Mathematical & Compurarional Applications, Vol. 6, No. 1, pp. 53-65, 2001
© Association for Scientific Research 53

AN ELASTO-PLASTIC STRESS ANALYSIS IN A POLYMER MATRIX COMPOSITE
BEAM OF ARBITRARY ORIENTATION SUBJECTED TO TRANSVERSE
UNIFORMLY DISTRIBUTED LOAD

Umran Esendemir
Department of Mechanical Engineering, Siileyman Demirel University, Isparta, Turkey

Abstract- Polymer matrix composite beam of arbitrary orientation subjected to transverse
uniformly distributed load is studied by an analytical elasto-plastic stress analysis. In the elasto-
plastic solution, the material is assumed to be perfectly plastic. A composite consisting of fiber
reinforced polymer matrix was produced for this work. The expansion of the plastic region. and
the residual stress component of o, are determined for 0°, 30°, 45°, 60° and 90° orientation

angles. The yielding begins for 0° and 90° orientation angles at the upper and lower surfaces of
the beam at the same distances from the free end. But, it starts first at the upper surface for 30°,
45° and 60° orientation angles. Sample problems are given for various orientation angles, x axis
of the beam is used to obtain the location of the elasto-plastic boundary and to calculate elastic,
elasto-plastic and residual normal and shear stresses. The intensity of the residual stress
component of 7 is maximum on or around the x axis of the beam but the residual stress

component of ¢, is maximum at the upper and lower surfaces.

1. INTRODUCTION

Composites are made up of several different things, parts or substances. There has been a
rapid growth in the use of fiber reinforced materials in engineering applications in the last few
years. Fiber reinforced plastics have acquired a high reputation for structural applications.
Anath and Chandra [1] have investigated fiber push-out in metallic and intermetallic matrix
composites, Inelastic deformation of metal matrix composites has been carried out by Majumdar
and Newaz [2]. They have studied on plasticity and damage machanisms. Karakuzu and Sayman
[3] have studied elasto plastic finite element analysis of fiber reinforced aliminium metal matrix
rotating discs by using finite element tecniques. Canumalla et al. [4] have investigated the
mechanical behavior of mullite fiber reinforced aluminum alloy composites. Jeronimidis and
Parkyn [5] have investigated residual stresses in APC-2 cross-ply laminates. They have compared
classical laminate theory with measured levels of residual stress obtained from a number of
experimental techniques. Karakuzu and Ozcan [6] have studied an analytical elasto-plastic stress
analysis in an aluminium metal matrix composite cantilever beam subjected to a single transverse
force applied to the free end of the beam and a uniformly distributed load. Sayman [7] has carried
out an elasto-plastic stress analysis in stainless steel fiber reinforced aluminum metal matrix
laminated plates loaded transversely. Arnold et al. [8] have investigated the use of the compliant-
layer concept in reducing residual stresses resulting from processing. Experimental investigations
on the forming of thermoplastic composites can be found in References [9-13]. Yeh and Krempl
[14] have introduced the vanishing fiber diameter model together with the thermoviscoplasticity
theory based on overstress.
In this study an analytical elasto-plastic stress analysis is carried out for a fiber- reinforced
polymer matrix composite beam subjected to a uniformly distributed load. Sample problems are
given for different orientation angles.



54 U. Esendemir

2. ELASTIC ANALYSIS

The composite cantilever beam is loaded by the uniformly distributed load g, as shown in Figure
1. The angle between the principal axis of the composite fibers and the x axis is 0.
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Figure 1. Composite cantilever beam subjected to a uniformly distributed load

For the plane-stress case the equation of equilibrium is given by Lekhnitskii [15] as,
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where F is a stress function. Solutions of some anisotropic beams are gwen by Lekhnitskii [16].
The constants in equation (1) are given by Jones [17] as,
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F is chosen as a fifth order polynomial to satisfy the differential equation,
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x2 yj y5 xy4
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s = ds 6 fs 20 €s 12 (5)
Substituting it into the equilibrium gives
[z&u+&“}gzyu2&5¢xz+&ngsy—zém@2y+&u%zx=o (6)
x(~ dads + 2?1195 Y+ y(da,d, +2a,d, + 6a,, f, —4a,e;)=0 )]

