering both parent cubes.

Thus, from point of view of reliable data communication and subcube and task
allocation processes in a faulty hypercube; the set E will be much more efficient than
the set S, since the set E have more possibilities to manipulate the subcubes with more
dimensions and with more quantity. The processes routing, broadcasting are in need of
a set of adjacent fault-free subcubes, in order to make lightly passage from one subcube
to others. Note that in subcube allocation problem, the set of disjoint fault-free subcubes
is required, since there must be no interference of the messages on the communicating
links, That is, the tasks running on the subcubes do not interfere with each other. The
problem of partitioning a cube to the disjoint subcubes was examined in.[15,6].

In order to, achieve the temoval of the set of non-faulty links, we must take the
Imks incident to faulty links. For this, in binary representation of a link (1-cube) we
change the first bit (from right to left) by the symbol *, if it is. not the symbol *. Since
any link has one symbol *, instead of this symbol we fn"st put 0 and then 1. The rest of
bits do not change Thus we obtain the first incident links. We continue this procedure
(Fig. 3) with the second bit in 1-cube. Repeating this process with all the bits of 1-cube
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we obtain the set of links, incident to the faulty link. But among these links there may
be a link (links), which is (are) faulty. Therefore, we must check this set with the set of
faulty links. If there are coincidences, these links will be removed out from the
obtained set and thus we will achieve the set of healthy (fault-free) links, say Ly . The
procedure “adding of the non—faulty links” to the set S and thus we will obtain the
intermediate . set ' E.
Procedure Finding_non- faulzy lmks (LUr v LU L)

L7V is current faulty link between the nodes U and V, L and LV are faulty

links incident to the nodes U and V, respectlvely */
begin

for k=1 ton do
input L7 and L}
Ly=L", L= L'

endfor

for k=1 ton do

- fori=1tondo
if L7"[i]1=* then

L, [il:=1, L, [ik=0
me=i '
endfor
endfor
fori=1 ton do
if i#m then

L, [i:=*, L, fi:=
else L, =0, L, =0
endfor

for i=1 to n do
. i o I 1’4
it L.=L;orL,=L;

then L, :=@ PO
if L, =Lj or L, =L;
_ then L;f = |
endfor

end
Fig. 3. Procedure Addmg non- faulty Imks

The full subcube recogmtaon‘ ability is one of the main issues of the hypercube
processes. The procedure to increase the sizes of the avaliable subcubes in the set Eis
presented in Fig. 4. - -

Procedure Increase_size_subcubes (S, Lnf) '

- /*S is the set of healthy subcubes after subtractlng the faulty links from the given
cube, L, is the set of non-faulty hnks, deﬁnmg after the procedure Fmdmg,_nom
faulty_links*/
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begin
for i=1 to n-1 do
E' =S &Ly
Define in E'
(1) 2- and more subcubes (let EM) N
(2) These of 1- and 0-cubes, whlch are not included in the subcubes in
EM (let EY) - -
CEM=EMUE"
LaniEN
endfor
end _
Fig. 4. Procedure for increasing size of subcubes

Example Let in ##%# cube (n=4) the lmks FW{OOO* 0*01 111%* 1*10} are fauity
(F:g 5,a). "
_ (1) To reach the set of heaithy subcubes we subtract from Aok k the set of these
- faulty links F. -

S-—****#F“****#{OOO* 0*01,11*1 1*10} {1*0* 0+ 1%, 10*1 011, 01*0 7.’*‘100}
(see Fig. 5, b). 3

(2) We define the set of healthy links, incident to faulty hnks which were
subtracted from the cube **¥* together with the fauity links. These links are shown-in
Fig. 5,c by cut lines.

L,={00%0,0%00, *0()0 00%1,*001,010%,01*1,*101, 1“‘11 J1%1,%111,11%0,%110,10

*0,%010,101%*,

- {3) Furthermore, to defme the subcubes Wlth more d1menszons first we execute
the star product operation between S and Ly

E'=S WLy {140 0% 1%,10%1,%011 01*0 100} ;:;»{()0*0 0*00 *000, 00*1 *001 01
0%,01%1,%101,1%11,11%1,%111,11*0,%110,10%0,%010,101* Y= [ ¥¥00, % 10%,1%*1,10%* 0
*40,01%* #* 11 *01*,*0%1,*%1%0}, Here we remove the 0- and‘1-cubes from this set.

