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Abstract - In this paper, first we will define the generalized (k +1)-dimensional semi-
ruled surface M*, such that the generator space of M is the semi-subspace of EJ* where
E' is the semi-Euclidean space. Then, we will compute the mean curvature, Riemann
curvature, Ricci curvature and scalar curvature of M 5.

1. INTRODUCTION

In this section, we will give some preliminaries. We assume that all manifolds, maps,
vector fields, etc. ... are differentiable of class C”.

Let M be a semi-Euclidean submonifold of £, D be a Levi-Civita connection of

Eand D be a Levi-Civita connection of M. If X,Y e x(M) and II is the second
fundamental form of M, then we have the Gauss equation

DxY = Dy¥ +TI(X,Y) (1)
[4].

Let £ be a unit normal vector of M. Then, the Weingarten equation is
Dxt = -4, (X)+ Dyt @)

where 4, determines at each point a self-adjoint linear map on 7,,(p) ahd Dt is a metric

connection [3]. We note that, in this paper, A, will be used for the linear map and the
corresponding matrix of the linear map.
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From equation (1) and (2), it follows

JUX, V), E) = (4,(X), 1) 3)
and

MY, 1) ="3 (4 (X).1E; @
J=1 =i
[4].

Let M be an m -dimensional semi-Riemannian submanifold in £ and 4; bea

linear map. If £ € x‘L(M } is a normal unit vector at the point p € M, then

G(p,E) = det 4, (5)

is called the Lipschitz-Killing vector of M at p in the direction & [3].
If £36,,... £ COMStitute an orthonormal basis field of the normal bundle % (M),
then, the mean curvature H is defined by

Rem IZAE_: .

- ig 6
H="g ke (©)

[1].
Forevery X, e x(M), i=1,2,3,4 the 4th order covariant tensor field defined by R
as :

R(XI:X2,X3,X4):<X1=R(X39X4)X2> N

is called the Riemann curvature tensor field and its value at a point p e M , is called
Riemann curvature of M at p, where M is an m -dimensional semi-Riemannian
submanifold in E7* [1].

The Riemann curvature is denoted by

KX, V)p=(X,R(X,)D)|p (8)
[1]. If IT is the second fundamental form, then we have

(XX, DY) =X V)IY, P - IXNDIXYY. (9
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Let M be an m -dimensional semi-Riemann manifold. A 2-dimensional subspace of A/
the tangent plane 7, (p) of M at p is called tha tangent plane of M at p and is denoted by

3.Forall X,.Y, € 3, the real valued function K defined by

(R(Xp, Y)Y, X )
(Xp, XpX T, Yp)”“(Xp’Yp)z

K(Xpayp): (10)

is called the sectional curvature function of M at the point p. K(X,,7,) is called the
sectional curvature of M at p [4].

Let M be an m -dimensional semi-Riemann manifold and R be the Riemann
curvature tensor. The tensor field S defined in the form

S(X.¥) = Se,(Rle;, X)) (11)

is called the Ricci curvature tensor field, where {¢;,e,,...¢,} is a system of orthonormal
basis of 7,,(p) and the value of S(X,¥) at p € M is called the Ricci curvature [4]. Here

&; 3<€i,€£>, g; =

-1 Life rime ~ like
+1 ,if ¢ space —like.

Let M be an m -dimensional semi-Riemann manifold and {e;,e,,..,¢,} is an orthonormal
basis for 7, (p) for p € M . The real number ry, defined in the form

"
Ty = im}:}S(ef,e-)
or

mn . |
Tg = ZK(e,e;) =22 Kley,e)) (2
It <J

is called the scaler curvature of M where § is the Ricci curvature tensor field of M [4].

2.CURVATURES OF SEMI-RULED SURFACES IN E7*

In this section, we will calculate the Lipschitz-Killing curvature, section curvature,
Ricci curvature, mean curvature and the scalar normal curvature of a semi-ruled surface

M" in the semi-Buclidean space E"*l.

