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SOLUTION OF BOUSSINESQ PROBLEM USING
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Abstract- Firstly the Lie point symmetries of cylindrically symmetric homogeneous
Navier equations are obtained. Using the symmeétries the general class of similarity
solutions are found. The subclass that also satisfies the non-homogeneous system of
the medium subject to a singular force is determined. Substituting the subclass into
the non-homogeneous system, a system of ordinary differential equations is obtained.
The solution of the system satisfying the boundary conditions of Bousssinesq problem
gives the exact solution.

LINTRODUCTION

Sophus Lie introduced the concept of continuous groups (known as Lie groups) in
order to unify and extend the methods of solutions of ordinary differential equations in
the last few decades of the nineteenth century (see[l}[2]). He proved that if a
differential equation remains invariant under a one-parameter Lie group of
transformation then its order may be reduced by one. A symmetry group of a
differential equation is the transformation group that transforms its solutions to other
solutions. Such a group may be a point symmetry that depends on dependent and
independent variables, but it may also be a contact symmetry that depends on first
derivatives as well. Some solutions remain invariant under symmetry group
transformations; these solutions are called invariant (or similarity) solutions. The
invariant solutions may be used in finding the solutions of boundary value problems.

In the twentieth century the application of Lie groups to differential equations
attracted the attention of quite a number of mathematicians. L. Ovsiannikov(see [3] ),
N. H. Ibragimov, (see[4][s]). W. Bluman(seel6]), P. J. Olver(see[7]) are some of
them. E. Cartan applied exterior forms to Lie groups(see [8]) Edelen extended the
methods established by E. Cartan(see [9]). E. Suhubi developed an algorithm and
applied it to many problems of mechanics(see [10]).

In this work Lie groups of Navier equations are determined and the solution of
Boussinesq problem is obtained by using its symmetries.

2. NAVIER EQUATIONS OF THE CLASSICAL ELASTICITY
THEORY

As is known the Navier equation for the elastostatics of linear homogeneous isotropic
media is given in the form (see [t1}[12} [13] 14} [15])

(X+u) grad divu+ pAu-+ p p=pii (2.1)



where A,u are Lamé constants, u the displacement vector, p the mass density and p

the body force for unit mass. The handled problem is Boussinesq problem for
concentrated normal force on the boundary of half-space (see[12] [15]).

precversprmperseremrn

V2

Figure 1

where F is a finite concentrated load at O in the positive z direction.

The system of equilibrium equations of a medium subject to such a singular force ¥
acting at origin along z -axis becomes
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The prolonged infinitesimal generator of second order is in the form
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D represents the total derivative with respect to the independent variable of the subscript.

If the second prolongation of X is applied to the homogeneous part of (2.2), we reach
the equations:
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The structures of the functions of &, n, £ and t have the form (see [17 ])
£=E(r,2), n=n(r2)
C=slrzhu+glr,2)w (2.8)

v=hr, 2)u + k(r,z)w

We get the following determining equations substituting (2.8) to (2.5) and (2.6)(see
Appendix):

D P, )+ A=) h, 12 f, 420~ 18 )= 0 (2.9)
2) r*(g, +xg, ) +(1-x)r?k, +7g, - g=0 (2,10
3y 27 f, +(1=x)r’h, — 1% +7E, ~E~17kE,, =0 (2.11)
4 2rg, +(1-x)g+(1—)rk, - (1~ k)t +x(1-%)n, =0 (2.12)
5) ~x(1-«)g +(1—-k)rh, +2xf, —rm, ~x(2;x)n, —xrn, =0 (2.13)
6) (1-x)k, —(1-1)n,, +2xg, =0 (2.14)
7) —x(1-x)g+{x* —2x —1)n, ~2¢, +(1-)h =0 (2.15)
8) €, =m, (2.16)
9) (1+x)g+xn, —&, =0 (2.17
10) ~f+E, +k—-n, =0 | (2.18)
1) Q-x)rtf, —(1-x)E, +#°h, + (A~ k)rf, +xr’h, +xh+xrh, =0 (2.19)
12) (1-x)rg,, +rk, +(1-x)g, +xrk +1k =0 (2.20)
13) (1-x)f, ~(1-%)é, +2xh =0 (2.21)
14) ~-r?E, +2xm, +(1-xlrlg, +2xr’k, ~xr’, —«xk—xrE, =0 (2.22)
15) (1= )(r2f, —rPn, —rk +mm, —E+7f )+ 2r%h, =0 (2.23)

