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Abstract : In this paper, we study a class of generalized mixed quasivariational in-
clusions. By using the properties of the resolvent operator associated with maximal
monotone mapping in real Hilbert space, we have established an existence theorem
of solutions for generalized mixed quasivariational inclusions, suggesting a new iter-
ative algorithm and a perturbed proximal point algorithm for finding approximate
solutions which strongly converge to the exact solutions of the generalized mixed
quasivariational inclusions. The results proved in this paper are more general than
the previously known results in this area.

1. INTRODUCTION

Variational inequality theory has become very effective and powerful tool for
studying a wide range of problems arising in mechanics, mathematical programming,
optimization and control problems, equilibrium theory of economics, management
science, operations research, and other branches of mathematics and engineering
sciences, etc., see {1-16] and the references therein.

In a recent paper [7], Hassouni and Moudafi introduced and studied a class of
variational inclusions and developed a perturbed algorithm for finding approximate
solutions of the variational inclusion. This technique is further extended and gen-
eralized in many different directions by Adly [1], Ding [4], Siddiqi et al [13,16}, and
Noor et al [10].

In this paper, we introduce and study a class of generalized mixed quasivar}-
ational inclusions. By applying the properties of the resolvent operator associated
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with a maximal monotone mapping in Hilbert spaces, it is shown that the quasi-
variational inclusion problems are equivalent to fixed point problems. A new iter-
ative algorithm and a perturbed proximal point algorithm for finding approximate
solutions which strongly converge to the exact solution of the generalized mixed
quasivariational inclusion are proposed and analysed.

2. PRELIMINARIES

Let H be a real Hilbert space endowed with a norm || . || and an inner product
< .. > . Let C(H) be a family of nonempty compact subsets of H. Let T, A :
H — C(H) be set-valued mappings, g : H — H be a single-valued mapping, and
¢+ Hx H — RU{+oco} be such that for each fixedy € H, ¢(.,y) : H = BRU{+oo}is -
a proper convex lower semicontinuous function on H and g{H)N dom 9¢(.,y) # @
for each y € H. Then for a given nonlinear operator N{.,.) : H x H — H, the
problem of finding z € H, u € T(z), v € A(z) such that g(z) € dom 8¢(.,z) and

< N(“}”)iy - g(l‘) > 2 qb(g(a:)a .’B) - ¢(y7$)s Vy € H: (21)
is called the generalized mixed quasivariational inclusion problem (GMQVIP).

Special Cases : (1) If N(u,v) = u—v then GMQVIP reduces to the problem of
finding z € H,u € T(z) and v € A(z) such that g(z) € dom 9¢(.,z) and

<u-v,y—g(z)> = d(g(z),2) - d(y,z), Vye H
which is known as the generalized quasivariational inclusion problem, studied by

Ding [4].

(2) I N(u,v)=u~vand ¢(z,y) = ¢(z) for ally € H and T and A are both single-
valued mappings, then problem (2.1) reduces to the variational inclusion problem
(1.1) considered by Hassouni and Moudafi {71

(8) M N(u,v) = u— v and K is a closed convex subset of H and ¢ = I is the
indicator function of K,

@ { 0 HeEK
B\ 7Y 400, otherwise,

then problem (2.1) reduces to the generalized strongly nonlinear variational inequal-
ity problems, i.e., find z € H, u € T'(z), and v € A(z) such that g(z) € K and
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<u—v,y—glz)> = 0, Yy€ K.

considered by Siddiqi et al [16].
In order to prove our main theorems, we need the following concepts and results.

Definition 2.1. Let X be a Banach space with the dual space X* and let ¢: X —
RU {+c0} be a proper functional. Then ¢ is said to be subdifferential at a point
z € X if there exists an f* € X* such that

¢ly) —¢fz) > <fry—e> VyekX,

where f* is called the subgradient of ¢ at z. The set of all subgradients of ¢ at  is
denoted by d¢(z). The mapping 8¢ : X — 2% defined by

dp(z) = {f* € X*: ¢(y) — d(z) > <[ y—=z>, Vye€ X}
is said to be the subdifferential of ¢.
Definition 2.2.. Let H be a Hilbert space and let ¢ : H — 2H be a maximal
monotone mapping. For any fixed p > 0, the mapping Jf : H - H defined by
J = (I+pG) (), YzeH
is said to be the resolvent operator of & where [ is the identity mapping on H.
Lemma 2.1. Let X be a reflexive Banach space endowed with a strictly convex

norm and ¢ : X =+ RU {+oc} be a proper convex lower semicontinuous function.
Then ¢ : X — 2% is a maximal monotone mapping,

