Mathematical & Computational Applications, Vol. 5, No. 3, pp. 137-167, 2000 157
®Association for Seientific Research

ON THE NONLINEAR TRANSVERSE VIBRATIONS AND STABILITY OF AN
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Abstract - Nonlinear vibrations and stability analysis of an axially moving Euler-
Bernoulli type beam are investigated. The beam is on fixed supports and moving with a
harmonically varying velocity about a constant mean value. The method of multiple scales
is used in the analysis. Nonlinear frequencies depending on vibration amplitudes are
- obtained. Stability and bifurcations of steady-state solutions are analyzed for frequencies
close to two times any natural frequency. It is shown that the amplitudes are bounded in
time for frequencies close to zero. The effect of fixed supports is discussed.

1. INTRODUCTION

Due to their technological importance the vibrations of band-saws, fiber textiles,
magnetic tapes, paper sheets, aerial tramways, pipes transporting fluids, threadlines, belts
were investigated by many researchers. These problems are investigated by using either a
string model or a beam model. For the linear model review of the literature were performed
by Ulsoy ef al. [1] and Wickert and Mote [2].

It was shown that nonlinear effects in string vibrations became more significant at
velocities close to critical speed [3]. Ames ef al [4] considered a harmonically excited
traveling string using finite difference method. Wickert [5] analyzed free nonlinear
vibrations by including stretching effects for a moving beam over the sub- and supercritical
speed ranges. Moon and Wickert [6] studied nonlinear vibration of a prototypical power
transmission belt system, which was excited by pulleys having slight eccentricity through
experimental and analytical methods. Chakraborty ef ol. [7] investigated the free and forced
vibrations for a traveling beam. Oz ef al. [8] considered a variable speed nonlinear beam
model resting on simple supports and obtained nonlinear frequencies depending on the
amplitude. Frequency response curves and stability of the solutions were investigated.
Nonlinear vibrations of a tensioned pipe conveying fluid and traveling beam with variable

velocity were investigated [9-11] and the same results were found in agreement with
reference [8].

In this study, an Euler-Bernoulli type beam model is considered. The fixed ends
introduce nonlinear effects due to stretching. Approximate solutions are obtained using the
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method of multiple scales. The transport velocity is assumed to vary harmonically about a
constant mean value. The natural frequencies depending on mean velocity are plotted for
the first two modes and for different flexural stiffness values. Fixed supports increase
natural frequencies compared with simple supports [8]. Three distinct cases are considered
depending on the frequency of velocity fluctuations:

i) Velocity fluctuation frequency away from zero or two times one of the natural
frequencies. )
i) Velocity fluctuation frequency close to zero

iii} Velocity fluctuation frequency close to two times one of the natural frequencies.

For the first case, the amplitudes of vibration are found to be constant and the phases vary
linearly in time. The nonlinear frequencies are calculated. For the second case, it is shown
that the amplitudes are bounded in time. For the last case, the frequency-response curves
are plotted. Two non-trivial steady-state solutions bifurcate from the trivial steady-state
solution. Stability of these solutions is investigated. The effects of fixed boundary
conditions are discussed and compared with simply supported beam.

2. EQUATION OF MOTION

The dimensionless equation of motion is [8],

T o <t " W 1 I’i'l
i +200' + Vu +(u2 —l).l +viu' masvfu J-u’zdx (1)
0

u denotes the transverse displacement, dot denotes derivative with respect to time () and
prime denotes derivative with respect to the spatial derivative (x), & is a small parameter
(e<<1), v; and v; denote flexural and longitudinal stiffnesses respectively. Equation (1)
represents a weakly nonlinear system. The boundary conditions for fixed-fixed beam are

u(0,8)=0, u(l,t)=0, u'(0,t)=0, u(,t)=0 (2)
Assuming small fluctuations about a constant mean velocity, one writes
L =V, + €V, sin Ot (3)

where gu; and ) are the amplitude and the frequency of fluctuations respectively. Although
the amplitude of fluctuations and nonlinear effects seem to be connected through the
parameter g, their independency is assured by inclusion of an arbitrary parameter v, of
order one. In the next section, the approximate solution of the equation of motion will be
given directly from reference [8].
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3. PRINCIPAL PARAMETRIC RESONANCES

