ON THE RICCI CURVATURE TENSOR OF (k+1)-DIMENSIONAL SEMI-RULED SURFACES IN E_{ν}^{n+1}

Ali Görgülü & Cumali Ekici

Osmangazi University, Dept. of Mathematics, 26480 Eskişehir-Turkey,

Abstract - If we choose a natural companion basis for (k+1)-dimensional semi-ruled surfaces in semi-Euclidean space E_{ν}^{n+1} , then the metric coefficients are $g_{ij}=\varepsilon_i\delta_{ij},\ 1\leq i,j\leq k$. In this paper we show that the Ricci curvature tensor of a (k+1)-dimensional semi-ruled surface in the semi-Euclidean space E_{ν}^{n+1} is

$$S = \sum_{i,h=0}^{k} \varepsilon_{jh} (\varepsilon_0 R_{h0j}^0 g_{00} + \sum_{i=0}^{k} R_{hij}^i + \sum_{i=0}^{k} g_{i0} (\varepsilon_i R_{hij}^0 + \varepsilon_0 R_{h0j}^i)) \theta_j \otimes \theta_h.$$

Here, $\{\theta_0, \theta_1, \dots, \theta_k\}$ is the dual basis of the local coordinate basis $\{e_0, e_1, \dots, e_k\}$.

1. INTRODUCTION

(k+1)-dimensional ruled surfaces in E^n are studied by H.Frank and O.Giering, [1], [2]. Several properties of two-dimensional ruled surfaces are also given by C. Thas, [3]. The Ricci curvature tensor of a (k+1)-dimensional ruled surface in E^n is calculated by A. Sabuncuoğlu, [5]. In this paper, we will calculate the Ricci curvature tensor of the (k+1)-dimensional ruled surface in terms of metric coefficients g_{ij} 's and 1-forms $\theta_0, \theta_1, \dots, \theta_k$, where $\{\theta_i\}$ is the dual of the coordinate frame field $\{e_0, e_1, \dots, e_k\}$.

2. FUNDAMENTAL CONCEPTS

Let α be the smooth curve

$$\alpha: I \to E_{\nu}^{n+1}$$

 $t \to \alpha(t) = (\alpha_1(t), \dots, \alpha_{n+1}(t))$

in the (n+1)-dimensional semi-Euclidean space E_{ν}^{n+1} where $\{0\} \subset I \subset \mathbb{R}$. Let $\{e_1(t), e_2(t), ..., e_k(t)\}$ be an orthonormal vector system defined at each point $\alpha(t)$ of the curve α . This system spans a subspace of the tangent space $T_{E_{\nu}^{n+1}}(\alpha(t))$ at $\alpha(t) \in E_{\nu}^{n+1}$. If this space is denoted by $E_{k,\mu}(t)$, then it is a k-dimensional subspace of the form

$$E_{k,\mu}(t) = S_P \{e_1(t), e_2(t), \dots, e_k(t)\} \subset E_{\nu}^{n+1}, \quad 0 \le \mu \le \nu.$$

 $E_{k,\mu}(t)$, $\mu \ge 1$, will be called a semi-subspace and

$$\langle e_i(t), e_j(t) \rangle = \varepsilon_i \delta_{ij}, \qquad \varepsilon_i = \begin{cases} +1 & , & 1 \leq i \leq k - \mu \\ -1 & , & k - \mu + 1 \leq i \leq k. \end{cases}$$

is satisfied. For $\mu \ge 1$, there are μ time-like vectors in the semi-subspace $E_{k,\mu}(t)$. Since there is no time-like vector field on $E_{k,0}(t)$ for $\mu=0$, then $E_{k,0}(t)=E_k(t)$ and it is a Euclidean subspace. If $\mu=1$, then there is one time-like vector, so $E_{k,1}(t)$ is a time-like subspace.

Throughout this paper, we assume that $E_{k,\mu}(t)$, $\mu \ge 1$, is a semi-subspace.

Definition 1 While the semi subspace $E_{k,\mu}(t)$ moves along a curve α in E_{ν}^{n+1} , it forms a (k+1)-dimensional surface. This surface is called the (k+1)-dimensional generalized semi-ruled surface in the (n+1)-dimensional semi-Euclidean space E_{ν}^{n+1} and is denoted by M^* .

