ON THE CURVATURES OF (k+1)-DIMENSIONAL SEMI-RULED SURFACES IN E_{ν}^{n+1}

Cumali Ekici & Ali Görgülü

Osmangazi University, Dept. of Mathematics, 26480 Eskişehir-Turkey,

Abstract - In this paper, first we will define the generalized (k+1)-dimensional semiruled surface M^* , such that the generator space of M^* is the semi-subspace of E_{ν}^{n+1} where E_{ν}^{n+1} is the semi-Euclidean space. Then, we will compute the mean curvature, Riemann curvature, Ricci curvature and scalar curvature of M^* .

1. INTRODUCTION

In this section, we will give some preliminaries. We assume that all manifolds, maps, vector fields, etc. ... are differentiable of class C^{∞} .

Let M be a semi-Euclidean submonifold of E_{ν}^{n+1} , \overline{D} be a Levi-Civita connection of E_{ν}^{n+1} and D be a Levi-Civita connection of M. If $X,Y \in \chi(M)$ and Π is the second fundamental form of M, then we have the Gauss equation

$$\overline{D}_X Y = D_X Y + \Pi(X, Y) \tag{1}$$

[4].

Let ξ be a unit normal vector of M. Then, the Weingarten equation is

$$\overline{D}_X \xi = -A_{\xi}(X) + D_X^{\perp} \xi \tag{2}$$

where A_{ξ} determines at each point a self-adjoint linear map on $T_M(p)$ and D^{\perp} is a metric connection [3]. We note that, in this paper, A_{ξ} will be used for the linear map and the corresponding matrix of the linear map.

From equation (1) and (2), it follows

$$\langle \Pi(X,Y), \xi \rangle = \langle A_{\xi}(X), Y \rangle \tag{3}$$

and

$$\Pi(X,Y) = \sum_{j=1}^{n-m} \langle A_{\xi_j}(X), Y \rangle \xi_j$$
 (4)

[4].

Let M be an m-dimensional semi-Riemannian submanifold in E^{n+1}_{ν} and A_{ξ} be a linear map. If $\xi \in \chi^{\perp}(M)$ is a normal unit vector at the point $p \in M$, then

$$G(p,\xi) = \det A_{\xi} \tag{5}$$

is called the Lipschitz-Killing vector of M at p in the direction ξ [3].

If $\xi_1, \xi_2, ..., \xi_{n-m}$ constitute an orthonormal basis field of the normal bundle $\chi^{\perp}(M)$, then, the mean curvature H is defined by

$$H = \sum_{j=1}^{n-m} \frac{\dot{I}z A_{\xi_j}}{boy M} \xi_j \tag{6}$$

[1].

For every $X_i \in \chi(M)$, i = 1, 2, 3, 4 the 4th order covariant tensor field defined by R as

$$R(X_1, X_2, X_3, X_4) = \langle X_1, R(X_3, X_4) X_2 \rangle$$
 (7)

is called the Riemann curvature tensor field and its value at a point $p \in M$, is called Riemann curvature of M at p, where M is an m-dimensional semi-Riemannian submanifold in E_{ν}^{n+1} [1].

The Riemann curvature is denoted by

$$K(X,Y)|_{p} = \langle X, R(X,Y)Y \rangle|_{p}$$
(8)

[1]. If Π is the second fundamental form, then we have

$$\langle X, R(X, Y)Y \rangle = \langle \Pi(X, Y), \Pi(Y, Y) \rangle - \langle \Pi(X, Y), \Pi(X, Y) \rangle. \tag{9}$$

Let M be an m-dimensional semi-Riemann manifold. A 2-dimensional subspace of M the tangent plane $T_M(p)$ of M at p is called tha tangent plane of M at p and is denoted by \mathfrak{I} . For all $X_p, Y_p \in \mathfrak{I}$, the real valued function K defined by

$$K(X_p, Y_p) = \frac{\langle R(X_p, Y_p) Y_p, X_p \rangle}{\langle X_p, X_p \rangle \langle Y_p, Y_p \rangle - \langle X_p, Y_p \rangle^2}$$
(10)

is called the sectional curvature function of M at the point p. $K(X_p, Y_p)$ is called the sectional curvature of M at p [4].