In the direct method, one assumes an expansion of the form
ul(x,t;e) = uy(x, T, T, )+, (x, T, T,) +... (4)
where 1=t and 1';=gt. Time derivatives are defined as

2 |
é‘lg=130+sz)§+..., ggzbiwsnomm.. O

where D, = g oT. - Applying the method of multiple scales [8-11], at order 1 the solution 1s

u() = An (Tl )eiwnTo \un (X“) + K“ (Tl )e“imn?e mn (X) | (6)

where @, represent the natural frequencies and A, is complex amplitude, A, is complex

conjugate of the amplitude. Following a similar calculation in [8-11] the shape functions
are obtained as

— B _ (B4n _B%n Xei‘ﬂm N eiﬁm ) iBypx (Btin . E’in)(eiﬁzn — eiﬁm) iPagx
W“ (X) C} {e ( an T BZn )(eiﬁm - eiﬁzn )e 2 (B4n - B3n )(eéﬁz“ - eiﬂsn )e
+ [ul + (B4n - Bln )(eiﬁsn — eiﬁln ) + (B4n - Bm )(eiﬁzn — ¢l )jiei[smx}

(B4“ =Ban )(eiBJn ~e' ) (ﬁt:n -8B, )(eigz" —g'Pm )

(7

where Py, are eigenvalues. The velocity dependent natural frequencies are given in Figures
1 and 2 for the first and second modes respectively for different flexural stiffness values .
The frequencies decrease with increasing mean velocity. As the flexural rigidity increases
(v, the frequencies increase. Solutions depend on three distinct cases which will be
investigated separately.

i} Q away from Zmn or 0
In this case, the solvability condition [8-12] is obtained as

DA, ~k,A2A, =0 (®)

where ki is defined to be
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[ i P b ” 1 r_ 1
—;—jwn wodx [y, ZdHIwnwn dx [, v, dx
k, = V12 2 : :) 2 ] '0 )]
Z(iconrujn\yndx+u0j‘\_ﬁn\un dx]
t] 0

where i is the complex number and @, is the natural frequency.

it) Qclose 10 0
The nearness of fluctuation frequency to zero can be expressed as

Q=¢c (10)
where © is a detuning parameter. For this case, the solvability condition becomes
D,A, +(k, cosoT, +k,sinoT,)A, —k,A2A, =0 (11)

where
L — !
0 0wy, dx
k, = . : L (12)
Z[i@nf\unwndxwef\vnwn de
0 ¢

B " 1 L.
UOUEJ‘\UD\UH dx +iulwnfu{n v, dx |
k‘2 = . 1 . 1_0 . (§3)
imnfwnwndx +U0IWaWn dx
0 0

iii)  Qclose to 20,
For this case, one writes

Q=20 +e6 _ (14)
The solvability condition [8] is
DA, +k,A.e" —k,AZA =0 (15)

where
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[ — L

Q | . 1
Ul(am“mn.]_[wn \un dx ”"’10001‘[\{15 \Vn dX
0 0

k, = (16)

1 1 .
z{imn I\yn y dx -+ uoj.\un\un dx}
0 o

Amplitude-phase variation, steady-state solutions and their stability and bifurcation
analysis will be discussed in the next section.

4. STABILITY AND BIFURCATIONS

The three different cases will be considered in this seciion.

) Qaway from 0 or 20,

Following similar calculations in [8-11], and expressing the complex amplitudes A,
in polar form

1
: 17
b (17
the nonlinear frequency can be obtained as
1. 2
(mn)nx =0, +3"Ek3130n (18)

where a; is constant real amplitude, ks; is imaginary part of k; and n denotes the modes.
Nonlinear frequency versus amplitude are drawn in Figures 3 and 4 for the first and second
modes respectively. When the mean velocity is closer to the critical velocity where
divergence instability occurs, the nonlinear effects are more significant. The nonlinear
frequency values shift to higher values for fixed end conditions compared with simply
supported traveling beam in [8].

ii} Qclose to 0
For this case, the amplitude equation is [8,9]

-l-(-km sin 0Ty +k g cos GTl)
3

a, =a,.e (19)
where kjr and ker are real parts of k; and k respectively. Since —1<sincT, <1 and
~1<cosoT, <1, the amplitudes are bounded in time. In addition to the nontrivial solution,
the trivial solution a,=0 also exists.
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iii) ) close to 2w,