For satisfying equation (7) each term of x and y must be equal to zero. Hence,

es=mdy, m= 2wam and, 3
ai

-2a,, —a. +2a,m
12 66 16 (9)

=nd,, n=
/s ? 3a,,

The boundary conditions are:
y=—c=0, =—q,0 =0
y xy (10)
y=tc=0,=07_=0
For satisfying the differential equation with boundary conditions, further, the polynomials are

chosen in second and third orders.
2

F,=a, %—
S an
x*y xy _
F3 :bB““E"‘“*‘CB'—z——'f"d:i'%—
The stress components are found from this F function as, :
F=F, +F,+F, | (12)
_ azF - d 2 ' 3 2 d
o, = 8y2 =dx‘y+ foy texy e x+dyy
d*F d "
o, = 0 =—3iy3-!-b3y-t~a2 ‘ (13)
d*F s € 3
f@=~&®m—%m?~?y-bﬂ—%y
From the boundary conditions
2
q gc
a, =—-—, by=-"—, = 14
Do o2 Y a2 (4
are obtained. Where I is the moment of inertia of the cross-section of the beam, and
3 3 . .
/= (26‘) f - 2ct (15)
12 3 ,
Using 7, =0 at y=%c
by =—dc?, ¢ =—2c (16)

3
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are obtained. At the free end, according to Saint Venant’s principle, the resultant and bending
moment of &, must be equal to zero. Thus,

for x=0 _
[ouay=0, [ omydy=0= | (foy* +dyy)ray=0, [(fsy* +dyy* Jsdy =0 17
From this condition, it is found that,
3f.c’
d,=— ; | | (18)
The elastic stress components become,
o, = —;—I x2y+7?y3 + mxy” -—%mczx-—g—nczy]
3
q:Y 2 q
g = —wwm— — = o e 19
Y211 3 y] 2 (19
T, = m—z% - xy* _%m},ﬂ- +c2x+%mczy]

3. ELASTO-PLASTIC SOLUTION

The equations of equilibrium for the plane-stress case are

d
00, N 0Ty _ 0
ox dy 20)
Jr,, do, 0
ox  dy

If the length of the beam is very large in comparasion with its height,o, can be neglected in
comparasion with ¢, and 7,,. For calculation of stresses in the two-dimensional case, the

equivalent stress for an orthotropic material is usually obtained according to the Tsai-Hill theory.
The equivalent stress in the plane stress case is

X &

o= \/of -0,0, + Woj +—§7er =X (21)

where X,Y are the yield strengths in the 1 and 2 principal material directions, respectively and S
is the shear yield strength in the 1-2 plane. It is assumed that X=Y=Z, because of the same
alignment of the fibers in the second and third principal material directions. o,,0, and 7, are
the stress components in the principal material directions, given by |
o, =0,cos’ 0 +27, sinfcosd
o, =0 sin* 0 - 27, sin6 cosd (22)
T, =0, sinfcosb +7,, (0032 8 —sin’ 8)
Writing o, =0 in the second differential equations of equilibrium gives that 7, is a function of

y in the ordinary form or 7, = f(y). Deriving Equation (21) with respect to x and using
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a7,

. ={), gives aao'x = (. Substituting a;* in the first differential equations of equilibrium
X X X

gives 7, as a constant. Plastic region begins at the upper or lower surfaces of the beam when the

stress component ¢ reaches,

%= ;2 in‘g X’sin’0 29. @9
\/cos“Q—sin2600826+ Sl,? 42 S 2COS
Y S

where 0 is the orientation angle of the fibers, When the plastic region starts on these surfaces o,
becomes X, and v, equals 0. From this condition o, = X, is found as a constant in the plastic

region and the shear stress is equal to zero. The composite cantilever beam is loaded by the
uniformly distributed load q for elasto-plastic solution, as shown in Figure 2.
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Figure 2. Composite cantilever beam subjected to a uniformly distributed load for the ealsto
plastic solution