Lemma 2.2. Let G : H — 2¥ be a maximal monotone mapping. Then the
resolvent operator Jf - H — H of G is nonexpensive, i.e., for all 2,y € H,

| JE@) =TS W il < lz—yll
Definition 2.3. For all z,y € H, the operator N{.,.) is said to be strongly monotone

and Lipschitz continuous with respect to the first argument, if there exists constants
o > 0, 8 > 0 such that

< N(uy,.) = N{ug,.p,z~y>
> afe—yl?, ui€T(z)u€ T(y),
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| N(ut,) = N(ua, ) [| € Bllwm—ul.
In a similar way, we can define the strong monotonicity and Lipschitz continuity of

the operator N(.,.) with respect to the second argument.

Definition 2.4. A mapping.g: H — H is said to be
(i) A—strongly monotone if there exists a constant A > 0 such that

<gl@)-gly)hz—y> = Ma-yl’ Vz,y€ H;
(ii) o —Lipschitz continuous if there exists a constant o > 0 such that
92} —g(y)z—yll 2 ollz~yl’, Va,ye H

Definition2.5. A set-valued mapping T : H — C(H) is said to be n—Lipschitz
continuous if there exists a constant 5 > 0 such that

§(T(z), T(y) <nllz—-yl, Yo,y € 4,
where §(A4, B) = sup{|la —bll:a € A,b€ B}, VA,Be C(H).

3. MAIN RESULTS

In this section, we shall prove an existence theorem of solutions for the GMQVIP
(2.1) and suggest a new iterative algorithm and a purturbed proximal point algo-
rithm for finding approximate solutions of the problem (2.1). Then we show that
the sequence of approximate solutions strongly converges to the exact solution of
the problem (2.1).

We first transfer the problem (2.1) in a fixed point problem.

Theorem 3.1. The function (z*, u*,v*) is a solution of (2.1) if and only if (z*, u*, v*)
statisfy the relation ‘

g(z) = J2*(g(z) - pN(u,v)), Yz € H, (3.1)

where p > 0 is a constant, J2*(%) = (1 4 pd¢(.,z))" is the resolvent operator of
9é(.,z), and I is the identity mapping on H.

Proof. Let (z*,u",v*) satisfly the relation (3.1}, that is,

g(z*) = I (g(z™) — pN(u*, ™).
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The equality holds if and only if

N(v*,u") € 08(.,z")(9(z")),
by the definition of Jf‘*ﬁ("”*). This relation holds if and only if

Py, z7) — dlg(z™),2") > < N(v",v*),y —g(z") >, Vy € H,
by the definition of the subdifferential 8¢(., z*). Hence {(z*,u*,v*) is the solution of

< N(u*,v*),y— g(z*) > 2= $(g(z"),2") — ¢(y,z"), Vy € H.

Remark 3.1. From Theorem 3.1, it follows that the GMQVIP (2.1) is equivalent
to the fixed point problem

z =z~ g(z)+ 0 [g(e) — pN(u,v)]. (3.2)

This fixed point formulation enables us to suggest the following algorithms.
Algorithm 3.1. For any given zo € H, Uy € T(z0), and Tg € A(o), let

yo = (1= Bo)zo + fo [0 — glwo) + J21=0)(g(20) — PN (w5, %)) -
Take any fixed ug € T(yo) and vo € A(yp), and let

21 = (1 — a0)zo + a0 [yo — 9(y0) + JEH)(g(yo) — pN (o, vo))]

Continuing in this way, we can define sequences {Z,}o2o, {¥ntomos {Un}neo, and
{vn}iLo as
Zppt = (1 = ) Tn + an [y — g{gn) + S (g(ya) — pN (s vn))]

Yo = (L= Ba)n + O [2n — glan) + T2 (g(2,) = pN (@, 7)) (3.3)
for n = 0,1,2,- -+ where u, € T{yn), vn € Alyn), T € T(2y), and T; € A(z,) can
be chosen arbitrarily, 0 < an, B < 1, 2, @, diverges, and p > 0 is a constant.