Following derivations in [8,9] one gets a, =B, =0 (amplitude and phase) for
steady-state solutions, so that the trivial solution a,=0 is a solution. Two non-trivial
solutions can be found as ' '

]
O, = Ekﬂai - zvkgx + k(Z}R : ' (20)
5, = «%kﬂaﬁ r2iE k2, | @1)

where kor and kqp are real and imaginary parts of ko respectively. In the frequency-response
diagram, these two nontrivial solutions bifurcate from the trivial solution. For a given
frequency detuning value (o), the trivial and nontrivial solutions may coexist and
determination of the stability of these steady-state solutions become important. The trivial
solution is stable when :

o > 2k2. +k2,
o <~2ki; +ki,

and unstable otherwise.

(22)

Performing analysis for the stability of nontrivial solutions one finds &, curve is
always stable and o, curve is always unstable [8,9].

In Figure 5, a mean speed much lower than the critical speed and in Figure 6, a
mean speed close to the critical speed are chosen. Solid lines show stable solutions and
dashed lines show unstable solutions. There are two supercritical pitchfork bifurcation
points indicated as 61 and o in the figures. If a frequency of ¢ < o, is chosen, only trivial
solution exists and is stable. If frequency is increased, after the ¢ = o bifurcation point, the
trivial solution looses stability and a nontrivial response is obtained. The trivial solution is
stable after the second bifurcation point o = o,. The nontrivial solution starting from o, is
not stable. The nonlinear effects are more significant for speeds close to the critical speed.
For fixed end conditions the stability curves shift to higher forcing values compared with

[8].
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Figure 1. Variation of natural frequency with mean velocity for-different flexural stiffness
values for the first mode (vr values are indicated on the curves).

Figure 2. Variation of natural frequency with mean velocity for different flexural stiffness
values for the second mode (v¢ values are indicated on the curves).
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Figure 3. Variation of nonlinear natural frequencies with amplitudes for different mean
velocities for the first mode vy =1.0, (Le=6.090 —— ), (V6=6.355 .. .), (V;=6.362 - - -).
Critical velocity is v =6.36236.
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Figure 4. Variation of nonlinear natural frequencies with amplitudes for different mean
velocities for the second mode vy =1.0, (V6=9.760 —— ), (V6=9.830 - ..), (V;=9.847 - - -).
Critical velocity is v, =9.8473.
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Figure 5. Frequency-response curves for a velocity much, lower than the critical velocity for

the first mode (v =1.0, v¢=5.9 Solid lines and dashed lines denote stable and unstable
solutions respectively).
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Figure 6. Frequency-response curves for a velocity close to the critical velocity for the first
mode (vr=1.0, V=6.357 Solid lines and dashed lines denote stable and unstable solutions
respectively).
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S. CONCLUDING REMARKS

The nonlinear transverse vibrations of an axially accelerating Euler-Bernoulli beam
are analyzed and the stability analysis is performed. The beam is on fixed supports which
introduce nonlinearity due to stretching of neutral axis. The axial velocity is assumed to
vary harmonically about a constant mean value with small fluctuation amplitudes. The
method of multiple scales is applied to the equation of motion. The natural frequencies
decrease with increasing mean speed and divergence instability occurs at the critical speed.
The natural frequencies for fixed-fixed traveling beam are greater than those of simply
supported beam and so are critical speeds. For the frequencies away from zero or two times
the natural frequency, the amplitudes of vibration are constant and the phases vary linearly
in time. The nonlinear frequencies depending on the amplitudes are obtained. The nonlinear
effects become important for speeds close to critical speed. When fluctuation frequencies
are close to zero, it is shown that the amplitudes are bounded in time. When fluctuation
frequencies are close to two times the natural frequency, stability and bifurcations of
steady-state solutions are analyzed and the frequency-response curves are plotted. Two
non-trivial steady-state solutions bifurcate from the trivial steady-state solution. There are
two supercritical pitchfork bifurcation points. After the first bifurcation point, the trivial
solution looses stability and a nontrivial response is acquired. The reverse is true for the
second bifurcation point. The fixed supports enlarges unstable region, shift stable curve to
lower frequency detuning values and unstable curve to higher values.
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