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Abstract - Two different approximate symmetry methods and a proposed new one are
contrasted using a wave equation with quadratic non-linearity. For each method, the
approximate symmetries are calculated first. Then approximate solutions corresponding
to some of the symmetries are calculated. It is found that a given specific approximate
solution is attainable only by using the new proposed method.

1. INTRODUCTION

Lie Group Theory is a systematic way of finding exact solutions to differential
equations. Exact solutions are obtained from the so-called symmetries of the differential
equations. For some nonlinear problems, however the symmetries are not rich to obtain
useful solutions. If the problem involves a small parameter, then an approximate
solution instead of an exact solution can be sought. To combine the power of Lie Group
Theory and Perturbation methods to attack such problems, two different approximate
symmetry theories have been developed recently.

In Method 1, an approximate generator is calculated to find approximate solutions
[1,2]. In this method, the dependent variable is not expanded in a perturbation series. In
Method 11, the dependant variable is expanded in a perturbation series, the equations at
each order of approximation are constructed first. The approximate symmetry of the
original equation is defined to be the exact symmetry of the outcoming equations at
different levels of approximation [3-5]. The equations are assumed to be coupled.

In most of the cases, after expanding the dependent variable, the *outcoming
equations are linear in unknown variables with some known functions at the right hand
sides of the equations. The linear parts of all the equations are the same with the non-
homogenous terms being different. Expressing those non-homogenities by arbitrary
functions of the independent variables, in Method III, we define the approximate
symmetry of the original equation as the exact symmetry of the non-homogenous linear
equation. We therefore remove the “coupled-equations” assumption in Method IL This
new method requires less algebra and is able to find some approximate solutions that
are unattainable by the previous methods. Each method will be applied in the next
sections to a simple wave equation with quadratic non-linearity.

2. EQUATION OF MOTION AND AN APPROXIMATE SOLUTION

Consider the wave equation with a quadratic non-linearity
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e +wrew =0 (1)

where € is a small parameter. If one expands the dependent variable in a perturbation
series

w=utey (2)
and substitutes into the original equation of motion, one obtains

2
d 21 +u=0
dt 3
2 3)
d°v )
rr— +V=—-U
dt
The solution of the first equation is
u=asint+bcost (4)
Substituting this solution to the right hand side of second equation, one has
: ab | 2 b’ *+b*
v:csm?t+dcost+?sm2t~a~a P cos2t -2 b (5)
Therefore the approximate solution is
. . b . *-b? a’+b?
w=asmt+bcost+e(csmt+dcost~+~%—sm 2t—a cos2t— (6}

If boundary conditions permit, the first two terms after the small parameter can be
included into the first order solution.

Our aim would be to obtain the approximate solution given in Eq. (6) by using
three different approximate symmetry theories, Note that the exact symmetries of Eq.
(1) are

0 0
Wom E n— = ’[’1:0 7

and the above symmetries do not yield useful solutions.

o 3. METHOD 1 |
In this method [1,2], the dependent variable is not expanded in a perturbation
series. Therefore the original equation rather than Eq. (3) is'used in finding approximate
solutions. The generator is expanded in a series instead

0 ¢ 0 0
X=X,+eX, =¢, —+n,—+e| & —+1,— 8
0 1 E:»oat n05 (&’& 'ﬂlaj (®)
where X, is the generator corresponding to the unperturbed equation. Details of finding

the approximate generator are given in refs {1,2]. The final result is
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E=&,+ek, =(csint+c,cost)w +c,sin 2t +¢, cos2t +c;
+el(C, sint+C, cost)w +C, sin 2t + C, cos2t + C, ]

©

N=n,+€Mn, =(¢, cost—c, sin t)w” +(c, cos2t —c, sin 2t + ¢, )W +¢, sin t + ¢, cost
+e [(C; cost —C, sint)w* +(C, cos2t - C,sin 2t + C,)w+C, sint + C, cost]

(10)
First of all, it should be noted that the symmetries at order € are repetitions of the
unperturbed symmetries. By defining new constants (¢, =c¢,+€C,) these symmetries
can always be included into the first order symmetries. These symmetries are called as
trivial symmetries. :

By using any combinations of symmetries given in Eqs. (9) and (10) the
approximate solution in equation {6) can not be obtained. A reason might be as follows:
That solution is found from Eqgs. (3) solved in order. At each order, a linear equation is
-solved. However, in Method I one uses the original nonlinear equation and this results
in a oss of some solutions, Note that in Eq. (6), cos t and sin t are independent solutions
added due to linearity. If instead, a nonlinear equation is employed, the addition of those
solutions would not be a solution.