3.1. Elasto-plastic solution for 8=0° and 90° orientation angle

In order to satisfy both the differential equation and the boundary conditions, the stress function F
is chosen as

ds 2.5 Jfs s, & 1.8 5 a; ,
=2 x Yy A+ 2=y Ty 24
g XY T T Yty XYty (24)
If we substitude the stress function in the governing differential equation, we obtain
- - - +
(2&124— as6 }Zyds +tbanyfi=0= f, = _Mds
3an
2;12+ c_lss
n=—m— fS =nd5 (25)
3aun
The stress components are:
_0°F

o

$=5 =d5x"“yw$~f5y3 +g.y+a,
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9°F
o, = o =0
d%F '
Tw = _axay - '—dsxyz _b3x

The boundary conditions for this beam are given as,
y=~h = Ty = 0
y=h=1,=0

by

It T, &y=—9x

S

y=-h=0,=X,

y=h, =0, =-X,
The resultant of o, at any section is equal to zero:

by
Xto-h)- X e —hy)+ [0t dy=0

_kz

The resultant of ¢, at any section (x) is equal to the bending moment:

X;t(c“kt)c+hi

2
-i»Xit(c~~hz)c":2h2 - ?Gxt ydy:ggm
~Hy

(26)

@7
(28)

(29)

(30)
€}y

(32)

(33)

2
" . X . o
where positive ¢, produces an opposite moment of %——, therefore it takes a negative sign. From

the boundary conditions, the unknown parameters are found as,

g, = {—}-}f—i +dx* + ndjhf]

1

The stress components can be found by using these parameters.
3.2. Elasto-plastic solution for the inclined orientation angles

For the inclined orientation angles the stress function F is chosen as follows

5 4 2 2

2,3 3
Fed, 22 w5 L e 4p = Yie, 2 +d3y?~1rfz-23—x?+b2

6 20 12 2 2

(34)

(35)
(36)

37N

(38)
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Substituting F into Eqn (1) one obtains,
[2&13'?‘ aes ]d52y ~da dx+ 6a;; fsy— 4as e + 2an esx =0

[(22119.%6_166 ]st ~das es +6an f5:|y+li—4c"hs d; +2an eS]X =0

For satisfying the equation, each term of x and y must be equal to zero. Hence,

26126 216
e =——d. =md;, m=—

5

Qi arn
-2ap—as+2asm
fs=nd,, n= -
3an
The stress components are determined as,

2
O‘xm?)y?_ 2.:15x2y-£—fsy3~i~1=35xyz-|'-c:,!x+d3y+b2
*F d
o,= P ==2y’+hy+ta,
0*F ) 3
'L'wﬂwaxayr-mdsxy -2y ~bx—c,y=0

39

(39)

(40)

(41)

(42)

(43)

In the above calculations » one neglects ¢, in comparasion with o, and 7. If Eqn. (41), (42)

are replaced to Eqn. (43) one has
o, =dx’y+nd,y’ +mdxy* +c,x+d,y+b,

mds ¥ =bx-c,y

T, =—d;

(44)

Parameters dg, by, ¢;, b,, by, h, are found from the boundary conditions. From the boundary

condition in Eqn. (27) (28) and (29) one obtains
¢; =~dgxlh, (hl —hh, +h; )

byx = —d xhh, +o (h ~ by by
—qx/t

ds = z
X
’6'(h1 +h2)3 + In;(hz +k2)3(h2 _hl)

From the boundary conditions in Eqn. (30), (31), (32) and (33) one has
g = X,(h,—hy)
T oalh ~h Xt B mx(h + 1, )
4 -6

(45)
(46)