Let M be an m-dimensional semi-Riemann manifold and R be the Riemann curvature tensor. The tensor field S defined in the form

$$S(X,Y) = \sum_{i=1}^{m} \varepsilon_i \langle R(e_i, X)Y, e_i \rangle$$
 (11)

is called the Ricci curvature tensor field, where $\{e_1, e_2, ..., e_m\}$ is a system of orthonormal basis of $T_M(p)$ and the value of S(X,Y) at $p \in M$ is called the Ricci curvature [4]. Here

$$\begin{aligned} \varepsilon_i &= \langle e_i, e_i \rangle \,, \quad \varepsilon_i = \begin{cases} -1 & \text{, if } e_i \text{ time-like} \\ +1 & \text{, if } e_i \text{ space-like}. \end{cases}$$

Let M be an m-dimensional semi-Riemann manifold and $\{e_1, e_2, ..., e_m\}$ is an orthonormal basis for $T_M(p)$ for $p \in M$. The real number r_{sk} defined in the form

$$r_{sk} = \sum_{i=1}^{m} S(e_i, e_i)$$

or

$$r_{sk} = \sum_{i \neq j} K(e_i, e_j) = 2 \sum_{i < j}^m K(e_i, e_j)$$
 (12)

is called the scaler curvature of M where S is the Ricci curvature tensor field of M [4].

2.CURVATURES OF SEMI-RULED SURFACES IN E_{ν}^{n+1}

In this section, we will calculate the Lipschitz-Killing curvature, section curvature, Ricci curvature, mean curvature and the scalar normal curvature of a semi-ruled surface M^* in the semi-Euclidean space E_{ν}^{n+1} .

Let α be the smooth curve

$$\alpha: I \to E_{\nu}^{n+1}$$

$$t \to \alpha(t) = (\alpha_1(t), ..., \alpha_{n+1}(t))$$

in the (n+1)-dimensional semi-Euclidean space E_{ν}^{n+1} where $\{0\} \subset I \subset \Re$. Let $\{e_1(t), e_2(t), ..., e_k(t)\}$ be an orthonormal vector system defined at each $\alpha(t)$ curve α . This system spans a subspace of the tangent space $T_{E_{\nu}^{n+1}}(\alpha(t))$ at $\alpha(t) \in E_{\nu}^{n+1}$. If this space is shown by $E_{k,\mu}(t)$, then, it is a k-dimensional subspace of the form

$$E_{k,\mu}(t) = Sp\{e_1(t), e_2(t), \dots, e_k(t)\} \subset E_{\nu}^{n+1}, \quad 0 \le \mu \le \nu.$$

 $E_{k,\mu}(t)$, $\mu \ge 1$, will be called a semi-subspace and satisfied

$$\langle e_i(t), e_j(t) \rangle = \varepsilon_i \delta_{ij}, \quad \varepsilon_i = \begin{cases} +1 & , 1 \leq i \leq k - \mu \\ -1 & , k - \mu + 1 \leq i \leq k. \end{cases}$$

For $\mu \ge 1$, there are μ time-like vectors in the semi-subspace $E_{k,\mu}(t)$. Since there is no time-like vector field on $E_{k,0}(t)$ for $\mu=0$, then, $E_{k,0}(t)=E_k(t)$ and it is a Euclidean subspace. If $\mu=1$, then, there is one time-like vector, so $E_{k,1}(t)$ is a time-like subspace.

Throughout this paper, we assume that $E_{k,\mu}(t)$, $\mu \ge 1$, is a semi-subspace.

Definition 1 While the semi subspace $E_{k,\mu}(t)$ moves along a curve α in E_v^{n+1} , it forms a (k+1)-dimensional surface. This surface is called the (k+1)-dimensional generalized semi-ruled surface in the (n+1)-dimensional semi-Euclidean space E_v^{n+1} and is denoted by M^* .

