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Abstract- The problem of traffic incident detection can be viewed as a pattern recognition
problem. Neural networks are known-to solve pattern recognition problems effectively,
especially when there is no mathematical model. The computational complexity of neural
network algorithms, however, increases exponentially with an increase in the size of the
network. Furthermore, with an increase in the size of the network, the size of the training
set has to be increased exponentially in order to achieve the same level of accuracy. To
overcome this double exponential complexity a hybrid feature extraction algorithm and
neural network architecture is created specifically for automatic detection of traffic
incidents., The upsteam and downstream traffic data are first filtered by the discrete
wavelet transform. Then, a linear discriminant network is used for feature extraction.
Finally, the adaptive conjugate gradient learning algorithm of Adeli and Hung is used to
train the network.
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1. INTRODUCTION

Accurate and fast traffic incident detection is critical for minimizing traffic delays
and increasing safety on freeways. With information obtained from the incident detection
system, an Intelligent Transportation System (ITS) can use optimal control strategies [3,
26] to guide the traffic flow by routing incoming vehicles from the freeway upstream of
the incident and communicating this information to travelers. As such, the deVeIopment of
an efficient, reliable, and robust incident detection algorithm is of paramount importance in
creating an I'TS. '

Existing algorithms, however, are known to be unreliable for generating a high
level of false alarms [28]. The process of automatic traffic incident detection consists of
two tasks: data collection and incident detection. The data collection task is performed by
placing sensors in the freeway. Consequently, the traffic incident detection algorithm
depends on the type of sensor used to collect data.

Sensors can be classified by the type of data they provide into four categories [24]:
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1. Point data sensors collect data such as occupancy, speed, and volume at a specific
location on the freeway. Examples are ultrasonic traffic detectors [171].

2. Area data sensors collect data such as density over a segment of freeway.

3. Point-to-point sensors collect data such as travel time between two specific locations.
Examples are vehicle-to-roadside communication sensors.

4. Video sensors collect traffic images. Using traffic scene analysis, the images can be
used for automatic traffic incident detection [18]. The image sensors, however, have
difficulty covering the entire freeway and their implementation cost is prohibitive.

According to surveys conducted by the Department of Transportation in various
states within the United States and Canada (5], traffic information is typically collected
from point data sensors (i.e., loop detectors) and includes the occupancy (percentage of
road covered by vehicles) and volume (number of vehicles passing per minute) averaged at
20 to 30 second intervals, usually across all the lanes in one direction. On the average, two
detectors are used in every mile of the roadway. Only a few existing systems can provide
speed information (e.g., Ontario’s Queen Elizabeth Way). The goal of this research is to
develop a versatile traffic incident detection algorithm to be used widely. As such, the
traffic incident detection algorithm presented in this paper uses occupancy and volume
data only.

Traffic incident detection has been an active area of research in transportation
engineering [10]. A good example of the existing approaches to traffic incident detection
up to 1993 can be found in [27}. One of the earliest and the most widely used algorithm is
the so-called California Algorithm [25]. This is a simple comparative algorithm which
relies on the principle that a traffic incident most likely will increase the upstream occu-
pancy sigaificantly while at the same time significantly reduce downstream occupancy.
When measured values of occupancy approach pre-selected thresholds, an incident is
detected. Such an algorithm includes comparative tests to differentiate between a traffic
incident and a bottleneck congestion, compression wave, and random traffic fluctuation.

Other traffic incident detection algorithms developed in the 1970’s include the
standard normal deviation algorithm, which employs a time-series model to predict short-
term traffic [9], and the double exponential algorithm, which makes a double exponential
smoothing of traffic occupancy to predict occupancy and identify incidents [7]. Recent
work in this area includes the McMaster algorithm which is based on a two-dimensional
analysis of the traffic data [13]. Due to the complexity of the traffic phenomena and the
fact that no traditional mathematical model can capture the characteristics of various traffic
patterns accurately, all of these algorithms suffer from low rehablhty resulting in a large
number of false alarms.

2. TRAFFIC INCIDENT DETECTION USING NEURAL NETWORKS

Neural network computing appears as a promising approach for solving the traffic
incident detection problem for several reasons. First, automatic incident detection can be
cast as a pattern recognition problem, Neural networks are known to solve pattern
recognition problems effectively [2, 22, 23]. Second, neural networks are suitable for
solving the problem when there is no mathematical model or explicit rules. Third, neural
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network classifiers are nonparametric and make no assumption on the shape of the
underlying distribution and consequently are superior to statistical classifiers for solving
complex multi-dimensional classification problems. Fourth, neural networks are able to
handle problems with a large number of input attnbutes which most model-based
algorithms cannot handle effectively.