47

(48)
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b~k 373 B2 4 K2 _
cxtb, :wm—( L 2)d5x2 + (hl " )nd5 - ( L iy )mdsx+———--——~——(h1 hg)d3 (49)
2 2 2 2
2X
dy = ——=2L g x* — (12 =k, + B2 Yady + (B, — b, mdx (50)
h, + h,
If one equates parameterd, by Egs. (47) and (48) one has
12X, (b —hy) ~12gx 51
3n(h, — by )—2mx  t2x+mlh, — k)
Solution of the above equation gives
2 2
2x + 3gxn + 2x N 3gxn }  8gx
m Xmt m  X.mt Xt
h—h,=u= (52)
2
Arranging Eqn. (52), one obtains
(2xX 1 + 3gxn )k \/(ZxXlt +3qxn)’ —8X ,m*tgx’ (53)
M=
2X mt
Whereas from Eqn. (33) one retrieves , it is obtained as
25 (1 1, 8l + 12 ) 2h ey (12 + 12 ) 120202 |- 9% 1, Y (= )
60 12 (54)

X x’
+ X, ~Tl(hf +h2 =Ry )= %;.,

If one replaces h —h, =u => h, = h, +u into Eqn. (54), one has
f= %(th a8y +u) + 802 + 2k, (hy +u) + 203 (1 +u) = 1202 ( + uf]
(35)

2
x-Sl

Solving Eqn. (55) by the Newton-Raphson method gives %, and then the other constants can be
determined.

4.PRODUCTION OF COMPOSITE BEAM

In this study, low density polyethylene (LDPEF2.12, Petkim company) has been used as a
thermoplastic matrix. Polyethylene granules have been placed on the rectangular mould . The
amount of granules is enough to cover the mould surface to prevent holes. After they were melted
at a temperature about 160 °C, they were held for 5 minutes under 2.5 MPa pressure. Then by
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raising the pressure to 15 MPa and decreasing the temperature to 30 °C, melted granules were
held for 3 minutes more, Thus a polyethylene layer was produced. Second polyethylene layer was
produced in the same way. Putting steel fiber between two polyethylene layers, a composite layer
was produced by using the above process. The thickness of the composite layer was 2 mm. A
beam is constructed by using the four layer under the same manmufacturing process. This was
placed between the first and the second polyethylene matrices on the second mould as shown
Figure 3.

clamp

Stee] plate
T acetate
™ polyethylene

moukd
polyethylene

acetate
Steel plate

clamp

Figure 3. Press Operation

At the same time acetate papers were placed to the bottom and top surfaces of this sandwich type
polyethylene plates. The mechanical properties and yield points of the composite material are
given in Table 1 and 2.

Table 1. Mechanical properties of the composite beam

E,(GPa)

E»(GPa)

G12(Gpa)

V2

4.3

0.966

0.58

0.4

Table 2. Yield points of the composite beam

Axial vield point, X (MPa) 23.05
Transverse vield point, Y (MPa) 6.260
Shear yield point , S (MPa) 6.24
5.SAMPLE PROBLEM

q is chosen as 0.1 N per mm thickness. For uniformly distributed load, elasto-plastic solutions
were carried out for orientation angles of 0°, 30°, 45°, 60°, 90° and the thickness of the beam has
been taken as 6 mm. The height of the beams (2c) has been taken as 15 mm.

For the uniformly distributed loads the bending moments and shear forces at any section are

gx*/2 and gx respectively . This bending moment must be equal to the sum of bending
moments of the elastic and plastic stresses and the resultant of the stress componento, must be
equal to zero at any elasto-plastic section. The subtraction of the elastic stresses from the elasto-
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plastic stresses gives the residual stresses in the beam. Elastic, elasto-plastic and residual stresses
at any section are shown schematically in Fig 4.

4 L Elastic Solution
¢ Residual Stresses
. SR A I
x

ra
- Blasto-plastic
Solution

Efastic

/ Soluticn

Elasto-plastic
Solution

Residual
Stresses

Txy
a

X
Figure 4. Schematic representation of elastic, elasto-plastic and residual stresses at any section

hy is calculated from Egn. (55) by Newton Raphson method. Where h; and h; are the distances
from the upper and lower elasto-plastic boundaries with respect to the x axis at any section,
respectively. The yielding begins for 0°and 90° at the upper and lower surfaces of the beam at the
same distances from the free end because of the symetry of the material properties with respect to
x axis. However; it starts first at the upper surface for 30°, 45° and 60° orientation angles as seen
in Table 3. Expansion of the plastic region and residual stress component of o, for 30°, 45° and
60" orientation angles in the region between upper and lower yield points as seen in Table 4. For
the same length of the beam when the value of the orientation angle increases the intensiy of the
residual stresses component of ¢, increases as seen in Table 5. Elastic, elasto-plastic and

residual normal and shear stresses are shown in Tables 6-10 for each case.