Definition 2 $E_{k,\mu}(t)$ is called the genarating space at $\alpha(t)$ of the semi-ruled surface M^* and the curve α is called the base curve of M^* .

Let M^* be a (k+1)-dimensional generalized semi-ruled surface in E_{ν}^{n+1} $E_{k,\mu}(t) = Sp\{e_1(t),...,e_k(t)\} \subset E_{\nu}^{n+1}, \ 0 \le \mu \le \nu$, be the generating space and α be the base curve parametrized by the arc-length. Then, M^* can be expressed by the parametric equation

$$\varphi(t, u_1, u_2, ..., u_k) = \alpha(t) + \sum_{i=1}^k u_i e_i(t), \qquad (t, u_1, u_2, ..., u_k) \in I \times \Re^k$$

Let M^* be a (k+1)-dimensional semi-ruled surface in the semi-Euclidean space E_v^{n+1} , let $\{e_1,e_2,...,e_k\}$ be the natural companion basis of the generating space $E_{k,\mu}(s)$ and $e_0=\varphi_*(\frac{\partial}{\partial s})$ be a vector field such that $\{e_0,e_1,...,e_k\}$ is an orthonormal basis of $\chi(M^*)$. In addition, suppose that the vector field system $\{\xi_{k+1},\xi_{k+2},...,\xi_n\}$ is an orthonormal basis of $T_{M^*}^\perp(p)$ at $p\in M^*$. Then,

$$\{e_0, e_1, ..., e_k, \xi_{k+1}, \xi_{k+2}, ..., \xi_n\}$$

is an orthonormal basis of $T_{E_{V}^{n+1}}(p)$ at $p \in M^*$. Thus, the equations of the derivative can be written in the form

$$\overline{D}_{e_r} \xi_j = \sum_{i=0}^k a_{ri}^j e_i + \sum_{i=k+1}^n b_{ri}^j \xi_i, \quad 0 \le r \le k \quad ve \quad k+1 \le j \le n$$
(13)

Hence, the Weingarten equation can be written as

$$\overline{D}_{e_r} \xi_j = -A_{\xi_j}(e_r) + D_{e_r}^{\perp} \xi_j, \qquad k+1 \le j \le n.$$
 (14)

Then, from equation (13) and (14) the matrix $A_{\xi_j}(e_r) \in \chi(M^*)$ that coresponds to the linear mapping A_{ξ_j} is

$$A_{\xi_{j}} = \begin{bmatrix} a_{00}^{j} & a_{01}^{j} & a_{02}^{j} & \dots & a_{0k}^{j} \\ a_{10}^{j} & a_{11}^{j} & a_{12}^{j} & \dots & a_{1k}^{j} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{k0}^{j} & a_{k1}^{j} & a_{k2}^{j} & \dots & a_{kk}^{j} \end{bmatrix}_{(k+1)\times(k+1)}, \quad k+1 \leq j \leq n$$

$$(15)$$

Also $\langle e_i, e_h \rangle = \varepsilon_i \delta_{ih}$, $1 \le i, h \le k$, for the orthonormal basis of the generating space $E_{k,\mu}(s)$ where

$$\varepsilon_i = \begin{cases} +1 & , 1 \le i \le k - \mu \\ -1 & , k - \mu + 1 \le i \le k. \end{cases} \text{ and } \mu \le \nu$$

If we take the inner product of the both sides of the derivative equations (13) with e_h , we get

$$\langle \overline{D}_{e_r} \xi_j, e_h \rangle = -\langle \overline{D}_{e_r} e_h, \xi_j \rangle = \varepsilon_h a_{rh}^j$$
 (16)

Since the vectors e_h are parallel in E_v^{n+1} , $\overline{D}_{e_r}e_h=0$. Thus, we find

$$a_{rh}^j = 0 \quad , \qquad 1 \le r, h \le k$$

From (2) and (3), we get

$$a_{h0}^j = \varepsilon_0 \varepsilon_h a_{0h}^j$$

for the components of A_{ξ_f} . Substituting these in (15), we get $\epsilon_{0i} = \epsilon_0 \epsilon_i$ and

$$A_{\xi_{j}} = \begin{bmatrix} a_{00}^{j} & a_{01}^{j} & a_{02}^{j} & \dots & a_{0k}^{j} \\ \varepsilon_{01}a_{10}^{j} & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \varepsilon_{0k}a_{k0}^{j} & 0 & 0 & \dots & 0 \end{bmatrix}_{(k+1)\times(k+1)}$$

$$(17)$$

where $\langle e_0, e_0 \rangle = \varepsilon_0$. So, we have proved the following three theorems.

