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LINEAR TRANSVERSE VIBRATIONS OF A SIMPLY SUPPORTED BEAM
CARRYING CONCENTRATED MASSES

E. Ozkaya

Department of Mechanical Engineering, Celal Bayar University, 45140, Muradiye,
Manisa, Turkey

Abstract- Linear transverse vibrations of an Euler-Bernoulli beam are considered. The
beam carries masses and is simply supported at both ends. The equations of motion are
obtained and solved. Linear frequency equations are obtained. Natural frequencies are
calculated for different number of masses, mass ratios, and mass locations.
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1. INTRODUCTION

Beam - mass systems are frequently used as design models in engineering.
Approximate and exact analysis have been carried out for calculating the natural
frequencies of a beam-mass system under various end conditions [1-8]. The relevant
work was reviewed up to 1979 by Nayfeh and Mook [9]. For more recent work on the
topic, see {10-12].

Finally, for linear vibrations of beam — mass systems, detailed calculations for
fundamental frequencies can be seen in references [13-14].

The analysis presented here is closely related to references [10] and {12]. In
reference [10], five different end conditions were treated. Linear and non-linear
frequencies were investigated for a single mass, In reference [12], linear and non-linear
frequencies given in ref. [10] were calculated using artificial neural networks. In this
work, exact natural frequencies were calculated for a simply supported beam carrying
many concentrated masses. Natural frequencies were calculated for different number of
masses, mass ratios and mass locations.

2. EQUATIONS OF MOTION

Consider the beam-mass system shown in Figure 1. The beam carries n number of
concentrated masses.
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Figure 1: Beam-mass system with both ends simply supported
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The Lagrangian of the system can be written as

n *mat n n Xmsl 22
mlpAE | w:mzdx*—bEZMmW;z“iEIz | Wi @, %0=0, Xpo=L (1)
2 m=0 x 2m=1 2 m=Q 5

Concentrated masses are located at x,,. The length of the beam is L. p is the constant
density of the beam, A is the constant cross-sectional area, EI is the flexural rigidity of
the beam and » is the total number of concentrated masses on the beam. w,,, is the

transverse displacement (corresponding m+1 th segment of beam), () and (") denote
differentiations with respect to the time variable ¢ and the spatial variable x
respectively. The first two terms in equation (1) are the kinetic energies due to
transverse motion of the beam and »# masses, and the last term is the elastic potential
energy due to bending of the beam segments, Invoking Hamilton’s principle,

§[* <dr*=0 2

and performing the necessary algebra and eliminating the axial displacements, one
finally obtains the following n+1 set of linear differential equations of motion

iv

PAW,, + Elw., =0 m=0,1,2...n 3)

The boundary conditions are as follows

w:(O,t*)= wl*”((),t’“) m,(lt) ,H,”(It) 0 4
w*(x* t*)m ;H(xp,t )

w (5).)= ,m( ) | )
Wy (50 )= (5.)

)" (64,0 )= B (6 6" )= 1,3 (5, )= 0 p=1,2,...n (6)

Conditions given in equation (4) are due to the simply supported boundaries, those of
equation (5) are due to the equality of displacements, slopes and moments of the beam
segments respectively at the left and right side of any concentrated mass. Equation (6)
states that the force difference at the left and right side of any concentrated mass is
equal to the inertia force of mass. Equations (3-6) are made dimensionless through the
definitions .

(7)

where R is the radius of gyration of the cross section with respect to the neutral axis. In
terms of the new non-dimensional parameters, the equations of motion and boundary
conditions become
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B F Wl =0 m=0,1,2....n (8)
w,0.0)= wi(0.t)=w,, (Lt)= i, (Lt)=0 | ©)
Wyl t)= Wyl t) Wil t)=wiib,.th wib,.t)=wi.n,.t) (10)
wiln,. t)~wi, b, t)-o,%,0,.t)=0 p=1,2,3,...n (1)

In the next section the equations for linear frequencies will be obtained by solving
equations (8-11).

3. ANALYTICAL SOLUTION

In this section the set of equations of motion (8) are solved for boundary conditions
given in equations (9)-(11). Assume a solution of the form

Wy = (Asinot+Bcosot)Y,,, (x) (12)

where cc represents the complex conjugate of the preceding terms. Substituting equation
(12) into equations (8-11), one has

Y,,‘,‘id—sz =0 (13)
KLO)=¥, 0)=0, ¥,,0)=Y,,, ()=0 (14)
Y,0,)=Y,l,)} ¥, ,)=Y, (0,) Yp”(n,,)-—-YpJ(np) (15)
Yoo, ) Y, (n, )0, 07, (n, )=0 (16)

A solution can be suggested for equation (13) as follows:

Y,os =C st sin fx+C? iy cos fx+C” msr sinh fx+C* s cosh fx (17)
where
B=vo (18)

Substituting equations (17) and (18) into equation (13)-(16) yields natural frequency
equation for arbitrary number of masses. For two concentrated masses the
transcendental equations giving natural frequencies are
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—2002B%Cos [Pl Cosh [B] +ooB2Cos [B-n1f ] Cosh [B]

+01 0 B%Cos [B-21,B1 Cosh [B]

+20502B°Cos [ (1-11-12) B1Cosh [ (1-15-12) B]

~00f°Cos [ (1+M1-12) BlCosh[ (1-11-12) B]

~20u0"2Cos [ (1-N1-12) Bl Cosh [ (14M1-13) B]

+20u,023%Cos [ (1+1:-1) Bl Cosh [ (1+1:-M2) B]

+002B%°Cos [B]Cosh [B-2n18]

~0; 0 B%Cos [B~2M.B1Cosh [B-211P) +a1(xgﬁ2Cos [BlCosh{B-2n:0]