Table 3. The distance between the free end and yield points

Orientation angles
0° 30° 45° 60° 90°
At the upper surface (mm) | 322.15 | 226.81 | 196.61 | 179.24 | 167.88
At the lower surface (mm) | 322.15 | 23521 | 20233 | 182.50 | 167.88

Table 4. Expansion of the plastic region and the residual stress component of ¢, for 30°, 45° and
60" orientation angles in the region between upper and lower yield points.

Orientation Distance between (0 st O ) i
Angle the free em.i and hy at the upper surface | at the lower surface

yield point {mm) [MPa] [MPa]

226.81 7.50 0.000 -0.846

30° 230.00 7.28 -0.328 -0.530
23512 6.96 -0.877 0.000

196.61 7.50 0.000 -0.499

45° 200.00 7.23 -0.302 -0.205
202.33 7.07 -0.514 0.000

179.24 7.50 0.000 -0.260

60° 181.00 1.35 -0.142 -0.120
182.50 7.23 -0.264 0.000
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Table 5. The residual stress component of ¢, at the upper and lower surfaces of the cantilever
for 307, 457, 60° and 90" orientation angles at x=235.21, 202.33, 187.50 mm

Orientation X o hy o, o, o, o, o, o,
Angles (mm) | (mm) | (mm) at upper s. | at upp::r s. | atupper s. | at lower s. | at iow:::r 5. | at lower s.
30° 235211 696 | 750 | 12,732 | 11.855 | -0.877 | -11.855 | -11.855 | 0.000
45° 23521 3.16 | 3.69 | 12.591 | 8.839 | -3.752 |-11.993 : -8.839 | 3.154
45° 20233 7.07 § 7.50 | 9.353 8.839 | 0514 | -8.839 | -8.839 | 0.000
60° 20233 514 ! 541 9,241 7.267 | -1.974 | -8.947 | -7.267 | 1.680
60° 187.50 | 6.77 | 7.04 | 7.946 7.267 | -0.679 | -7.674 | -7.267 ¢ 0407
90" 187.50 ] 532 | 5.32 7.809 6.260 | -1.549 | -7.809 | -6.260 | 1.549

Table 6. Variations of elastic, elasto-plastic, residual normal stresses and distances h; and h, with
respect to the x axis for 6=0" at the upper and lower edges.

X hy hy o, o, o, o, o, o,
(mm) (mm) (mm) atupper . | at upper s, j atuppers. tat lower s. | at lower s. | at Jower s.
322.15] 7.50 | 7.50 | 23.050 | 23.050 : 0.000 | -23.050{-23.050 | 0.000
33215 7.00 | 7.00 | 24.500 | 23.050 | -1.450 | -24.500 | -23.050 | 1.450
34215 646 | 646 | 26,000 | 23.050 | -2.950 | -26.000 | -23.050 | 2.950
352.15| 5.85 | 5.85 | 27.540 | 23.050 | -4.490 | -27.540 | -23.050 | 4.490
362.15] 5.15 | 5.15 | 29.130 | 23.050 | -6.080 | -29.130 | -23.050 | 6.080

Table 7. Variations of elastic, elasto-plastic, residual normal stresses and distances h; and h, with
respect to the x axis for 8=30° at the upper and lower edges.

X h, hy o, o, o, o, o, o,
(mm) | (mm) | (mm) at upper s. | at upper s. | at upper s. | at lower s. ‘ at lower g, | at lower s.
235211 696 | 7.50 | 12,732 | 11.855 | -0.877 | -11.855 } -11.855 | 0.000
240.21 1 6.57 | 7.11 13.269 | 11.855 | -1414 | -12.373 | -11.855 | 0.518
245211 6.18 | 6.72 | 13.818 | 11.855 | -1.963 | -12.903 { -11.855 | 1.048
250211 5.77 | 6.31 14.377 | 11.855 | -2.522 | -13.444 { -11.855 | 1.589 |
255211531 ; 585 | 14948 | 11.855 | -3.093 ! -13.996 | -11.855 | 2.141

Table &, Variations of elastic, elasto-plastic, residual normal stresses and distances h; and hy
with respect to the x axis for 6=45° at the upper and lower edges.

