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Abstract~ A Slider bearing with second and thlrd grade ﬂmds as lubncant is-analysed in
the present study. The analysis is based on perturbation technique, Choosing second and
third grade effects to be smaller than the viscous effects, a perturbation solution is
constructed. Under the thin film assumption, inertia terms are negligible compared to
the viscous, second and third grade terms. The pressure distributions in the bearing are
calculated approximately,
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1. INTRODUCTION

Lubrication of bearings is an important technological problem. The velocity and
pressure distribution in the bearing should be known for a proper functioning. Much
work has been done on the Newtonian type of lubrication. However, additives are
frequently used in lubricating fluids, which makes the flow non-Newtonian.

In this work, second and third grade fluids are considered as a lubricant in a slider
bearing. The stress ténsor equation for second and third grade fluids is given by
Rajagopal and Fosdick [1] as follows

T=-pl+pA i+ As+A S+BIrA DA, E : (1)
where T is stress tensor, p is the pressure, u is the v1sc031ty and oy, 0 and 3 are
material constants. The thermodynamic restrictions and thé assumption that the free
energy be minimum when the fluid is at rest leads to the relations [1]

w0, 0,2 + 0, | < (24uB) " | 2
Ay and A, are the first Rivlin-Ericksen tensors defined by . ' '
Ap=LALT o SRRNTR -
A=A, +AL+LTA, 3

where L= gradv and v is the velocity vector.

First the equations of motion for second and third grade fluids, in a slider
bearing will be derived. Under the thin film assumption, viscous, second and third grade
effects remain significant whereas inertial term can be neglected in a slider beanng
flow. Then assuming that the second and third effects are small compared to the viscous
effects a perturbation type of solution is constructed. The first term in the solution is due
to Newtonian behaviour and non-Newtonian terms are added to the Newtonian solution
as corrections. The pressure distributions are calculated apprommately and the effect of
non—Newtoman behawour is shown in figures, =~ -
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Some of the relevant studies on non-Newtonian lubrication in bearings are as
follows: Ng and: Saibel [2] used "a special third grade fluid (second grade terms
neglected) and studied the flow occuring in a slider bearing, Harnoy and Hanin [3] and
Harnoy and Philippoff [4] studied the flow of a second grade fluid in a journal bearing.
Bourgin and Gay [5] used a similar model with that of Ng and Saibel [2] to investigate
the behaviour of flow in a journal bearing. Buckholz {6] used a power-law model as a
non-Newtonian lubricant in a slider bearing. More recently Kacou et al. [7] studied the
flow of a third grade fluid in a journal bearing and constructed a perturbative solution.
The work is extended by the same authors (Kacou et «l.[8]) by including thermal
effects. Yirlisoy and Pakdemirli [9] studied the flow of a special third grade fluid in a
slider bearmg :

2 EQU-ATI()N OF MOTION
The slider bearing is shown in Figure 1. The continuity and linear momentum

equations are

div v= : : . (4)
divh=pZ¥ | | | (5)

II

A

' Fig. 1. Slider bearing
Let us introduce the foilowing- non-dimensional parameters:
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Substituting equations (1)-(3) and (6) into (4) and (5), one has
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In above equations, the non-dimensional parameters are

UL o ) U 1 L
Remrp ’,},1:__12’ Y2 = 22’ T = B3’ Pl
B pL pL pL” & b,
In equations (7)-(9), only the largest terms in each group are retrieved. We may now
assume that 1/Ré is of order 3, Yrand vy of order & and finally ys of order R Under these

assumptions, the largest terms in equations (6)-(8) are

a0

Ju  av : _ . _ . o o
ox dy | (1
dp’ 0% Pu_ 2w dudu dudu) . duldu) S

wl 2k + 9@ - 6k, | (12
a3y {VayB Yoyt oxay? dyaxdy ) ay?| oy (12
where L .

3 2 : ' ' S

p =p-(2k, + kz)("“] _ 13
Using (12) in (8), we obtain :
aps« o S T . R - o : " .
—=0 ' : o 14
The boundary conditions for the problem are

w(0)=1, u()=0, v(0)= 0, V(=0 T S ¢ ),
3, VELOCITY PROFILE - |

“In this section, velocity proﬁle will be calculated appr0x1mateiy Assummg that
second and third grade terms are small compared to the viscous term, one may write

k—ek 1=123 Ce e (18)

where € is a small parameter. The approximate veloaty profile in the x and y direction
and the approximate pressure profile can then be written as

USUpHEY;  VEVGHEV] P =Da+E P, I | " o 17
Substituting equations (16) and (17) irito (11) and (12), one has ST

Order 1:

lauc, dv, | o o
_,+muo . [ . 18
ox dy | (18a)

_uo(O)zi, uo(D)=0, vo(0)=0, vo(b)=0 . Fo (18¢)
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Order &
ou, E)v1 '
el ST 19a
ox dy (192)
%, dp; {2y, *u, Ou, d*u, du,d%u, | — 9%u,(du
=9 ru, 2o WMo Gl o0 Mo i ¢80 Mo | (19p
dy?  dx Yo dy’ to Jxdy>  9x dy> dy Ixdy dy® | 9y (‘ )
u(0)=0, ui(b)=0, vi(0)=0, vi(b)=0 (19¢)
Equations (18a-¢) represent the Newtonian problem and the well-known solution is
1dp3 2 y
=——2y" ~ybJ+ 1= 20
R
v =14 doo(y’ _p¥°)|_ ¥ A8 db 1)
2dxi dx | 3 2 2b% dx
d(dp,,, db . .
| il 13 = 6, O =p.()=0 22
dx(dx T P, (0) =p, (D) o (22)