Using the fixed point formulation (3.2), we have the following algorithm.

Algorithm 3.2. For any given zo € H, compute the sequences {2,}324, {tn}l0,
and {v,}2%0, by the iteration schemes

Znpr = = g(2n) + I [g(20) — pN (un, vn)] - (349)
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for n = 0,1,2,---, where u, € T(z,), v» € Alz,) can be chosen arbitrarily and
p > 0 is a constant.

To perturb the Algorithm (3.2), we first add, in the right-hand side of {3.4), an
error €, to take into account a possible inexact computation of the proximal point
and we consider another perturbation by replacing ¢ in (3.4) by ¢,, where each
¢n + Hx H — RU {+00} is such that for each fixed y € H, ¢,.(.,y) is a proper
convex lower semicontinuous function on H and the sequence {¢,} approximates ¢
on H x H. Then we obtain the following perturbed proximal point algorithm.

Algorithm 3.3. For any given zg € H, compute the sequences {Z,}7og, {Un }ro,
and {v,}%%,, by the iteration schemes

Tnpr = Tn — g(25) + Jf@‘»(.,m) (g(zn) — pN(tn,vn)) + €5, (3.5)

where {e,}2, is an error sequence in H, u, € T(z,) and v, € A(x,) can be chosen

~ arbitrarily, and p > 0 is a constant.
Now we show that the existence of solutions of the GMQVIP (2.1).

Theorem 3.2. Let N(.,.): H x H ~» H be a—strongly monotone and S—Lipschitz
continuous with respect to the first argument. Let T : H — C(H) be n—Lipschitz
continuous, A : H — C(H) be y—Lipschitz continuous, g : H — H be A—strongly
monotone and ¢—Lipschitz continuous. Let N(.,.) be £—~Lipschitz continuous with
respect to the second argument, and ¢ : H x H — R U {4oc0} be such that for
each fixed y € H, ¢(.,y) is a proper convex lower semicontinuous function on H,

g(H) N dd(.,y) # ® and for each z,y,2z € H,

| 242y — T || < iz -yl
Suppose that there exists a constant p > 0 such that

ko= p+2/T—n+o? <1,

o > (1 Ky + k(B — )2~ k) ,

p§7 < 1_k1

a—(1—k)fy

~ V0o = (L= k)ér)’ — k(Bn? — £77)(2 - k)
62772 — 6272 : :

)82?72 e 6272

| < (3.6)

| p
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Then the GMQVIP (2.1) has a solution (z*,u*, v*).

Proof. By Theorem 3.1, it is sufficient to prove that there exists z* € H, u* € T'(z*),
v* € A(z*) such that (3.1) holds. Define a set-valued mapping F : H — C(H) by

Fiz)= | U [z—g(2)+I%Dp(g(z) ~ pN(u,v))]

weT{x) ved(x)

for all z € H. For arbitrary z,y € H, a € F(z),and b € F(y), there exists u; € T'(z),
v € A(z), up € T(y), v2 € A(y) such that

a=z—g(z)+ Jf¢("$)(g(33) — pN (uy,v1)},

b=y~ g(y) + IV g(y) = pN(uz, va)).
By the assumption of ¢ and Lemmas 2.1 and 2.2, we have

la—bdl
< e =y —(g(z) ~ g() || + | 0 g(w) — pN (1, 01))
= JENgly) — pN(uz, v1)) |
1 22" (g(y) — N (uz, 1)) = J*09 (g(y) — pN(uz, v2)) ||
2z —y—(glz) —gly) I + il = — y — p(N(uy,v1) — N(uz,v1)) ||

+ p || N(ug,v1) ~ N(uz,vo) |+ llz—y - (3.7

By strong monotonicity and the Lipschitz continuity of g, we have

A

fz~y—(gl@)—gW) | < VI-22+o?{z—y]. (38)

Since N(.,.) is strongly monotone and Lipschitz continuous with respect to the first
argument and 7T is Lipschitz continuous, we have

|2 —y — pN(us, v1) — N(ug,01) | € /1 —2pa+p282 [z —y|. (39)