X hl h2 Gx, 61:,, dx, o.x, O.x,, G-xr
(mm) (mm) (m) atuppers. | at upper s. atuppers. |at lower s. | at lower s. | at lower s.
202331 7.07 | 7.50 | 9353 8.839 | -0.514 | -8.839 | -8.839 | 0.000
207.33 ] 6.64 | 7.07 9.814 8.839 | -0.975 | -9.287 | -8.839 | 0.448
212331 6.19 | 6.62 | 10.287 | 8.839 | -1448 | -9.747 | -8.839 | 0.908
217331 570 | 6.13 | 10.770 | 8.839 | -1931 | -10.218 | -8.839 1.379
222331 5.14 | 557 | 11.265 | 8.839 | -2.426 | -10.700 | -8.839 1.861
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Table 9. Variations of elastic, elasto-plastic, residual normal stresses and distances h; and hy with
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respect to the x axis for 6=60° at the upper and lower edges.

X hy hy o, o, o, o, o, o,
(mm) | (mm) | (mm) at upper s. | at upper s, ; at upper s. | at lower s. | at lower s. | at lower s.
182,501 723 | 750 | 7.531 | 7.267 | -0264 | -7.267 | -7.267 | 0.000
187.50 | 6.77 | 7.04 | 7946 | 7267 @ -0.679 | -7.674 | -7.267 | 0.407
19250} 628 | 655 | 8372 | 7267 | -1.105 | -8.092 | -7.267 | 0.825
19750 5.73 | 6.00 | 8.808 | 7.267 | -1.541 | -8.522 | -7.267 | 1.253
202501 512 | 539 | 9256 | 7267 | -1.989 | -8963 | -7.267 | 1.696

Table 10. Variations of elastic, elasto-plastic, residual normal stresses and distances h; and h

with respect to the x axis for 8=00° at the upper and lower edges.

X hy hy o, o, o, o, ., o,
(mm) | (mm)| (mim) at pper s. | at upper s. | at upper s. | at lower . | at lower s, | at lowers.
167.881 7.50 | 7.50 | 6.260 | 6.260 | 0.000 | -6.260 | -6.260 | 0.000
172,881 7.03 | 7.03 | 6.638 | 6.260 | -0.378 | -6.638 | -6.260 | 0.378
177.881 651 | 6.51 | 7.030 | 6260 | -0.770 | -7.030 | -6.260 | 0.770
182.881 593 1 593 | 7429 | 6260 | -1.169 | -7429 | -6.260 | 1.169
187.881 527 | 527 | 7.840 | 6260 | -1.580 | -7.840 | -6.260 | 1.580

6. RESULTS AND CONCLUSIONS
An analytical elasto-plastic solution is given for a fiber reinforced thermoplastic composite
cantilever. The analytical elasto-plastic stress analysis is carried out for the composite cantilever
beam subjected to a linearly distributed load. The yield strength of the composite in the x
direction is X;=23.05, 11.855, 8.839, 7.267 and 6.26 MPa for 8 =0°, 30°, 45°, 60° and 90°
respectively. The intensity of the residual stress component of ¢, is maximum at the upper and

lower surfaces. The expansion of the plastic zone is the same at the upper and lower sides for 0°
and 90° orientation angles because of the symmetry of the material properties with respect to the
x axis. The plastic region begins first at the upper surfaces for the inclined orientation angles such
as 30°, 45° and 60°. When the value of the orientation angle decreases, the length of the beam
increases. For the same lengths of the beam, when the value of the orientation angle increases, the
intensity of the residual stress component of ¢ increases too.The intensity of the residual stress

component of 7, is maximum around the x axis. The intensity of the residual stress component

of 7, is smaller than that ofc, .
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