Theorem 1 Let M^* be a (k+1)-dimensional semi-ruled surface in E_{ν}^{n+1} . The matrix in (17) corresponding to the shape operator A_{ξ_j} of M^* is either symmetric or anti-symmetric depending on the index.

Theorem 2 Let M^* be a (k+1)-dimensional semi-ruled surface in E_v^{n+1} and A_{ξ_j} be the shape operator defined for the unit normal direction ξ_j , $k+1 \le j \le n$. In this case, for $k \ge 2$

$$\det A_{\xi_j} = 0.$$

Theorem 3 Let M^* be a (k+1)-dimensional semi-ruled surface in E_v^{n+1} . For every point in M^* and for every normal direction, the Lipschitz-Killing curvature is zero for $k \ge 2$.

Now, let us observe some theorems and result on the Riemann curvature of a 2-dimensional sector of a semi-ruled surface.

Theorem 4 Let M^* be a (k+1)-dimensional semi-ruled surface in E_v^{n+1} and $\{e_0, e_1, ..., e_k\}$ be an orthonormal vector system at a neigbourhood of a point $p \in M^*$. The 2-dimensional section of M^* , spanned by the vectors $(e_i)|_p$, $1 \le i \le k$ and $(e_0)|_p$ has Riemann curvature

$$K(e_i, e_0) = -\varepsilon_{0i} \langle \overline{D}_{e_i} e_0, \overline{D}_{e_i} e_0 \rangle$$

where $\varepsilon_{0i} = \varepsilon_0 \varepsilon_i$.

Proof. If we consider equations (8) and (9) where R is the Riemann curvature tensor field of the semi-ruled surface M^* , we find the curvature of the section spanned by $\{e_i, e_0\}$ as defined.

We obtain the following.

Corollary 5 The Riemann curvature of the 2-dimensional section spanned by $(e_i)|_{p}$, $1 \le i \le k$, and vectors $(e_0)|_{p}$ of a semi-ruled surface M^* can be expressed in terms of the components of the matrix A_{ξ_j} as

$$K(e_i, e_0) = \sum_{j=k+1}^n \varepsilon_{0i} \varepsilon_j (a_{0i}^j)^2$$

where

$$\langle \xi_j, \xi_j \rangle = \varepsilon_j = \begin{cases} +1 & , k+1 \le j \le n-y \\ -1 & , n-y+1 \le j \le n \end{cases}, \quad \mu+y=\nu.$$

Corollary 6 Let M^* be a (k+1)-dimensional semi-ruled surface in E^{n+1}_{ν} and $\{e_1,e_2,...,e_k\}$ be an orthonormal basis for the generating space $E_{k,\mu}(t)$. The Riemann curvature of the 2-dimensional section spanned by $\{e_i,e_j\}$ is

$$K(e_i, e_j) = 0$$

for $1 \le i, j \le k$. Here we will state and prove some theorems and results on the Ricci curvature, scalar curvature and mean curvature of the (k+1)-dimensional semi-ruled surface in E_{ν}^{n+1} .

Theorem 7 Let M^* be a (k+1)-dimensional semi-ruled surface in E_v^{n+1} and $\{e_1, e_2, ..., e_k\}$ be the orthonormal basis of the generating space $E_{k,\mu}(t)$. The Ricci curvature of M^* in the direction of the vector fields e_r , $1 \le r \le k$, satisfies

$$S(e_r, e_r) = -\varepsilon_0 \sum_{j=k+1}^n \varepsilon_j (a_{0r}^j)^2, \quad \langle e_0, e_0 \rangle = \varepsilon_0, \quad \langle \xi_j, \xi_j \rangle = \varepsilon_j.$$

Here, a_{0r}^{j} are the components of the matrix $A_{\xi_{j}}$, $k+1 \le j \le n$.