4. METHOD 1

In this method, the approximate symmetry of Eq.(1) is defined as the exact

symmetry of Eqs.(3). The equations are assumed to be coupled. The generator is defined
to be

L, 0 0 0
X=t—+n' - tn? = 1
gﬁt nau-H] ov ()

Performing the standard calculations, the infinitesimals are found to be .

E=a
nl =bu (12)
" =2bv+cu+dcost+esint

Using parameters a and b, one may write

dt _du_ dv

t_du_ dv (13)
a bu 2bv

from which the functions are defined to be

u=ce™, v=c,e’™ (14)

where m= b/a. Substituting the functions into Eqs.(3), one has
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c? '
m = i, c3m?‘ (13)

Hence, two different approximate solutions are found as

2

w:c,e“+e?§ez“ ' (16)
or
w=c,e™+e 32—6“2“ ' (17)

Since Egs.(3) are nonlinear, the addition of above solutions to obtain solution (4) at the
first order would not be possible. Hence, one realizes that approximate solution (6) is
unattainable by this method.

5. METHOD Iil

In this method, similar to Method II, the dependent variable is expanded in a
perturbation series and Egs. (3) are obtained. Contrary to the assumption in Method 11,
Eqgs. (3) are not coupled. When the first equation is solved, the second equation has a
known function at the right hand side which can be solved. In this proposed method,
therefore, we define the approximate symmetry of Eq. (1) as the exact symmetry of the
following linear non-homogenous equation

d*u

i "*ju =h(t) (18)

h(t) of course varies at each order with h=0 at the first order of approximation. The
exact symmetries of Eq. (18) are

&= (c,sint+c,cost)w+a, (t) ‘ (19)
n=(c, cost—c, sin tyw> + o, (H)w + oL, (t) (20)
20, —a) =3h{c sint+c, costj (21)
ay +20 =h'(c, sint+c, cost) (22)

ay +oy =h20; ~ o, ) +h'a, (23)
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Alternatively, equivalence transformations [6,7] can also be employed to find the
symmetries of Eq. (18). When h=0 is taken, one obtains correctly the symmetries of
unperturbed equation. Using those symmetries, one can easily obtain

u=asint+bcost 24)
as the first order solution. To find the next order solution, choose

¢, =¢,=0,(t)=0 o, {t)=0a a const. (25)
so that Eqs. (21) and (22) are satisfied. From Eq. (23)

o +.d,3 =h'a (26)
where
2, 2 2 .2
h(t) = —u? -2 ;b +2 zb cos2t—absin 2t : : (27)

Substituting for h(t) into Eq. (26), one finally obtains

2 42 .
o, = o{%coszwr a 3 b sin Zt) - (28)

One now has to solve

dt _ dv (29)
* oc(gfhcos2t+ a’—b” sin 2t] ..
3 3

from which

v:%b—sin 2t——azmb2 cos2t+k 30)
Substituting (30) into ¥ + v =h{t), one finally obtains

Vz%iisinﬁ-—az_b2 c:032t~&2+b2 31)
The approximate solution would then be

w=asint+bcost+e (%sin 2t— a’-b" cos2t— a’+b’ J (32)
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Using this method, therefore, one can obtain the approximate solution given in (6). This
approximate solution can not be obtained using the previous methods.

6. CONCLUDING REMARKS

The following conclusions may be drawn from this study:

1) Since Method I and II uses nonlinear equations in finding approximate symmetries,
some approximate solutions can not be attainable. This is not the case for Method IT1.

2) Method HI requires less algebra than Method II in calculating symmetries.
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