Again since N{.,.) is Lipschitz continuous with respect to second argument and A
is Lipschitz continuous, we have
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| N(ug,v1) = N(ug,v2) || < &y ffe—yll. (3.10)
By combining (3.7) to (3.10), we obtain

§(F(z), Fly)) < [Qx/l-~2/\~i~02+x/1w2pa+pzn2ﬁ"‘+p§7+n] -yl
= [k+tlp)+p6rlllz~yl=0]z~yl (3.11)

where k = 24/1 — 2XA + 0%+, t(p) = /1 — 2pa + p*np? 5% and 0 = k+i(p) + p¢y. By
the condition (3.6) we have 8 < 1. It follows from the condition (3.11) and Theorem
3.1 of Siddiqi and Ansari [12] that f has a fixed z* € H. By the definition of F' there
exists u* € T{z*) v* € A(z") such that

g(z*) = JPN(g(2*) — pN(u*, v*)).

Therefore (z*,u*, v*) is a solution of GMQVIP (2.1).
In the following, we shall show the convergence of the Algorithms 3.1 and 3.3.

Theorem 3.3. Let H,N,T, A, g, and ¢ satisfy all conditions in Theorem 3.2. If
the condition (3.6) is also satisfied, then the iterative sequences {z,}52,, {un}220,
{vn}22, defined in the Algorithm 3.1 strongly converge to z*,u*, and v*, respec-
tively, and (z*,u*,v*) is a solution of the GMQVIP (2.1).

Proof. By Theorem 3.2, the GMQVIP (2.1) has a solution {z*,u*, v*). From The-
orem 3.1 we have z* € H, u* € T(z*), v* € A(z*), and for all n > 0,

z* = z*—g(z*) + Jff‘&("x')(g(:e*) — pN(u*,v*))
= (1—an)z" + an [2* — g*) + J290=) (g(a*) — pN (u*,v7))]

= (1= Ba)2" + By [2* = g(z*) + I (g(z*) — pN(u",0"))].

By the Algorithm 3.1, using similar arguments as in the proof of Theorem 3.2, we
obtain
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[ o — 2" = (glza) ~ gl S VI-20+0%[[za—2" |

| @n = 2" ~ p{N (T, T) — N(w", T} || £ VI-2pa+p20%" || 20 — 2" |,

| N(u*,75) —n(w, ) || £ &y [z —2" |,
| yn—2* = (g(ya) —g(=*N | £ V122407 ||y ~" ||
[y — 2" = p{N{(tn,vn) ~ N(u*,va)} || £ V1 =2pa—0?B%0% |y — 2" |},

| N(u*,va) ~ N v ) | € &y flyn—2" |l
Thus, by the Algorithm 3.1, the assumption of ¢, and Lemmas 2.1 and 2.2, we have
[ Y — 2™ ||

= || (1= Ba)2n + Br [2n = g(2a + JEH=) (g(wn) — pN (T, 7))
~ (1= Bu)z* — Ba [27 — gle*) + J2H=(g(2*) — pN (u",v9)] |
< (1= Ba) || 20— 2 || +Ba || 20— 2" = (a(2a) — 9(2™)) |
+ Ba || J2H =N g(2) — pN (W, ) — I (g(2n) — pN (@, 77)) ||
+ B |} J2 (g(wn) — pN (T, B)) — T2 (g(a) — pN (u,v7)) |
< (L= Bl zn =" | +8un | 2o — 2" || 428 || 20 = 2~ (92 — 9(2) |
+ Bn |l 2n — 2" — p{N (@5, 70) — N(v", 75} H
+ Bop || N(w*,77) = N(u*,0*) |
< (=B | on = o || +8ak || 20 — 2* | +Ba1(p) || @0 — o™ |
+ Buply | 2n— 2" |
= (1= B) [l & —a" || +8:0 || 2o — =" |

< Nz —2* |- (3.12}
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Similarly, we have

mt =27 | = 1 (L= @)+ an [30 = 9(50) + J255 (g(y) — pI (1, )]
= (L= )z = ay [ = g(z7) + I (g(a™) — pN(u™,07))] |
< (U—an) [ 2n— 2" | +enb | yn— 2 || (3.13)
From (3.12) and (3.13), we have

Fenp—2™ | < (L—an) [f@n — 2" || +0nd || 2n — 2™ ||

< Mol - (1= O)aif || zo— 2 |f.