A few papers have been published recently on the use of the neural networks
approach to solve the traffic incident detection problem {6, 15, 17, 28). These papers
employ the occupancy and volume data of upstream and downstream sensing stations and
the simple multi-layer perception or backpropagation learning rules [16]. Cheu and
Ritchie [6] compare the multi-layer backpropagation algorithm with the self-organizing
neural network model of Kohonen [19] and the Adaptive Resonance Theory (ART)
classifier of Carpenter and Grossberg [4]. They conclude that the backpropagation
algorithm provides better results compared with the other two approaches. However,
shortcomings of the backpropagation algorithm have been documented by Adeli and Hung
and Haykin (1994), among others. The backpropagation algorithm is known for its
simplicity but it suffers from two major and fundamental shortcomings; its convergence
rate is very slow, usually requiring thousands of interactions. The convergence rate
depends heavily on the learning and momentum ratios that can be chosen only by trial and
error (Adeli and Hung, 1994). In addition, the convergence is highly sensitive to the
architecture chosen for the network, such as the number of nodes in the hidden layer
{Stephanedes and Liu, 1995).

Another problem with existing incident detection attempts is that they do not take
into account the large difference between the high incidence probability of the incident
training data set and the low incidence probability of the normal situation. This can result
in performance degradation. Further, instead of using generic neural network models,
substantial improvement in performance can be achieved by carefully analyzing the traffic
incident detection problem and then creating a neural network model specifically for it,
which is the subject of this paper.

3. THE MAJOR CHALLENGE

As mentioned before, the problem of traffic incident detection can be viewed as a
pattern recognition problem. There are two classes to be classified: the incident pattern
and the incident-free pattern. The development of an incident detection algorithm is
equivalent to the design of a certain pattern recognition classifier. The selection of input
attributes (or features) is a key issue for pattern recognition problems which has strong
influence on classifier design and system performance. There is a complicated relationship
between the number of features selected as inputs of the class and the complexity of the
classifier, training efficiency, and system performance. When very few input atiributes are
selected, the classifier usually is easy to design and the training of the classifier is
relatively easy and numerically stable. For example, the California Algorithm only selects
a few occupancy values of upstream and downstream stations as the input of the incident
detection algorithm. As a result, the California Algorithm is simple and so is the training
process. However, the drawback of selecting too few input attributes is obvious, most of
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the useful information is lost in the incident detection process resulting in less than

satisfactory performance. Some algorithms, such as the standard normal deviation

algorithm and the double exponential algorithm, use only the occupancy data. Two-
dimensional algorithms, such as the McMaster algorithm, use both the occupancy and
volume data but only a small portion of the historical data.

An obvious advantage of neural networks algorithms is that occupancy and volume
data are fully employed. However, the large number of input attributes also increases the
complexity of network structure and training difficulties, thus affecting the overall
performance. The performance and efficiency of neural networks algorithms depend on
two main factors: the size of the network and the size of the training set. Computational
complexity increases exponentially with an increase in the size of the network.
Furthermore, with an increase in the size of the network, the size of the training set has to
be increased exponentially in order to achieve the same level of accuracy. This double
exponential complexity is a major and fundamental challenge for application of neural
network to complicated real-life pattern recognition problems in terms of both accuracy
and efficiency (CPU time), which is the subject of our research.

The performance (quality and efficiency) of a neural network pattern classifier
depends on
a) The quality and quantity of available data. If the traffic data includes the features

needed for incident detection, the incident classification is more accurate. In reality,
the data is quite noisy. Further, at present there is no consensus on which traffic
parameters best describe the traffic dynamics and indicate incident information.
Current implementations of sensors provide only a few traffic characteristics such as
volume and lane occupancy data. These data may not represent traffic incidents
effectively,

b) The size of the network. A large network can provide more reliable results, only if a
large amount of data is available and at a very large and often impractical
computational cost.