Equation (22) determines the Newtonian pressure.
Substituting equation (20) into equation (18b) and using the boundary conditions for
one gets the correction term to the velocity profile

. N . a2 ‘
wo9pi(y by) [ dfdpo {1 _dpob*) dbl 1 [dpo|b
x| 2 2 ) x| ax |2 ax 4 ) dx|6® | dx ) 4
_ N3 4 _ 22 4 = \? 3
3 11T AR A Ll Y . 1 G A WSS I S 1 dp, Yz,,l
flac Jl2 77 4 4 dx b dx | b* b

(23)

Hence, the solution can be written as
o' (y* by f oy ) [ e Y1 _apsb®), db[ 1 (dpy)D
dx{ 2 2 b ldx| dx |2 dx 4] dx|b® | dx | 4 |
* NP7 4 212 3 Y 3
-k, dpo | [ ¥ —y3b+3yb _¥b + dpo || _2¥ +3y yb +3dp° yzm_)(_
dx 2 4 4 dx b dx | b b

(24)

Using equations (19a) ,(19¢) and(17), we have
go-dfa’ y2 o) (¥ )y, A f 4 dee (1 _deip) dof 1 e
©odxl dx 2 b dx dx dx 2 dx 4 dx b |dx | 4]

d dPo y5 _y'b 3y°0? yb*)) [dpg (vt v dpo(y y’
k, — + - + -y — +3 - L
Sax 10 4 12 8 dx 2b 2 dx Lzsb 2b

(25)
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(0} dmd a, Eimﬂgg_zgiig§+1d dpy

dx 12 ‘ dx dx{ dx |4 | dx | dx4 2dx| dx |
.;_.é?.,..ia.. +k dpﬂ "o _dpyb L R >

dx b 1oL dx 40 Jdx 2 R T A R e

Pz 1O =p; (1) 0

Equatlon (26) is non—Newtoﬁxan pressure equatmn The pressure distnbutlon Do (x) and
p1.(x) remain unknown in equations (22) and (26) respectiveiy The goal would then be
to determme the pressure dlstnbution approxrmately =

4. PRESSURE DISTRIBUTION

The solution to equatzon (22), which is the Newtonian solution, subject to the
given boundary conditions, is

« 6x(b -1)
- 27
Pt arny i @7)
where b and r are-deﬁned to be |
b=(1-(1-1)x), r-bglbl IR l (28)

Inserting - this Newtonian pressure dxstrlbutxon into equation (26) and applying the
associated boundary conditions one finally obtains

o o~ 20-2r-x+xr)? 81-2r+2u7-r*) 6
P =k~ e a ) PPN
1+1)b 1+01)°(1-1)b (1+71)
o ) 2 3 _'
+K, ‘.3888r - 168 - 432r - 576r : 29)
250=-)1+1)*b” 50~ SA-r)i+1)b” S5(I-nd+rbd” . .
24(1 r3) 2[13(1+r2)—r]— 24(13+13r +81;)
25r(1+r)y'b ' 251 -n)r(l +r)
The final pressure distribution would then be
. 6x(b r) 2(1-2r-x+xr’)*  8(1-2r+2r* - ) 6
Stk gt ol
TV @0 @ o’Aobt A+
3888r? 168 o 4320 576r
3 3.5 T 3 3.6 4 (30)
25(1-){1+1r)y'b’ S(1-)b’ S50-r)i+r)’b” 50-rl+rb
— 2
24Q1 rs) 2[13(1+r2)-r]- 24(13+13r _+81;)
25r(1+1)°b 25(1—ryr(l+r)

In the next section, numerical plots of pressure distribution and velocity profiles
will be given.
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3. NUMERICAL RESULTS

In this section, the pressure distribution in the bearing is determined for various
values of the parameters ki, and k. Figure 2 indicates the variation of the pressure with
respect to x when ka=0 and k; is varied. It is-seen- that the pressure inéreases with
increasing k;. Figure 3 illustrates the manner in which pressure varies with k;, when ks
is held fixed at some nonzero value. As before, increasing k; increases the pressure. In
Flgure 4 for different k3, k; is held fixed. As ks increases the pressure inside the bearmg
increases” whlch means higher loadmg capa(:lty for. the bearmg In Figure 5 for
ki=K5=0.1 the “dimensionless letigth versus chmensmnless pressure is plotted for
different clearance ratios. Similar to Newtonian behaviour, in the non-Newtonian case
also, pressure builds up in the bearing for lower clearance ratios.

Fig.2 Pressure distrlbutzon in the bearmg correspondmg to vanous second grade effects
for =0.5 (——— ki=k;=0 (Newtonian); === k3=0, k;=0.1
S e ks=0, ki=0.2; *** ks=0 k;=0.3)
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Fig. 3 Pressure dlstnbutlon in the beanng corresponding to varlous ‘second grade effects
with a constant third grade effects for r=0.5 (— k;=ks=0, (Newtoman) - kaz=0.04, k=0.1
...... k3=0.04, k;=0.2; *** k3=0.04, k;=0.3)
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| Fig 4 Pressure dlstnbutlon in the bearmg correspondmg 01 vanous th1rd grade effects
_ w:th a constant second grade effects for r=0.5 (— ki=ks=0, (Newtoman), — k3 =0.02, k;—O 1.
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Fig.5 Pressure distribution in the bearing corresponding to dlfferent clearance radios
: R for k;—kg-O 1 (—— 1=0.3; e 1 =0.4; ... r=0.5).
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