Since Yoo, o, diverges and 1 ~ 8 > 0, we have I1%2, {1 ~ (1 - #)e;] = 0. Hence the
sequence {z, } strongly converges to z*. By {3.12), the sequence {y,} also strongly
converges to z*. Since u, € T(y,), u* € T(2*), and T is n—Lipschitz continuous, we
have '

| tn —u" <0l yn — 2" |[-> 0,

and hence the sequence {u,} strongly converges to u*. Similarly, we can show that
the sequence {v,} strongly converges to v*. This completes the proof.

Theorem 3.4. Let N(.,.): H x H — H be a—strongly monotone and —Lipschitz
continuous with respect to the first argument. Let T : H — C(H) be n—Lipschitz
continuous, A : H — C(H) be y--Lipschitz continuous, g : H# — H be A~ strongly
monotone and o—Lipschitz continuous. Let N{.,.) be {—Lipschitz continuous with
respect to the second argument, and ¢, ¢, : H x H — RU{+o0},n=1,2,3,---, be
such that for each fixed y € H, &(., y) and each ¢,(.,y) are both proper convex lower
semicontinuous functions on H, g{H) Ndomd¢(.,y) # ®, and for each z,y,2 € H
and for all n > 1,

RS ORF e O} T EXS T

Assume limae0 || JO#(¥(2) — JOH¥)(z) ||= 0 for all y,2 € H, limsse || € 1= 0,
and there exists a constant p > 0 such that the condition (3.6) in Theorem 3.2
holds. Then the iterative sequences {z,}, {u.}, and {v,} defined in the Algorithm
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3.3 strongly converges to z*, u*, and v*, respectively, and (z*, u*, v*} is a solution of

the GMQVIP (2.1),

Proof. By Theorem 3.2, the GMQVIP (2.1) has a solution («*,u*, v*) such that
u* € T(z*), v* € A(z*), and

" = z* — g(z") + de’(""’*)(g(x*) — pN{u* v")).

By setting h(2”) = g(2*) — pN(u*, v*) and by using the Algorithm 3.3 and assump-
tions of ¢ and ¢,,n = 1,2, -, we obtain

-

= | 20 = 9(n) + T g(2) — PN (i, 02) + e
— ot gla®) — B (%) — pN(u,0%) |

< | 20— 2" — (g(on) — 9(z)) |
1 TP (gla) = pN (i 00)) — T2 (g(%) — pN(u, %) |
b It (gla") — I (u,67)) — TN (") — (", 07)) |
+ I ga") — pN(u,07)) = T2 (g(a) — pN (w07 |
Ul

< 2flzn— éf* ~ (g{za) — g(z*) |
b [ 2n = 2 = (N (o) — NG 00)) |
oIl N 0a) = N(um, o) || 44| 2n =" |

+ | IR (")) ~ S (R()) [+ e |

AN

(k+¢(p) + pev) || @ — 2™ ||
+ [} 2= A(2)) — T2 (h(e™)) |+ ] en |l

= f ||z, —z* || +en, | (3.14)
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where k = p + 2/1 — 2X + 02, t(p) = /1 — 2ap + p?[n?, 6 = k + t(p) + pfv, and
en =[| J2=LmWh(z™)) — JE02" ((2*)) || + || en || - By the condition (3.6) in
Theorem 3.2, we have ¢ < 1. It follows from (3.14) that

Ton —a™ || < 0" oo —a” |+ Oensr—

=}
Since €, — 0 by the assumption, it follows from Ortega and Rheinboldt [11,p.338]
that
limin oo || Zng1 — 2" ||= 0,
and hence the sequence {z,} strongly converges to z*. Since u,, € T{z,), v € A{z,),

u* € T(x*), v* € A(z*), we have

fua—u"{| < 8(T(un), T(u")) <l €a — 2" |

fon—v" || < 8(A(vn), A™)) S v || 20— 2" || -

it follows that the sequence {u,} and {v,} also strongly converges to u* and v*,
respectively. This completes the proof.
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