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‘SOME SOLUTIONS FOR AN EQUATION OF ORDER OF 4p -
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Abstract- We obtain all solutions which depend"" only‘ on r for a singular partial
differential equation of order 4p. Here, the operator includes Laplacian and GASPT
(Generalized Axially Symmetric Potential Theory) operator.
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1 INTRODUCTION

This paper con51sts of soluuons of type r for the lmear partial dlfferennal equation of
order of 4p

12 (u) =0 TR
where p is a positive integer and the singular operator L is definedby = -~ o
ot | et el |9
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The iterated operators 1P are defined by the relations™ = 7

L (u) = L{Lk(u)] ; _1{:"—* 1,...,p-1
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In{1.2) x? , a; #0 (i=1,...,n) are real constants and A, [1, ¥ , O (i=1,..;,;n)are any real

parameters and r is given by
‘ 0N 2 % S

Equation (1.1) includes some well—kﬁowﬁ c.lassicai* equations such as the Laplace
equation, GASPT equation and their iterated forms. Many authors studied these
equations in solving some physical problems [ 1-5 ],

2. SOLUTIONS OF TYPE ¢
Firstly, we will give the following lemma ER |
Lgmma 2} Lgt p bc_: a posit_ive‘inte.éei.' énd m E_c? a rea__ﬂ or complex parameter. Then
™) = [Tem-2k)y™? Co0 @

where ®(m) is a fourth degree polynomial given by

®(mm) = Am* + (A0 — 122 + p)m® + (442 — 30An + 30 — 6 + 1)m?

© 0 +(40An-48k—6np+8utn-2+plmty o (22)
with p = Ea—z’ )
o i=t &

~ Proof. From the definitions of L and r for any real or complex parameter m, we have -

L(r™) = [hm* + (Shn— 122 + pm® +(44A — 30An + 30— 64+ )’
+(40Xn — 48% — 6ny1 + 8 + n =2+ p)m 4y [o™?
= @(m)r™? | . ' (2.3)
Applying the operator L conse‘cutively p-1 times on both éides of (2.3), we obtain the

formula (2.1).
Now consider the forrmila (2.1) and write the algebraic polynomial equation,

p-l _
[[om-2k)=0 2.4
k=0
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which is degree of 4p. The number of real or complex roots of the equauon (2 4) isdp
for A#0.

Now using Lemma 2.1, we can prove the foflowing theorem.

Theorem 2.1 Let the algebraic polynomial equation (2.4) have distinct roots
¢y, €,...,Cy €ach having multiplicity &,; &;,:..,&4, respectively, and all of the roots

be real. Then thq solution of type r™ for the equation (1.1) is _givc_r_l by the formuia__ _
M &-t - | |
=Y, 2 A1 (Inr)” @28

=1 v=0

—

where A, are arbitrary constants.

Proof. According to the hypothesis we can write the algebraic equation (2.4) as

Where Z§ =4p is degree of (2 4) Therefore, the forrnula (2 1) can be written as
ot
g
(m—c;) £ - @e

=

1P(rm)= 0

Jeel

On the other hand, truth of the following equalities can be showed easily by induction.

am* om*

2 )- ”{ynq ”{(mﬂﬂﬁmN:;__.@@

Now again con31der (2. 6) Itis 0bv10us that the right-hand side of (2.6) has the factors

(m cj)é ;= 1, ,M Wh1ch vamsh for m=¢; =1L, ,M together with its derivatives

with respecttom. .

dmu(m—c}-)J; Uml,,..,'&j—;};7-3::1,...,1\/{-.

Thus, the functions | £ .for” j:l,..;,M énd from (2.7) each of the fuﬁctions

a'r™

om"

=r'{lnr)’; v=1,...§-1,j=1..,M

m=cj
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satisfy the equation (1 1). Since the. given equation is linear, by the superposmon
principle the sum
M &1

=y ZAjUrc" (Inr)®
j=1 v=0

also satisfies (1.1). Thus, the theorem is prbved.

Themj'em 2.2 Let the .a'Igebraic polynomial  equation (2.4) have distinct roots
tif, o, £if,;...,0 £iBy each having multiplicityT;, T,,..., Ty, respectively,

and all of the roots be complex Then the solutlon of type ™ for equation (1.1) is given
by the formula

ufr) = i Ifr“ﬁ (lnr)? [Bsq cos(Bs In r) +Cy 'si’n(Bs In r)] (2.8)

s=1 q=0
where B, ve C, are arbitrary constants.

Proof. Similar to Theorem 2.1, we éan write '(2.1) as

N ‘ Ty

2(r) =2 [ [(m? - 20t,m + 02 +2) = = L

N
where 22 T, = 4p . The factors

§=1
. - . 1:5' . - _.'.“ts o g
(m® - 20,m + 02 +p2)" = [mm (o, + ;BS)] [m— (o, ~ 155)] ;8=1,..,N
WhiCh are on the right-hand side of (2.9) and the'following derivatives of these factors

d1
qu

are zero for m = o +if,. Therefore, for s=1 ,...,N each of the functlons r%E: and |
. from (2.7) and the following expression

(O = o o ol ) iinf, )]

for q4—=1-,...,'rs -1, s=1,...,N each of the functions_
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dir®
O

r"‘sﬁﬁ’s (‘lg'r) ‘—- r“s (lnr)\ [COSB (lr;r);151n[3 (Inr)]

m= asisﬁs - bl AR

satisfy the equation (1.1). Since the given: equauon islinear,, by -the superposition
principle the sum (2 8) also satisfies (1 1.