Let o be the smooth curve
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o:l — Ert
£ = off) = (0 ()5 O,y (D)

in the (n+1)-dimensional semi-Euclidean space E”" where {0yc/c™. Let
{e,(t),e,(1), .., ¢, (£)} be an orthonormal vector system defined at each «ff) curve o. This

system spans a subspacé of the tangent space TE" (D) at ofr) e E"f”. If this space is
v

shown by E,m(t), then, it is a & -dimensional subspace of the form

By, (1) = $ple (0,6, (1), e (O} = B, 0spsv,

Ek,u(t), K =1, will be called a semi-subspace and satisfied

(e;(t).e; (1)) =ed;, ;=

|
e,
g
ol
p
1A
[FAN
b
i
=

For p =1, thereare p time-like vectors in the semi-subspace Ek,u(t). Since there is no
time-like vector field on E, ,(t) for u'= 0, then, £ ()= E, () and it is a Euclidean

subspace. If =1, then, there is one time-like vector, so Ek,l(t) is a time-like subspace.
Throughout this paper, we assume that E, (), w21, isasemi-subspace.

Definition 1 While the semi subspace Ek’u(t) moves along a curve « in ErH. it forms a
(k +1)-dimensional surface. This surface is called the (k +1)-dimensional generalized

semi-ruled surface in the (n+1)- dimensional semi-Euclidean space E™' and is denoted
by M™. '

Definition 2 Ek,;,t(r) is called the genarating spacé at oft) of the semi-ruled surface

M and the curve a is called the base curve of M*.

Let M" be a (k-+1)-dimensional generalized semi-ruled surface in E""
Ep @) = Sple(®),... ¢, (0} E™ 0<u<v, be the generating space and o be the base

curve parametrized by the arc-length. Then, M~ can be expressed by the parametric
equation
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k
o, uy,uy, .0, ) =alt)+ Yuell), (t,uy,u,,..,u,)elx R
=1
Let M" be a (k +1) -dimensional semi-ruled surface in the semi-Euclidean space E'™, let
{e;,e5...,¢,} be the natural companion basis of the generating space Ek'“(s) and

e = P (%) be a vector field such that {ey,e,,..,e,}is an orthonormal basis of x(M"). In

addition, suppose that the vector field system {£, ,,&;.5,.--&,} is an orthonormal basis of
i .

To«(p)at peM”.

Then,

{e()ae}:““'aeka&k.{_lagk-{.g"'vgn}

is an orthonormal basis of TE" +{(p) at peM". Thus, the equations of the derivative can
7 .

be written in the form
E%gjmgyg%té;@gh Osrsk ve k+lsjsn (13)
Hence, the Weingarten equation can be written as
ﬁ%Q:HA%@J+DiQ, k+1<j<n. (14)

Then, from equation (13) and (14) the matrix A&J,- (e,) = x(M") that coresponds to the

linear mapping Ag_ is
J

J J J J
o 91 Y2 - Bk
J J J J
o (2 a R
4 = L tk k+l<jsn (15)

J J J J
a a a vee A
kO k1 k2 R ke +1) % (k + 1)

Also {(e;,e,)=8;0,, 1sih<k, for the orthonormal basis of the generating space
Ek#(s) where
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+1 JAsi<k-n
g = and <y
-1 Jk-u+1sisk

If we take the inner product of the both sides of the derivative equations (13) with ¢, we
gef

(Deyt ) = ~Devey,. ) = 8,a), e
Since the vectors e, are parallel in E\'}"’"l, Ba,eh =0. Thus, we find

a,=0, 1<rh<k
From (2) and (3), we get

afy = 308;:“({1:
for the components of Aﬁj . Substituting these in (15), we get g); = g5, and

J J J J
Go Iy Yo - Y

J
A = 80190 0 0 ... @
E“j . . . N A

(a7)

J
oxo O 0 (ke + 1 x (k +1)

where {¢,,¢,> =g, . So, we have proved the following three theorems.

Theorem 1 Let M™ be a (k +1)-dimensional semi-ruled surface in E™' The matrix in
(17) corresponding to the shape operator A&, “of M is either symmetric or anti-symmetric
J

depending on the index.

Theorem 2 Let M™ be a (k +1)-dimensional semi-ruled surface in E' and Aif be the

shape operator defined for the unit normal direction & i+ k+1= j<n.Inthis case, for
k=2

detAgj =0.
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Theorem 3 Let M” be a (k +1)-dimensional semi-ruled surface in EZ* _ For every point
in M and for every normal direction, the Lipschitz-Killing curvature is zero for kz2.