16) (1-x)rg, + g(l~x) +2rk, —rm_ —xmm,, ~x1n, =0 (2.24)




1) -, +xE, +(1+x)h =0 (2.25)
18) f-k—E, +m, =0 (2.26)
19) (I-K)(gw%(llmtc)&z th)—ZK'r], =0 . (2.27)

Integrating the determining equations, we get the following set of infinitesimal
generators: ‘ :

X, =ro,+z0,, X,=ud, +wd, (2.28)

3. SIMILARITY SOLUTION

The infinitesimal generator X can be written as follows
X=aX +BX, S (3.1

where a, f are constants. If we apply (3.1) to u = 8(r,z) and w = y(r, z) which are

assumed to be solution of the homogeneous part of PDE (2.2) we reach the following
PDE’ s '

X(@-0(,2)},_, =0 X(w—vlr.z)),_, =0 (3.2)
which give the general solution as follows

0= r*f(»;z:} TS r”g[—‘::] (3.3)

o
where y = —

p

Now we define a new independeﬁt variable
§ = (3.4)
If we rearrange (2.2), taking
1.(1 1
8(r)=—8[=| 8(z)==8(s) (3.5)
z \§ ¥

and use (3.3) we reach the following ordinary differential equation:
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s°g"(s)+ £'(s) - 1g(s) + sg'(s)]}= - 6() ~8(s)

pel 2mrz v
' (3.6)
(3.1) is a symmetry of homogeneous part of (2.4). From (3.6) it is seen that if
y=-1 3.7
‘the symmetry (3.1) is also a symmetry of non-homogeneous system ( 2.2). So
X=X -X, (3.8)

is a symmetry of the non-homogeneous system. Hence we get the following similarity

solutions:
"= if(f} W= 15{5] 3.9
roir ro\r

Substituting (3.9) to (2.2) we reach the following system of ordinary differential
equations

(x 452 ) 7(s)+ sl - Dg"(s)+ 35 '(s) + 2(x - g '(s) = 0 .
- (3.10)

s(&c - l)f"(s)+ (1 + ks )g”(s)-f {x- })ff(s)‘+ 3sxg ’(s) +xg(s)=0

Solving f (s), g(s) from (3.10) and substituting into (3.9) we get the general form
of the displacement components as follows:

u(r z)m
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ry” +z :

Ber®Nr® + 22 + M riNr? 4 2% + M 22 2% +

2B(k - Dzlr? + 2 )ArcSml{ ) Bk~ 1)z(3r +2z )Log[_+ J:D

3.1D |
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The stress components expressed in terms of displacement components are

(- 4r2z + 346022 ~ Myrz + 2412 - M, +

(3.12)

G, = ?{u, +E,]+(K+2p,)wz'
¥
(3.13)
Tzr = 2“(”2 +wr)

If we rearrange (3.13) using (3.11) and (3.12) we find the stress components as follows:

o =~—1——---(— AP 230 — 24x2° A - Braar? 2% 4+ B dWrt + 28 Myt Wrt 2% -
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4AK25;L+2M235§,L—23r4pm+23@4pm—m3r4um—
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2
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and

(3.14)