On the other hand, let

$$M^* = \bigcup_{t \in I} E_{k,\mu}(t)$$

such that $E_{k,\mu}(t) \subset E_{\nu}^{n+1}$ where $\{e_1(t), e_2(t), ..., e_k(t)\}$ is an orthonormal vector field system defined at every point on the curve α . It is knows that M^* is (k+1)-dimensional submanifold of E_{ν}^{n+1} .

Definition 2 $E_{k,\mu}(t)$ is called the generating space at $\alpha(t)$ of the semi-ruled surface M^* and the curve α is called the base curve of M^* .

Let M^* be a (k+1)-dimensional generalized semi-ruled surface in E_{ν}^{n+1} . $E_{k,\mu}(t) = S_P\{e_1(t), e_2(t), \dots, e_k(t)\} \subset E_{\nu}^{n+1}$, $0 \le \mu \le \nu$, be the genera-ting space and α be the base curve parametrized by the arc-length. Then, M^* can be expressed by the parametric equation

$$\varphi(t, u_1, u_2, ..., u_k) = \alpha(t) + \sum_{i=1}^k u_i e_i(t), \qquad (t, u_1, u_2, ..., u_k) \in I \times \Re^k$$
 (1)

Let M^* be a (k+1)-dimensional semi-ruled surface in the semi-Euclidean space E_v^{n+1} , let $\{e_1,e_2,...,e_k\}$ be the natural companion bases of the generating space $E_{k,\mu}(s)$ and $e_0 = \phi_*(\frac{\partial}{\partial s})$ be a vector field such that $\{e_0,e_1,...,e_k\}$ is an orthonormal basis of $\chi(M^*)$. We get

$$\varphi_t = \alpha(t) + \sum_{i=1}^k u_i e_i(t)$$

and

$$\varphi_{u_i} = e_i(t), \quad 1 \le i \le k$$

if we take the partial derivation of ϕ in equality (1). Throughout our this paper we assume that the system

$$\{\alpha(t) + \sum_{i=1}^{k} u_i \dot{e}_i(t), e_1, e_2, ..., e_k\}$$
 (2)

is linearly independent.

Definition 3 Let M^* be a (k+1)-dimensional semi-ruled surface in E_{ν}^{n+1} , $E_{k,\mu}(t) = S_P \{e_1(t), e_2(t), ..., e_k(t)\} \subset E_{\nu}^{n+1}$, $0 \le \mu \le \nu$, be the generating space in M^* and \dot{e}_i , $0 \le i \le k$ be the derivative of e_i along α , then the vector subspace

$$A(t) = S_P \{e_1, e_2, \dots, e_k, \dot{e}_1, \dots, \dot{e}_k\}$$

is called the asymptotic bundle of M^* in $E_{k,\mu}(t)$.

$$\dim A(t) = k + m, \ 0 \le m \le k$$

then there exist an orthonormal basis of A(t) containing $E_{k,\mu}(t)$, which is denoted by

$$\{e_1, e_2, ..., e_k, e_{k+1}, ..., e_{k+m}\}$$
.

Since $E_{k,\mu}(t)$, $\mu \ge 1$ is a semi-subspace we have

$$\langle e_i(t), e_i(t) \rangle = \varepsilon_i,$$
 $\varepsilon_i = \begin{cases} +1 & , & 1 \leq i \leq k - \mu \\ -1 & , & k - \mu + 1 \leq i \leq k. \end{cases}$

For $\mu \ge 1$, there are μ time-like vectors in the semi-subspace $E_{k,\mu}(t)$. Since E_{ν}^{n+1} is a semi-Euclidean space, there are ν time-like vectors in an orthonormal basis of E_{ν}^{n+1} . Therefore there are μ time-like vectors in basis of the asymptotic bundle A(t) containing $E_{k,\mu}(t)$. Hence,

$$A(t) = S_P \{e_1, e_2, \dots, e_k, a_{k+1}, \dots, a_{k+m}\}$$

is a semi-subspace.

Theorem 1 Let M^* be a (k+1)-dimensional semi-ruled surface in E_{ν}^{n+1} , $E_{k,\mu}(t)$ be the generating space and A(t) be the asymptotic bundle of M^* . If dim A(t) = k + m, $0 \le m \le k$, then we choose an orthonormal basis $\{e_1, e_2, ..., e_k\}$ of $E_{k,\mu}(t)$ such that

$$\dot{e}_i = \sum_{j=1}^k \alpha_{ij} e_j + \varepsilon_{k+i} \kappa_i \alpha_{k+i} \quad , \qquad 1 \le i \le m,$$

and

$$\dot{e}_h = \sum_{j=1}^k \alpha_{hj} e_j \qquad , \qquad m+1 \le h \le k,$$

where,

$$\varepsilon_{ij}\alpha_{ij} = -\alpha_{ji}$$
, $\varepsilon_j = \langle e_j, e_j \rangle$, $\varepsilon_{ij} = \varepsilon_i \varepsilon_j$

and for $r \leq \mu$

$$\kappa_1 > \kappa_2 > \dots > \kappa_{m-r} > 0$$

$$\kappa_{m-r+1} < \kappa_{m-r+2} < \ldots < \kappa_m < 0 ,$$

see [6].