E=S*% E‘:>{O**0,0l*’.‘?,*-’%‘lI:,*Ol*,**(){),*10‘*,1**1,10**,*0*1,*1*0}. The 0-.
and 1-cubes were also.discarded from this set. We can see, that the subcubes in E° are
the same in-El_-..Therefore, we need not calculate E°=S % E2, From the set S we take the
subcubes with more dimension ($¥ ={1*0* ,0%1*}) and add these subcubes to the set
E”. Thus, extended set of non-faulty subcubes will be E= $*U E? (See Fig.5, d). -
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Fig. 5. Example for subtracting only links
In practice, a hypercube can have node and link faults simultaneously. In this
case, it 1S necessary to pick out the node faults and the link faults and then to process
them separately. '

5. CONCLUSION

The reliability of a hypercube multiprocessor becomes a critical issue when the
size of the system grows. In many methods, to obtain a healthy set of subcubes in a
faulty hypercube, the faulty node and the incident links (or the faulty links and the
incident nodes) are discarded logically from the other set of subcubes, including these
nodes (or links) although these links (or nodes) may not be faulty. With this, the set of
healthy subcubes is narrowed which prevents the manipulation with completely healthy
elements existing in the hypercube. Since links incident to faulty nodes (or nodes
incident faulty links) may be healthy, they must be included in the healthy set of
components of the hypercube.

In this paper, we have proposed a method to extend a list of healthy subcubes in a
faulty hypercube. Consequently, one can have more possibilities to manipulate in the
hypercube processes such as data communication (definition of short path between
source and target nodes in routing, broadcasting, multicasting, etc.), subcube allocation
(constructing the subcubes with more dimension), etc. It allows, apparently, increasing
the reliability of system and possibility to execute tasks with more dimension in
hypercube.
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‘Furthermore, large number of healthy subcubes can allow.us to find a convenient
path between a source node and destination node(s) using neighborhood of subcubes,
since after an extension, we have more subcubes than original healthy subcubes set, we
have highest possibility of having a neighborhood among these subcubes. Here we can
use ‘a-coordinate product operation for the definition of a neighborhood of fault free
subcubes in a faulty hypercube with a view fo define a path between two subcubes
Such a procedure is developed in [1].

. The-developed procedures were implemented for the analysis of different routing
aigorithms in a faulty hypercube. The Hypercube Routing Simulator described in [19]
and other simulations [37] were used for this purpose. Results of the simulations
showed that except the case where source and target nodes are placed in isolated
subcubes, these procedures found the message passing paths in all cases whereas
without using these procedures, these paths may be non-minimal or could not be
obtained. For example, let the nodes 0010 and 1000 are the source and target nodes
respectively (Fig. §,a). Then after obtaining a set of healthy subcubes by using
coordinate subtraction operation we will have a non-minimal path between the nodes
0010 and 1000, which will be 0010——»01 10—0100—1 100——)1000 (see Fxg 5, ,b) and will
have four steps. _But if we use the extended set, then we ‘will have minimal.. path
0010--1010->1000 (See Fig. 5, d), which will have only two steps. Another example,
when after coordinate subtraction operation a path.can not be found is as follows. Let
the nodes 0000 and 1111 are the source and target nodes respectively. Then according
to the non-extended set here there is not any path between these nodes (See also Fig. 5,
b), but if we apply the enlarged set of healthy subcubes then the path between these
nodes could be found as 0000w1000w1001w1101w1111 (see also Fig. 5, d). Thus
the simulation showed that when we use the extended set for routing algorithms; we
can find in some cases the shortest path between the nodes although we can not find
these paths with the non-extended set of the healthy subcubes. In some cases, no paths
can be found with the non-extended set whereas the extended set yields paths.

‘In many fault tolerance methods in hypercube, the proposed approaches depend
on the number of faulty components, which is limited by the dimension of hypercube n
or near #. Besides, these approaches also depend on the locations of faulty elements in
hypercube. In our approach this lack is removed and the procedure does not depend on
scattering of the faulty elements in hypercube. Thus, by aid of the proposed algebraic
transformations one can receive a set of extended fault-free subcubes, that is, a
beginning set for further manipulation in the hypercube. The existence of such fault-
free subcubes can be also used to obtain efﬁmem implementations for a wide range of
hypercube algonthms
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