T, =--—4—B———~(—- 247° +34xr° ~M,r® + Ars® —M,rz* —2Brzyr? + 2% +3Brzr 4 2%

(r2 +22)%
3
B-‘}\/rz +2z" —2B(x - 1)r(r2 + zz)ArcSz'nP{wa +
a

2
Br(_ 272 4.—310'2 + zz)Log(g + "l + —i—;ﬂ

. (3.13)
The boundary conditions are
Iin% 6,=0, r=#0
(3.16)
limt, =0, r=0
=0 -
which give
B=M,;=0, M,=A@Bx-2) (3.17)
By the substitution of (3.17) into (3.11) and (3.12), the exact solution of the
Boussinesq problem is obtained.
2 Z2
1\4,(1‘2 +zz) +Arz(r2 +xz’ )"E +=
ulr,z)= —— - L
v (r2 + z"‘)
(3.18)
T 2
‘ w(r,z):A(r (K 3)2 )
(r2 +z° )A
where
Ao (t-2v)Q+v)F
2nkx
(3.19)

M, = (1-2v)(1+v)F
2nk

that is exactly identical with the classical result in literature (see[12] [15] [16]).



4.CONCLUSION

The solution of Boussinesq problem has been reached by using Lie groups. It is clear
that the solutions of the problems we face in many fields can be calculated by this
method. Lie groups method gives some advantages for solving problems. As it is
seen here the system of partial differential equations have been converted to a system
of ordinary differential equations by Lie groups and the solution has been found by
using boundary conditions.
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Appendix
For (2.6):

: u u ‘
fru+2fu, +f[—~ KU, +(k— I)w,z +;~;—--;f—) +g W28 wW, +gw,
u u? 2u - H r
_2,3”(“ Kuzzf(““‘l)wn +;—m---;~-)—u,§,, -2u,m, ~u,m, + = mmz-g.guw.z.__—ngr

1 .
+-’~:(f,u + fu, +gw +gw, —ug, wuzn,)+hmu+hru2 +hu +hu_ +k_w+

‘ u w
kw, +kw, +kw_-wkE —-wk - n,(m xw,, +(x ~ 1)[1:,2 + -;’-) —-K'""r“] -

r
wn, ~w,E ~w._n, +xf u+2xfu, + fku +xg w+2xgw, +rg+
w,)  w | ,
[m kw, (x — 1)[3:,2 + ;5-) ~K —r’—] - 2xu, k, —xuk, ~2xu,n, ~xu,mn, —xh, -

—xhu, ~xhu, —xhu, ~xk w-xkw, —xkw, —xkw_  +xw £ +xwk +

- " u, W,
K‘n’[“m”(K - 1)(11’2 +ﬂ;~) “KT]+sznm +T(W,,.E_,z +K’W,2'Qz =0

For (2.6),:

frzum}".fruz +f2u)“ +ﬁ‘2r +grzw+grwz +gzwr +ngr —uzrﬁzr _urgzr —;ui’z?‘f-

u,

uzn,z.m&z(mxuzz +{x - l)wm +£~§~- —r—) ~u, M, +hu+2hu, +hu, +k w+
| /] . W
+2k,w, + k!:—~ ww,, +{x ~ 1)(1:” +~;~J —xm;f-}- 2w,k ~wk_ -

u, w, u, 1
-~2n,[—Kw" +(K—1)(un +—;) ~K ";"}—wmz —;;€+;(f=u+ﬁ4z g W gw, ~unE, —u,n,)
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- K{frzu + fruz +fzur + ﬁ‘zr +8 Wt EW, T EW, TEW, UG, — urizr Uy U N,

u U, u U
- F,z[—— ki, +(c—Dw, _ + i T]w u,m, —h,u—-2hu, - h(— ku, +{c—Dw, + PE ]

~Uu, +W,

~k,w—2kw —kw,_+2w.§ +wl +2w,n, +wnmn, + ““””“”"rz—"‘i +

g:(fzu v fu, +gwrgw, —ut —um, —hu—hu, —k,wfkw, +er,r +wznr) }: 0






