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ABSTRACT

In the present work an algebraic and an
opumal control method (in connection with
linear continuous systems) as well as a new
optimal multirate control method (in connection
with linear discrete systems) are presented and
applied. in order to design a suitable excitation
controller  (analogue and digital type
respectively) and thus obtain a pertinent closed-
loop svstem with enhanced dynamic stability
characteristics.  The  obtained  computer
simulation results. based on a practical power
system of the Greek national grid. show clearly
the validity-suitability-effectiveness and
implementability of the excitation controllers
designed using these control procedures.

1. INTRODUCTION

It 1s a well known fact that the stability
enhancement of an open-loop power system
model linearized about the nominal operating
point may be achieved by designing a suitable
excitation controller. which results in the
associated closed-loop system with pre-assigned
dynamic stability characteristics. The design of
such controllers is accomplished by using the
various conventional control methods for linear
continuous systems (e.g. optimal control
methods [1-4]. algebraic control methods [3-8])
and the new optimal multirate control method
for linear discrete systems [9-11].

In the present work the successful design of the
sought analogue and digital excitation
controllers of the under study hydrogenerator
svstem [12] (in order to give it enhanced
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dvnamic stability characteristics over a wide
range of operating conditions of the
hyvdrogenerator unit) are attained. respectively.
byv: a) using the algebraic control method (8]
and the optimal control method [5.4] and b)
using the new optimal multirate control method
[9-11].

The physical syvstem (consisting of a 117 MVA
hydrogenerator with single stage excitation
svstem supplyving power to an infinite grid via a
step-up transformer and a double-circuit
transmission line) along with its 6" order. non-
linear and linearealized model (in untransformed
and transformed form for various operating
points) are given in detail in [12]

2. OVERVIEW OF PERTINENT CONTROLLER
DESIGN PROCEDURES

2.1 Conventional controller design procedure
for linear continuous systems

The general description of a continuous-time
linear time-invariant

svstem model in state-
space 1S
x(t) = Ax(t) = Bu(t) 1
) {1)
y(1) =Cx()

where x(t)e R" 1s the state vector. u(t)e R” 1s
the control v(t)e RF 1s the output

vector of the svstem and A. B and C are
constant matrices of appropriate dimensions.

Vector.

Pole assignment procedure (Method 1) [§]

With this method one determines the (Ixn)
dimension constant value gain feedback vector.



which leads to the following output feedback
control law

u(t) = —-kx(t)+u, 2)
The combination of (1) and (2) gives the
associated closed-loop system model

X(1) = (A -bkT")x(1) +u,
vt =Cx(t)

,\
)
—

with preassigned (desired) eigenvalues. The
final form of k is given by k = T 'n (the exact
derivation steps are slfoan in [8]).

Optimal control technique (Method 2) [1-4]

In the design of conventional optimal control
svstems, the control law is given by

u(t) = -Kx(1) 4)

where K is a (mxn) state feedback control
matrix. designed to minimize the following
quadratic performance index:

y=1
2

j(xTQHuTRu)dI (5)
In eq.(5) the weighting symmetric matrices are
Q=>0and R >0. The K of eq.(4) is given by
K=R7'B"P, where P being a symmetric
positive definite matrix which results from the
solution of the Ricatti equation. i.e.

A'"P+PA-PBR'B'P+Q=0 (6)

The cigenvalues of the so resulting closed-loop
svstem may be positioned to desired locations
on the open left halfplane of the complex s-
plane.

2.2 New optimal multirate controller design

procedure for linear discrete system
(Method 3) [9-11]

The theory of this method is presented here in
a very brief but concise form. whereas the
pertinent details are found in [9-11].

With respect to syvstem (1) are defined the
which comprise an

vector of the
(A,C),and T_ € R" the sampling period.
Next. to system (1) is applied the Two Point
Multirate Controller (TPMRC) strategy [9.11].
where the inputs of the plant are constrained to
the following piecewise constant control law

n.i=L2....p

observability  index pair

u(kT, +uT +0) =T A]BLAKT, ). ,
u(kT,)e R™ .
The 1th plant output. v, (t). is detected at every
T, =T, /M,. such that

v, (KL, +pT,) = ¢/ xX(KT, +pT)).

p=0,1...M, -1

wheré.. M, eZ ,1=1.2,..,p, are the output
mudtiplicities of the sampling. In general M, = N
(i.e. a multirate sampling of the piant inputs and
ou_tpdt may be performed at a different rate)
wherg N=input multiplicity of the sampling and
T =T,/N. foame

The ,sampled values of the plant outputs
obtaified in the interval [KT,,(k+1)T,), are
stored in the M- dimensional column vector
71y of the form

‘AY(k'E)) = [)'l(kTo)"'YX(kTo +(M, -DT,..

L3 OKT )y (KT + (M, = DT))

(8)

r
where M" = > M, . The vector 7(kT,) is used
1=1

in the control law of the form

u[(k+1)T, ]=L_ u(kT,) - Ky(kT,) (9)
where L, e R™ K e R™™ |

The multirate optimal scheme is based on
solving the continuous-time LQR problem,
which is to find a controller of the form (7) and
(9). when applied to system (1) with minimizing
the following performance index

! =% J-[}'T(t)Qy(l)+u1 (ORu(y)]dt (10)
2]

when y(0) and Q and R are symmétric matrices
with Q >0, R > 0. '



e

From Lemma 1 of the [11] one has the multirate
output sampling mechanism

Hx[(k +1)T ] =v(kT,)-Du(kT,). k20
where He RM™ and D e RM ™~
From Theorem 1 of [11]. for almost every

T, the control law (9) can be made equivalent to
any static state feedback law of the form

(11)

u(kT ) =-Fx(kT,). fork=>1 (12)

by choosing the controller pair (K.L,) such
that

KH=F. L, =KD 13)
The K and L, gains are given by (14) and (13)
respectively

K =(R, +BLPB,)" (G, +BL,PO)H' (14
L, =(R, +BLPB,) (G, + BLPOH'D (15)

where H' is the left pseudoinvarse of matrix H.