Now, wé can give the followmg theorcm ‘which is a result of the Theorem 2.1 and
Theorem 2.2. Proof of the theorem is similar to the previous theorems.. .. -

Theoren' 2.3 Let the algebraic polyndinial equation (2.4) have distinct réal’ roots
Cis €35...,Cy, €ach having multiplicity &, &,,...,&,,, respectively, and ‘distinct
complex roots o, £if};, o, +if,;..., 0 £iBy, each having multiplicity T;, 7,,...,Ty.,

respectively..Then the solutions.of type ™ for.equation'(1.1) is ngen by: the formula

E.-1 N Tl

>, 2 A" (Inr)° EES I 1nr)q[B cos(B Inr)+C,, sm(B lnr)|  (2.10)

Mz

[,
il
—

v=0 5=l q=0

where A

jo» By ve Cqarc arbitrary constants.

Example 2.1 Consider the following operator L
[ o, a2 1 2 a»]
=1
? P 2.9 8 3 16

——— 11
W T ey e A0

where 17 =(x+ 1)2 4

Ndw, we obtain solution. of_? tSrpe’ ré‘ | for eqiiéﬁoh 12 (u) =0 i we substitute
A=1Lu=0,2 =1a,=-2,0,=2,0,=-8y=-16,x) =-1, xJ=3 which are
the parameter values in the operator (2.11).in (2.2), we then find ... .. :

o{m) =m* -2m* - 15m?* + 32m-16
= mrdm-1i(m-4)

and we can write from (2.1)
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L(x™) = olm)g(m - 2)e™
{(m+4)(m+2)(m 12 (m=-3)(m-4)(m- )™
Therefore, algebraic polynomial equation is
(m +4)(m +2)(m - 1)*(m - 3)*(m - 4)(m - 6) = 0
From this equation e obtain’ c',."-'-'-'6‘: cy =4, '0:3';"3" o, = ll,' =-2, ¢ =g
=1 &, =1, & =2, §,=2, &; =1, &6 = 1. If these values are substltuted in (2.5)
wethenhave e - , ‘
y é, T . o
wr) = ZAJUrcé(lnr) -Amr + Anpr® + A1 +A3Er3(lnr)
j=1 v=0
+Agr+ Agr(lnr) +Asr + Agr
solution of type r™ for L*(u)=0

3, SOLUTIONS OF TYPE u = u(r)

In this section, we will show that all solutions which depend only on r for the equataon
(1.1) can be expressed by formula (2.10).

Theorem 3.1 Alll'soiu-tions of type u = u(r). for equation (1.1). can.be expressed by the
formula (2.10).

Proof. Consider the operator (1.2). Applying the operator L to the function u = u(r),
we obtain

d*u du d%u
L(u) = Ar? d—+(57m 6?\,+u)rg—~+(157t—15kn+3un 3g+1)dr2
d
-i_—_(lS?Ln-~157\,+3_p«—3un+n—1+p)r'£-+§- BCE)

Since the above operator is an Euler type operator, if we set ‘'t =¢" and D = "&j[", then:

we have
L(u) = L(D)u = ¢ "% [AD* +(5An — 124+ u)D? + (44} — 30An + 3un — 6 + 1)D?
+(40kn — 48 + 8~ 6pn +n—2 +p)D + ¥ Ju |
=e¢'®(D)u (3.2)
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Applying the operator L on both sides of (3.2), wefind -~ .
L*(u) = *(D)u = LD} *®(D)u} = e Z@D){c ?@(D)}. ~  (33)

From ordinary differential equations, we know that, for any polynomials of the operator
D with constant coefficients G and H and for a constant o, the following relation is
valid [1].

G(D){e H(D)u} = ¢ “G(D - w)H(D)u
Considering this property, (3.3) can be written as

[2(u) = L*(D)u = e 2 ®(D){e 2 (D)u}
=e¢ @D -2)®(D)u (3.4)

We remark that the product of ®(D-2) and ®(D) is commutative. Applying the
operator L repeatedly p-2 times on both sides of (3.4), then we obtain

p~i
P(u) =e [ Jo(D -2k (3.5)

k=0

Equating the expression (3.5) to zero, we obtain an ordinary differential equation with
constant coefficients and of order 4p. The indical equation for this equation is

pl

[Tom-2k)=0

k=0

This was obtained previously on the right-hand side of (2.1). It is obvious that the
corresponding solution for this equation is given by (2.10).

We note that, if we substitute u=r™ in (3.5) then, by considering r™ =e™ and

p-1 -
e = ¢72P gapd I_ICIZ’(DmZk)e‘“t = em‘hd)(mMZk), we see that (3.5) reduces to
k=0 k=0

2.1).
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