Now, let us observe some theorems and result on the Riemann curvature of a 2-
dimensional sector of 2 semi-ruled surface.

Theerem 4 Let M" be a (k + 1) -dimensional semi-ruled surface in E™*' and {eg.e,-n €.}
be an orthonormal vector system at a neighourhood of a point p € M™. The 2-dimensional
section of M™, spanned by the vectors (e,-)|p , 1<i<k oand (eo)) p has Riemann
curvature

K(ef’ eo) - _8(}1'(Deie(}’ D!?ieo>
where €, = g48;.

Proof. If we consider equations (8) and (9) where R is the Riemann curvature tensor field
of the semi-~ruled surface M~, we find the curvature of the section spanned by {e;,¢,} as
defined. |

We obtain the following.

Corollary 5 The Riemann curvature of the 2-dimensional section spanned by
.(ei)]p , 1<i<k, and vectors (eg)|p of a semi-ruled surface M* can be expressed in
terms of the components of the mairix 4y as

J

n .
K(e;, ) = 2 80531'(‘!5;)2

J=k+1
where
+1 k+1<j<sn-y
< Ny R W ’ ) N + =\,
RN -1 A-y+lsjsn Wy

Corollary 6 Let M" be a (k+1)-dimensional semi-ruled surface in E™' and
{e.e5,...¢,} be an orthonormal basis for the generating space Ek,p(t). The Riemann

curvature of the 2-dimensional section spanned by {e;, e i} s

K(e,.,ej)mo
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for 1<i, j<k. Here we will state and prove some theorems and results on the Ricci
curvature, scalar curvature and mean curvature of the (k +1)-dimensional semi-ruled

surface in E*

Theorem 7 Let M~ be a (k +1)-dimensional semi-ruled surface in E"f“ and {e,e,,...¢,}
be the orthonormal basis of the generating space Ek,u(t)- The Ricci curvature of M™ in
the direction of the vector fields e, ,\1 <r < k , satisfies

S(er’ e?') = —80j=%+1 aj(a({r)za (e()ae()) =2y, (&ja &J) = ﬁj .

Here, aé.r are the components of the matrix Ag Lk+l1<j<n.
J

Proof. Substituting X =Y =e,, 1<r <k, in equation (11) and using the equation (9),
we get

Sle,,e,) = —g,(Iey,e,),I1(e,,e,)) .

Since, I(ey,e,) = IKe,,e,), Deye, =I(e,,¢,) and
R— n .
Deeg =~ 3 gafl;,, 1<i<k,
J=k+l

we obtain the desired equality.

Corollary 8 The Ricci curvature of a (k +1)-dimensional semi-ruled surface in M™ in

E™ in the direction of the vector field e, is given by
' k
S(ey.ey) = aozjla,-S(e,-,e,-).

Theorem 9 Let M™ be a (k +1) -dimensional semi-ruled surface in E(,'“ and {e),¢,,...¢,}
be an orthonormal basis for y(M"). Then, the scalar curvature of M" is

k
Yy = 21%8,5(@,-, é).

Proof. Using the equation (12) and Corollary 2.2., we get
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k
P = 25}1[{ (e, €;)-

Here, considering the property K(e,,¢;) = K(e;, ¢,) of a sectional curvature and Corollary
2.1. and Theorem 2.6., we obtain the desired equality.

Corollary 16, Let M* be a (k +1) -dimensional semi-ruled surface in E™*' and e, the unit
tangent vector of the base curve of M. Then, the scalar curvature of M is equal 1o 2g,

times the Ricci curvature in the direction of the tangent vector field e, .

Theorem 11. Let M be a (k+1)-dimensional semi-ruled surface in E\'f“ and e, the unit
tangent vector of the base curve of M. Then, the mean curvature of M is

€
w‘ ﬁwfﬂ(eo,eo).

Proof. We substitute r = & = 0 in (16) and using the derivative equations (1), we get either
(Deyt j,€9) = Bgay

or .
(Degen, &) = ~Eq@to-

Considering the equations (14) and (3), we have
(M(eg, e0), &1 ) = ~eotthy-

For the matrix Aiij , given by the equality (17),
z =—ajl, k+1<j<n,
Substituting this in the definition of H in (6), we get

E
H= —km%;ﬂ(ee,eo).
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