3. DESCRIPTION AND MODELLING OF

LINEAR CONTINUOUS OPEN-AND
CLOSED-LOOP HYDROGENERATOR
SYSTEM

The system under study consists of a 117
MV A hydrogenerator connected to an infinite
pus of the Gpeek national grid through a step-up
transformer and a double-circuit transmission
line (see Fig. 1).
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Fig.1.  System  representation  with

reference to Method 1 [13].
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The numerical data of the system are given in
[12.13]. whereas the associated state space
svstem modelling for the following operating
points is presented in [13].

v(p-u.) P(pu) | Q(p-u.)
Op=1 1.0 0.9 0.456
Op=2 1.0 1.1 0.5
Op=3 1.0 0.5 0.58
Op=4 1.0 0.4 -0.68

The complete state and output vector of the
transtormed linear continuous open-loop svstem
model (all states bein measurable quantities) of
the system are given as

wi=vl=[6 o v.P.

;. Egl

The time responses of the system state (output)
variables for the four operating points were
obtained for the input step change

AV, =0.05pu. and zero initial conditions.
The time responses of 8 and v, corresponding
to op#l & op#2. and op#4 are shown in Figs. 2,
and 5 respectively.

The application of the theory of Method 1 and
Method 2 (of this paper) to the transformed
linear continuous open-loop model of the
hydrogenerator svstem vielded the associated
closed-loop system models[13]. The computed
closed loop syvstems (for the same input step
change and initial conditions used in the time
responses of the open-loop system models) are
also shown in Fig. 2 and 3. From these figures 1t
1s clear that the designed closed-loop systems
possess superior dynamic stability
characteristics by comparison to the ones of the
associated open-loop svstem model. The
robustness of the controllers designed with
respect to op#1 was tested by applying them to
the other operating points (op#2. op#3 and
op#4) and gave also significantly improved
dynamic stability characteristics (e.g. see Figs 2
and 3).
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Fig. 2.
open-loop system
1: transformed of op#1
2: transformed of op#2
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¢ and v, time responses of linear continuous system model.

closed-loop system

- transformed of op#1 with Method 1
- transformed of op#1 with Method 2
- transformed of op=2 (with k of op#1) with Method 1
- transformed of op#2 (with k of op#1) with Method 2
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Fig. 3. & and v, time responses of linear continuous svstem model.

open-loop system
1: transformed of op#4
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4. DESIGN AND SIMULATION OF
OPEN-AND CLOSED-LOOP
HYDROGENERATOR LINEAR
DISCRETE SYSTEMS

Based on the 6" -order transformed open-loop
model of op#l of the hydrogenerator system
mentioned in § 3 and by using a special
software program (when is based on the theory

of § 2.2 [9-11] and runs in MATLAB program

closed-loop system

: trunsformed of op=4 (with k of op=1) with Method 1
: transformed of op=4 (with k of op=1) with Method 2

environment) the associated 6*-order open- and
closed-loop linear time-invariant discrete syvstem
models are determined.

The matrices A, . b, and C, of the obtained
discrete open-loop system model with sampling
period T ,=0.2 sec. are as follows



T —0.7823 0.1197 —~1.6435 The numerical description of the resulting
j discrete closed-loop syvstem model 1s not
—114315 - 0.0673 -8.3943 presented here. but 1t 1s mentioned that is based
01933 =0.0105 04518 on the arrived weight matrices given below

~12529  -0.2204  -2.6607
0.0961  0.0885  -0.3009 Q=diagl0® 107 107 107 107 107]

'_ — 16,0999 0.5261 —25.7354
R=1

and the chosen output multiplicities of the
sarapling M, = [2.3.4.6.8.12]. while the input
-0.0775 0.0736 0.0034 multplicity of the sampling was taken «s N=8.

The solution results of the discrete svstem
models (i.e. eigenvalues. eigenvectors. time
0.0543 0.1091 0.0074 responses of system variables. etc.) were
obtained by proper use of the MATLAB
= program. The time responses of the variables &
b, =[-0.1950 —33053 05281 and v, g corresponding to the linear discrete
open-anc closed-loop system models. are shown
in Fig. 4 to 6. These figures show clearly that
the application of the new optimal multirate

1 0 0 00O control method lead to the design of a very
01 00 0 0 efficient two-point multirate controller. i.e. to a
00100 0 discrete closed-loop system model with superior
C,=C= dynamic stability  characteristics. The
000100 motivation for designing and using two-point-
00 00 10 multirate controllers stems from the fact that
00 0 0 0 1 they may be implemented directly using a

digital computer. which makes them very useful
in practical applications.
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5. CONCLUSIONS

Three efficient control methods have been
presented in concise form and applied
successfully in the design of robust excitation
controllers (i.e. an algebraic and an optimal
control method for linear continuous open-lcop
system models. and a new optimal multirate
control method for linear discrete open-loop

svstems models) for a 6% -order model of a
hvdrogenerator system. The designed linear
continuous and discrete closed-loop system
models (for a wide range of operating
conditions) displayed superior dynamic stability
characteristics by comparison to the associated
ones of their open-loop systems. The
demonstrated simplicity of the control methods
used make them good and reliable tools for the
design of suitable controllers.
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