In the papers mentioned in the previous section, typically two volume and two
occupancy data were collected at upstream and downstream sensing stations every 30
seconds. The typical input pattern is data collected over a 5-minute period, which amounts
to 40 input nodes. In other words, the input space is a 40-dimensional space. In the
training set, only a very small fraction of the data points are traffic incidents, the rest are
incident-free data. For example, the training data set used by Stephanedes and Liu [28]
includes only 31 waffic incidents, where 89 incident patterns were used for training.
Unfortunately (fortunately for the traveler!), this very small rate of traffic incidents creates
a theoretical and computational challenge for accurate incident detection by the neural
network approach, which is being addressed by this research. The formation of an
accurate decision boundary in a 40-dimensional input space requires a tremendous training
data set, which is impossible to obtain. In other words, the size of the existing traffic
incident detection training set precludes accurate generalization. This major shortcoming
has to be overcome for a neurocomputing traffic incident detection algorithm to move from
an academic exercise to real-life acceptance. To overcome this shortcommg, we present a
new hybrid neurocomputmg model in the foilowmg section.
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4. A NEW HYBRID NEURAL NETWORK MODEL FOR TRAFFIC INCIDENT
DETECTION

To reduce the dimension of the input space without any significant loss of
information, we employ a robust feature extraction approach. Feature extraction is
generally viewed as a process of mapping the original attributes into more effective
features. If a few features can be extracted from the original data, thereby showing
significant differences between the normal and the incident situation, a more effective
classifier can be designed with better performance and, more importantly, with a lot fewer
examples required for training. In other words, feature extraction is used to overcome
difficulties caused by the large number of input attributes. The advantages would include
substantial reduction in (a) computation complexity (that is, the network becomes easier to
train), (b) the size of the network, (¢) the required number of training examples (more
accurate generalization), and (d) the influence of the noise due to the random nature of
traffic.

Generally speaking, there are two main approaches for feature extraction. The first
approach employs prior knowledge to separate features that are more important than others
for classification; less important features are discarded in the selection process. An
example is the double exponential algorithm that filters out the random fluctuation of
traffic patterns. Double exponential filtering [7] can be viewed as an approach of feature
extraction based on prior knowledge. In our research, discrete wavelet transform [20] is
first applied to the raw data and the finest-resolution coefficients (which represent random
fluctuations of the traffic patterns, and therefore are not important for incidents detection)
are discarded.

The second feature extraction approach is called the blind feature extraction
approach, which does not employ any prior knowledge. It uses generic criteria
independent of the data set at hand. In our research, after filtering by discrete wavelet
transform and discarding unnecessary or less important coefficients, a feature extraction
network, called linear discriminant analysis network [21], is employed as the second stage
feature extractor.

A hybrid feature extraction algorithm and neural network model has been
developed in this research using a combination of discrete wavelet transform, linear
discriminant analysis network, and the adaptive conjugate gradient learning algorithm of
[1]. The upstream and downstream traffic data are first filtered by the discrete wavelet
transform. Then, a linear discriminant network is used for feature extraction. Finally, the
adaptive conjugate gradient learning algorithm of Adeli and Hung [1] is used to train the
network. :

5. DISCRETE WAVELET TRANSFORM

Over the past decade or so the wavelet transform has been studied extensively and
formalized into a rigorous mathematical framework. Compared with the traditional
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orthogonal transforms, such as the Fourier transform, the wavelet transform has attractive
properties such as time-frequency localization, multi-rate filtering, and scale-space
analysis. Consequently, the wavelet transform has been used in a variety of areas
including signal-image analysis, nonlinear dynamics, process control, and geophysics [11].
We find the wavelet transform to be effective for extracting important features of traffic
patterns. Traffic patterns are characterized by local properties in time. Traffic incidents,
as well as other traffic patterns such as traffic pulse, bottlenecks, and compression wave,
have different time local properties. The wavelet transform can effectively extract features
from different time scales and different resolutions effectively. Most of the unreliability of
previous incident detection algorithms is due to their inability to distinguish traffic
incidents from other traffic patterns, especially the compression wave. A wavelet
transform is used to overcome this insidious problem.

By transforming the original data sequences into different resolutions, prior
knowledge can be used to retain the most effective features and discard less effective ones
(including noise due to traffic fluctuation and other components irrelevant to the incident
detection problem), thereby making the detection algorithm more reliable. We can reduce
the influence of the random traffic fluctuation (noise) by using a discrete wavelet
transform and ignoring its finest resolution components.

The discrete wavelet transform is applied to four traffic data series: volume and
occupancy of both upstream and downstream stations. Any one of these data can be
represented by a series x[k] where k€Z and Z is the set of integers (in this paper square
brackets are used to identify series). For any sequence of real numbers of¢y , the vector
space of square-summable sequences is defined as

+oa
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Denoting the orthonormal wavelet bases of EQ(Z) by {d, ¢} sz AN @y} ez » Where j=1, 2,
..., I, Iis a positive integer, and the brackets { } denote a set of series. The output of the
discrete wavelet transform is the coordinates s;,[£) ANy (€) of the orthonormal wavelet
bases defined as
solf) =(Xx(.0,,K) @
and
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where (,) denotes the inner product of two sequences in EQ(Z).