The basis $\{e_1,e_2,...,e_k\}$ we considered in theorem 2.1 is called the natural companion basis of $E_{k,\mu}(t)$

Let M^* be an semi-Riemann manifold and R be the Riemann curvature tensor. The Ricci tensor field S is defined in the form

$$S(X,Y) = \sum_{i=0}^{k} \varepsilon_i \langle R(e_i, X)Y, e_i \rangle$$
 (3)

where $X, Y \in \chi(M^*)$. We have

$$R(e_h, e_l)e_i = \sum_{j=0}^{k} R_{ihl}^j e_j , \ 1 \le i, h, l \le k$$
 (4)

where $\{e_0, e_1, ..., e_k\}$ is basis of $\chi(M^*)$ [4].

3. THE RICCI CURVATURE TENSOR OF A (k+1)-DIMENSIONAL SEMI-RULED SURFACES IN E_{ν}^{n+1}

In this section, we calculate the Ricci curvature tensor of a (k+1)-dimensional semi-ruled surface in terms of metric coefficients g_{ij} and 1-forms $\theta_0, \theta_1, ..., \theta_k$, where $\{\theta_0, \theta_1, ..., \theta_k\}$ is the dual of the coordinate frame field $\{e_0, e_1, ..., e_k\}$.

Theorem 2 Let M^* be (k+1)-dimensional semi-ruled surface in E_{ν}^{n+1} , $\{e_1,...,e_k\}$ is the natural companion basis of $E_{k,\mu}(t)$, and the metric coefficient of M^* be g_{ij} , $1 \le i, j \le k$. Then

$$g_{00} = \sum_{i=1}^{k} \varepsilon_i (\zeta_i + \sum_{j=1}^{k} \alpha_{ij} u_j)^2 + \sum_{h=1}^{m} \varepsilon_{k+h} (\eta_h + \varepsilon_{k+h} \kappa_h u_h)^2 + \varepsilon_{k+m+1} (\eta_{m+1})^2$$

$$g_{i0} = \varepsilon_i (\zeta_i + \sum_{j=1}^k \alpha_{ij} u_j)$$

$$g_{ij} = \varepsilon_i \delta_{ij}, \qquad 1 \le i, j \le k$$

$$see [6]. \tag{5}$$

Theorem 3 The Ricci curvature tensor of a (k+1)-dimensional semiruled surface M^* is

$$S = \sum_{j,h=1}^{k} \varepsilon_{jh} (\varepsilon_0 R_{h0j}^0 g_{00} + \sum_{i=0}^{k} R_{hij}^i + \sum_{i=0}^{k} g_{i0} (\varepsilon_i R_{hij}^0 + \varepsilon_0 R_{h0j}^i)) \theta_j \otimes \theta_h.$$

Proof Let $X = \sum_{j=0}^{k} x_j e_j$ and $Y = \sum_{i=0}^{k} y_i e_i$. Since R is a tensor field, we have

$$R(e_{i}, X)Y = R(e_{i}, \sum_{j=0}^{k} x_{j}e_{j})(\sum_{h=0}^{k} y_{h}e_{h})$$

$$= \sum_{j,h=0}^{k} x_{j}y_{h}R(e_{i}, e_{j})e_{h}$$

By equation (4), we find

$$R(e_{i}, X)Y = \sum_{j,h=0}^{k} x_{j} y_{h} (\sum_{l=0}^{k} R_{hij}^{l} e_{l})$$
$$= \sum_{j,h,l=0}^{k} x_{j} y_{h} R_{hij}^{l} e_{l}.$$