-0z 0f%Cos [B-2M18]1 Cosh [B-2n2B]1 -4 fCosh [Pl Sin [B]
~40BCosh{B]8in [Pl +4a,fCosh [B-2n:BI1Sin[B]

+40BCosh [B-212B1Sin [Pl -40ufCos [BlSinh{B] -40BCos [B1Sinh [B]
+40:8Cos [B-21m:B] Sinh [B]+40zPCos [B-212B] Sinh [B]
~-168in{B18inh [Pl -coep*Sin( (1+21:-212) B1Sinh (]

~01:020°Sin [B-21,B] Sinh [B] +00p?Sin [B-21.B]1 Sinh [B]

+00B°Sin [B]Sinh{ (1+211~21;) B] +0:0LP?Sin [B] Sinh [B~2m:f]

-0 0B%8in [B]1Sinh [B-2n2p1=0 (19)

For different number of concentrated masses, mass rations (0;,) and mass location (1,)
values, the first five natural frequencies are calculated. For two and three concentrated
masses the natural frequencies are given in Table 1 and Table 2.

Table 1: For the two-mass problem, natural frequencies corresponding to different mass
ratios and mass positions

O O M N2 O o 03 Wy s
1 1 0.1 0.3 6.118 26506 155412 199.097 . |196.790
0.7 6.183 22598 160226 1125.021 |174.858
0.5 0.3 4,785 19.802 145,252 195238 158.080
0.7 4,730 25.128 160.883 141.289 |183.110
10 0.1 0.3 |2.509 20075 [51.069 [94.505 194.767
0.7 2.516 20,060 |58.824 124285 |168.185
0.5 0.3 2404 113367 44785 |94.752° |158.080
0.7 2.387 17925 |59.569 136.993 1180.905
10 1 0.1 0.3 4,514 18.563 |38.578 |96.694 195.720
0.7 4.671 12.429  150.992 121432 {171.647
0.5 0.3 12086 15959 143.170 |91.623 |158.043
. . 0.7 2078 22.036 | 34.647 140.866 1179431
10 0.1 0.3 2.357 16257 129975 |92.863 193.920 .
0.7 2.413 8.850 | 48.934 121.018 1164.747
0.5 0.3 1.771 6.573 42,942 194,643 158.043
0.7 1.677 9,812 53.516 136.535 1177.620
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Table 2: For the three — mass problem, natural frequencies corresponding to different
mass ratios and mass positions

) O |03 M1 (M2 [Ms |W W W3 Wy W

1 1 1 6.1 (04 |08 [5.130 18.915 140.668 |101.949 193.298
1 1 10 101 104 |0.8 [3.011 11.731 39.445 198.713 193.010
1 10 |1 0.1 (04 |08 12,182 17,186 137.356 |99.323 189.777
10 1 1 0.1 104 (0.8 14.142 13.021 25.958 199.439 186.121
10 10 |10 101 104 (0.8 11.864 6.675 14.161 |93.774 181.624
i 1 1 02 (05 0.7 14411 18.201 39.189 | 137.980 174.375
1 1 10 (0.2 |05 107 [2.350 13.469 135.001 134,770 171.032
1 10 11 02 05 [0.7 |2.048 18.185 129378 |137.658 169.335
10 1 1 0.2 105 (0.7 [2.858 10.771 35.379 1137.274 172.900
10 10 110 102 105 [0.7 [1.540 6.383 13.578 1134.252 164.439

REFERENCES
1. L.S. Srinath and Y.C. Das , Vibration of beams carrying mass, Transaction of the

10.

11.

12.

13.

14.

American Society of Mechanical Engineers, 784-785,1967.

R.P. Goel, Free vibrations of a beam - mass system with elastically restrained ends,
Journal of Sound and Vibration 47, 9-14, 1976.

H. Saito and K. Otomi, Vibration and Stability of elastically supported beams
carrying an attached mass axial and tangential loads, Journal of Sound and
Vibration 62, 257-266, 1979,

J. H. Lau, Fundamental frequency of a constrained beam, Journal of Sound and
Vibration 18, 154-157, 1981.

. P.A.A. Laura, C. Filipich and V.H. Cortinez, Vibration of beams and plates carrying

concentrated masses, Journal of Sound and Vibration 117, 459-465, 1987.

W.H. Lt and F.H. Yeh, Free vibration of a restrained -uniform beam with
intermediate masses, Journal of Sound and Vibration 117, 555-570, 1987.

M.J. Maurizi and P.M. Belles, Natural frequencies of the beam-mass system:
comparison of the two fundamental theories of beam vibrations, Journal of Sound
and Vibration 150, 330-334, 1991.

C. N. Batap and C. Batap, Natural frequencies of a beam with non-classical
boundary conditions and concentrated masses, Journal of Sound and Vibration 112,
177-182, 1987.

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, New York: John Wiley,
1979. ‘

E. Ozkaya, M. Pakdemirli and H. R. Oz, Non-linear vibrations of a beam-mass
systemn under different boundary conditions, Journal of Sound and Vibration 199,
679-696, 1997.

E. Ozkaya and M. Pakdemirli, Non-linear vibrations of beam-mass system with both
ends clamped, Journal of Sound and Vibration 221, 491-503, 1999.

B. Karlik, E. Ozkaya, S. Aydin and M. Pakdemirli, Vibration of beam-mass systems
using artificial neural networks, Computers and Structures 69, 339-347, 1998,

K. H. Low, Closed form formulas for fundamental vibration frequency for beams
under off-center load, Journal of Sound and Vibration 201, 528-533, 1997.

K. H. Low, Comment on “Non-linear vibrations of a beam-mass system under
different boundary conditions.”, Journal of Sound and Vibration 207, 284-286,
1997.



152