The first step to actually perform a discrete wavelet transform and compute the
coordinates of the wavelet bases is to construct the orthonormal wavelet bases using the
quadrature mirror filter. Next, the coordinates of the wavelet bases are computed using
signal convolution and downsampling [29]. Three sequences d,[k 1,d,[k ],and s,[k ], which
correspond to the wavelet coefficients in Eqgs. (2)-(3), are obtained from the discrete
wavelet transform. The finest resolution information is denoted by dik]; dj[k]

(1
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represents the medium resolution information; and s,[k] is the lowest resolution
information.

An 8-minute pattern length is selected in this research. An 8-minute time period is
sufficiently long to allow the incident and non-incident features to be differentiated. A
smaller time period may not be sufficient for such a differentiation. A larger time period
creates an undesirable delay between the actual time of the incident and the time the
incident is detected. The time-interval is chosen on the basis of trade-off between reducing
the false alarms and decreasing the delay in incident detection. Because volume and
occupancy data are collected every 30 seconds, each sample consists of 16 volume and 16
occupancy measurements for each of the two detection stations. Discrete wavelet
transform is performed on each of the 16 data measurement sequences, The result of the
transform is composed of 8 finest resolution coefficientsd,[k], 4 medium resolution
coefficients d,fk], and 4 lowest resolution coefficients s,[k ].

Now, an eliminating process is applied to discard less important wavelet
coefficients. The effect of random traffic fluctuations has been noted for a long time in
transportation research. Many smoothing techniques have been used to reduce the
influence of random fluctuations. For example, Cook and Cleveland [7] use the double
exponential smoothing method.  Chassiakos and Stephanedes [5] investigate the
performance of several smoothing methods such as moving average, median filter, and
exponential smoothing. All of this research shows the importance of smoothing
measurement sequences and the reduction of the influence of random traffic fluctuations in
the traffic incident detection research. In this research, 8 finest resolution features, d;[k],
are thrown out in order to minimize the influence of the random traffic fluctuations (noise).

This step basically reduces the number of input nodes (traffic features) to 6x4=24.
However, it is still too large for the available number of training examples. Therefore,
further feature extraction is desirable. In our model the discrete wavelet transform is
followed by a linear discriminant analysis network in order to reduce the number of final
features for incident detection (input nodes) to 4.

6. LINEAR DISCRIMINANT ANALYSIS

The motivation for feature extraction is to avoid the “dimensionality curse,” thus
improving the generalization ability of the pattern classifier and reducing its computational
processing requirements {12]. Feature extraction can be formulated as a mapping from a
d-dimensional input space to an m-dimensional feature space.

¥R R™, m<d )
The linear discriminant analysis extracts features by linearly mapping the input space to
the feature space and maximizing the between-class scatter while holding the within-class
scatter constant. Let ﬁi(@ = (55”.655),‘..,5%’9 denote the ith training sample outputted by
the discrete wavelet transform in class 7, i=1,2,..., N,; £=1, 2; £=1 denotes the incident-

free samples and £=2 denotes the incident samples. The number of training samples is
denoted by n. The within-class covariance matrix, }, v , is defined as
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where m? is the mean vector of class £, £=1,2. The between-class covariance matrix,
2 B, is defined as
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where m is the mean vector of all of the data. The total scatter matrix is
Zr=Xw+Xp Y

The goal of linear discriminant analysis is to find a dxm transform ¥ such that
[#5r
T is maximized, where the superscript T denotes the transpose of the matrix.
¥ w
The function ¥ is a d by m rectangular transformation matrix that transforms a d by 1
vector to another m by 1 vector. The goal is to maximize the between-class scatter without
increasing the within-class scatter. At the same time the dimension of the original input is
reduced. The maximization of the aforementioned matrix yields the transformation matrix
Y. The dimension m of the matrix is assumed in the process. As such, we know the
dimension of the vector we want to obtain in advance (for example, 4).

In the final step of the hybrid algorithm for traffic incident detection, the adaptive
conjugate gradient neural network (ACGNN) learning algorithm of Adeli and Hung [1] is

used for final classification. Input of the ACGNN algorithm is the foremost features
obtained from the LDA network.