From (3), we obtain

$$S(X,Y) = \sum_{i=0}^{k} \varepsilon_{i} \langle \sum_{j,h,l=0}^{k} x_{j} y_{h} R_{hij}^{l} e_{l}, e_{i} \rangle$$

$$= \sum_{i=0}^{k} \sum_{j,h,l=0}^{k} \varepsilon_{i} x_{j} y_{h} R_{hij}^{l} \langle e_{l}, e_{i} \rangle$$

$$= \sum_{j,h=0}^{k} x_{j} y_{h} (\sum_{i,l=0}^{k} \varepsilon_{i} R_{hij}^{l} \langle e_{l}, e_{i} \rangle$$

Since $\langle e_l, e_i \rangle = g_{li}$, $1 \le i, l \le k$, using (5), we find

$$S(X,Y) = \sum_{j,h=0}^{k} x_{j} y_{h} \left(\sum_{i,l=0}^{k} \varepsilon_{i} R_{hij}^{l} g_{li} \right)$$

$$= \sum_{j,h=0}^{k} x_{j} y_{h} \left(\varepsilon_{0} R_{h0j}^{0} g_{00} + \sum_{i=0}^{k} \varepsilon_{i} R_{hij}^{0} g_{i0} + \sum_{l=0}^{k} \varepsilon_{0} R_{h0j}^{l} g_{0l} + \sum_{i=0}^{k} \varepsilon_{i} R_{hij}^{i} g_{ii} \right)$$

$$= \sum_{j,h=0}^{k} x_{j} y_{h} \left(\varepsilon_{0} R_{h0j}^{0} g_{00} + \sum_{i=0}^{k} R_{hij}^{i} + \sum_{i=0}^{k} g_{i0} \left(\varepsilon_{i} R_{hij}^{0} + \varepsilon_{0} R_{h0j}^{i} \right) \right).$$

Since $\{\theta_0, \theta_1, ..., \theta_k\}$ is the dual of the basis $\{e_0, e_1, ..., e_k\}$,

$$(\theta_j \otimes \theta_h)(X,Y) = \theta_j(X)\theta_h(Y) = \varepsilon_{jh}x_jy_h$$

with the appropriate substitutions in S(X,Y) we get

$$\begin{split} S(X,Y) &= \sum_{j,h=0}^{k} \varepsilon_{jh} \Theta_{j}(X) \Theta_{h}(Y) (\varepsilon_{0} R_{h0j}^{0} \mathbf{g}_{00} + \sum_{i=0}^{k} R_{hij}^{i} + \sum_{i=0}^{k} \mathbf{g}_{i0} (\varepsilon_{i} R_{hij}^{0} + \varepsilon_{0} R_{h0j}^{i})) \\ &= \sum_{i,h=0}^{k} \varepsilon_{jh} (\varepsilon_{0} R_{h0j}^{0} \mathbf{g}_{00} + \sum_{i=0}^{k} R_{hij}^{i} + \sum_{i=0}^{k} \mathbf{g}_{i0} (\varepsilon_{i} R_{hij}^{0} + \varepsilon_{0} R_{h0j}^{i})) (\Theta_{j} \otimes \Theta_{h}) (X,Y) \end{split}$$

Since this is true for each of $X, Y \in \chi(M^*)$ then

$$S = \sum_{j,h=0}^{k} \varepsilon_{jh} (\varepsilon_0 R_{h0j}^0 \mathbf{g}_{00} + \sum_{i=0}^{k} R_{hij}^i + \sum_{i=0}^{k} \mathbf{g}_{i0} (\varepsilon_i R_{hij}^0 + \varepsilon_0 R_{h0j}^i)) \theta_j \otimes \theta_h.$$

REFERENCES

- 1. H. Frank, O. Giering, Verallgemeinerte Regelflachen, Math. Zeit. 150, 261-271, 1976.
- 2. H. Frank, O. Giering, Zur Schnittkrümmung Verallgemeinerte Regelflachen, Arch. Math. 32, 86-91, 1978.
- 3. C. Thas, Properties of Ruled Surfaces in The Euclidean Space E^n , Academia Sinica, 6, 133-142, 1978.
 - 4. B. O'Neill, Semi-Riemannian Geometry, Academic Press. New York, London, 1983.
- 5. A. Sabuncuoğlu, Ricci Curvature Tensor of (k+1)-Ruled Surface in E^n , Commun. Fac. Sci. Ank. Series A₁ 37, 1-4, 1988.
- 6. C. Ekici, Yarı-Öklidiyen Uzaylarda Genelleştirilmiş yarı-regle Yüzeyler, Osmangazi Üniversitesi Fen Bilimleri Enstitüsünde Hazırlanmış Doktora Tezi, Eskişehir, 1998.