Proof. Substituting $X = Y = e_r$, $1 \le r \le k$, in equation (11) and using the equation (9), we get

$$S(e_r, e_r) = -\varepsilon_0 \langle \Pi(e_0, e_r), \Pi(e_0, e_r) \rangle$$
.

Since, $\Pi(e_0, e_r) = \Pi(e_r, e_0)$, $\overline{D}_{e_r} e_0 = \Pi(e_r, e_0)$ and

$$\overline{D}_{e_r}e_0 = -\sum_{i=k+1}^n \varepsilon_r a_{0r}^j \xi_j, \qquad 1 \le i \le k,$$

we obtain the desired equality.

Corollary 8 The Ricci curvature of a (k+1)-dimensional semi-ruled surface in M^* in E_v^{n+1} in the direction of the vector field e_0 is given by

$$S(e_0, e_0) = \varepsilon_0 \sum_{i=1}^k \varepsilon_i S(e_i, e_i).$$

Theorem 9 Let M^* be a (k+1)-dimensional semi-ruled surface in E_{ν}^{n+1} and $\{e_0, e_1, ..., e_k\}$ be an orthonormal basis for $\chi(M^*)$. Then, the scalar curvature of M^* is

$$r_{sk} = 2\sum_{i=1}^{k} \varepsilon_i S(e_i, e_i).$$

Proof. Using the equation (12) and Corollary 2.2., we get

$$r_{sk} = 2\sum_{i=1}^{k} K(e_0, e_i).$$

Here, considering the property $K(e_0, e_i) = K(e_i, e_0)$ of a sectional curvature and Corollary 2.1. and Theorem 2.6., we obtain the desired equality.

Corollary 10. Let M^* be a (k+1)-dimensional semi-ruled surface in E_{ν}^{n+1} and e_0 the unit tangent vector of the base curve of M^* . Then, the scalar curvature of M^* is equal to $2\varepsilon_0$ times the Ricci curvature in the direction of the tangent vector field e_0 .

Theorem 11. Let M^* be a (k+1)-dimensional semi-ruled surface in E_v^{n+1} and e_0 the unit tangent vector of the base curve of M^* . Then, the mean curvature of M^* is

$$H=\frac{\varepsilon_0}{k+1}\Pi(e_0,e_0).$$

Proof. We substitute r = h = 0 in (16) and using the derivative equations (1), we get either

$$\langle \overline{D}e_0\xi_j, e_0 \rangle = \varepsilon_0 a_{00}^j$$

or

$$\langle \overline{D}e_0e_0, \xi_j \rangle = -\varepsilon_0a_{00}^j.$$

Considering the equations (14) and (3), we have

$$\langle \Pi(e_0, e_0), \xi_i \rangle = -\varepsilon_0 a_{00}^j.$$

For the matrix A_{ξ_i} , given by the equality (17),

$$trA_{\xi_{j}} = -a_{00}^{j}, \quad k+1 \leq j \leq n.$$

Substituting this in the definition of H in (6), we get

$$H = \frac{\varepsilon_0}{k+1} \Pi(e_0, e_0).$$

REFERENCES

- 1. S. Kobayashi-K. Nomizu, Foundations of Differential Geometry, Interacience Publishers a Division of John Wiley Sons, New York, Vol. I-II 1963.
- 2. C. Thas, Properties of Ruled Surfaces in The Euclidean Space E^n , Academia Sinica, Vol. 6, No. 1, 133-142, 1978.
- 3. B. O'Neill, Semi-Riemannian Geometry, Academic Press. New York, London, 1983.
- 4. M. Ergüt, The Drall and the Scalar Normal Curvature of (k+1)-Dimensional Generalised Ruled Surfaces, Commun. Fac. Sci. Ank. Series A₁ 38, 115-125, 1989.