7. TRAFFIC DATA COLLECTION AND PROCESSING

For automatic incident detection, we are basically interested in 30- to 60-second
incremental occupancy and volume data in both upstream and downstream stations. Data
should contain normal traffic data as well as infrequent traffic incident data. The
collection of such data requires the installation of a complete sensor system in a freeway
system. Only a few cities within the United States currently have such a system;
Minneapolis, Minnesota is one such city.

Raw data and maps were gathered from the Traffic Management Center (TMC)
within the Minnesota Department of Transportation. Loop detectors were installed in
Minneapolis, specifically along I-35. Data are automatically collected every day from
detector stations. Several important factors concerning this gathered data are considered as
follows.

a) Time Period for the Traffic Incident Detection Study The study is confined to the
3:00PM-7:00PM afternoon peak period because of the importance of incident detection
under moderate to heavy conditions for an advanced Freeway Management System
(FMS).

b) Freeway Segment for the Study After a thorough study of the map and the data and
equipment available in Minneapolis, a 10-mile (16 km) segment of freeway along I-35
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(north) from 90th Street to 26th Street is selected for this research. This segment
includes 22 sensor stations. This segment includes most types of geometric
configurations such as bottlenecks (reduction of the number of lanes), ramp entrances,
and so on. This information allows us to test the new incident detection algorithm in
various geometric configuration situations.

¢} Acquiring 30-second Volume and Occupancy Data for the Stations and Time Intervals
Under Consideration The station data consists of 1-minute volume and occupancy data
updated every 30 seconds and averaged over all lanes, Unlike the 5-minute interval
data (which are widely used in many traffic/transportation studies and are therefore
well sorted and documented) the 30-second data has to be manually extracted from
original binary data files. It took months to extract the appropriate traffic data from the
original file due to the large amount of data used in this research.

d) Incident Data These data are stored in several database files separate from the raw
traffic data binary files. The incident log file typically includes time and location of
the incident occurrence, incident type, duration, severity, impact on traffic, roadway
conditions, and so on. The incidents within the freeway segment and the time interval
under investigation are extracted from the files.

e) Data Used in this Research Seven months of traffic data were gathered from the
Traffic Management Center of the Minnesota Department of Transportation. Twenty-
one incidents have been identified in this 7-month period. Most incidents in the data
set include blocking one lane or the shoulder. There were no incidents of blocking two
or more lanes; detecting these types of incidents is more challenging than one-lane
blocking.

8. TRAINING AND NEURAL NETWORK

The raw data consists of a time-series of I-minute volume and lane occupancy data
obtained from every station in the highway section included. The occurrence of incidents
is recorded separately with information about the time and location of each incidence.
There are 21 incidents in the training data. For the purpose of training, 8-minute segments
of data are extracted from the raw data. A total of 83 incident patterns plus 500 incident-
free patterns were used. In other words, there are eighty three 8-minute segments which
include the 21 incidents at various times in the 8-minute periods. The training of the net-
work is done in three steps. In the first step, the discrete wavelet transformation is applied
to each 8-minute pattern consisting of volume and occupancy data from upstream and
downstream stations (a total of 2X2X2X8=64 points). Each one of the four data elements
of the 8-minute pattern (volume and occupancy data from upstream and downstream
stations) has 16 data points. After eliminating all 8 coefficients of the highest (finest)
resolution, one coefficient of the medium resolution, and one coefficient of the lowest
resolution, the 16 data points for each data element are reduced to 6 data points.
Therefore, every 8-minute data pattern with 64 input points is reduced to a new pattern of
6X4=24 points. In other words, through the wavelet transformation, the 64-point input is
transformed to a 24-point output which itself becomes the input to the LDA network.
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In the second step, the new data set along with the knowledge of incident and
incident-free training sets are used to train the LDA network. The input of the LDA
network consists of 24 nodes. After the linear discriminant analysis, the output of the
LDA petwork becomes only 4 nodes. A new data set is formed after the linear
discriminant analysis is performed and the length of every pattem is decreased to 4.

In the third step, the adaptive conjugate gradient neural networks learning
algorithm [1] is used for the final training. The network of this step consists of a 4-node
input layer, a 4-node hidden layer, and a 1-node output layer.

9. CONCLUSIONS

A new hybrid neural networks computational model and algorithm has been
developed for automatic traffic incident detection using the wavelet transform, a linear
discriminant network, and the adaptive conjugate gradient neural network algorithm of
Adeli and Hung (1994). Testing of the new incident detection algorithm on the limited
data obtained from the Traffic Management Center of the Minnesota Department of
Transportation indicates a promising and powerful algorithm for creating a new generation
of traffic incident detection system.
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