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Abstract-A theoretical approach for estimation of the drag correlation coefticients in the tflow of
Newtonian or weak non-Newtonian liquids around spherical solid particles is presented Some
new analytical relations are derived by using a modified stream function. It is shown that these
relationships can be applicable in a wide range of Reynolds number, up to Re - 1000 for the
liquids with a flow behaviour index. #. in the range of 0.5 < n 1. The predicted coetticients
from these relationships are in very good agreement with the experimental data given in the
literature.

1. INTRODUCTION

Fluid flow around the submerged objects is encountered in various kinds of
engineering applications such as mechanical or magnetic separations. and in tlow through
beds of solids. In such systems. it is generally immaterial which phase. solid or tluid is
assumed to be at rest, and it is the relative velocity between the two that is important. The
literature data indicated that the effects of the fluid flow behavior index. n (where # 1 tor
Newtonian liquids) on the drag coefticients, C). is considerable especially in the range of K¢
<1 Since generally Re < | in many engineering applications, such as sedimentation,
magnetic filtration etc . the determination of C, = f(n. Ke,) relationship in this range of e 1s
of importance [1-3].

It is known that various solutions and mixtures are non-Newtonian, and the shear
stress is not directly proportional to the velocity gradient. One of the most commonly used
models to describe the non-Newtonian behavior is represented by the power law equation
(Ostwald-de Waele equation). It may be derived from the equation of motion written tor non-
Newtonian liquids that C), is a function of both Re,, and n, [4-11].

Cp =24 X, /Re, (1)

where X,, is a drag correction factor as a function of # such that X, (n) = X, and X,(1) = 1.
Ke, 1s the modified Reynolds number defined as

Re,=pr d" V.7 x (2)

where « is fluid consistency index.

Due to insufficient experimental data. there is no general agreement about the terms of
the X, function. Many workers tried to solve the equation of motion using difterent flow
models for non-Newtonian liquids to derive an expression for X,,. Based on these solutions or
experimental data, various functions for X, have been proposed in the literature for the flow
conditions of Re, <<1. For example, Kawase and Ulbrecth [8] proposed for | n-1 | <<1
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Leonov and Isaev [10] proposed

X =3"" (4)

n

Moshev [11] proposed

n--1

X =(0832) : (5)

It may be seen that the values of X, estimated from above equations are inconsistent For
example, Kawase and Ulbrecth [8] model predicts always X» =1, Leonov and Isaev [10]
model predicts always Xn < 1, but Moshev [11] model predicts always Xn = 1 for all values
of m < 1. On the other hand, theoretical calculations and some experimental data indicated
that especially for the liquids of » < 0.7, the X,, may assume values as X, < | [7, 9] For
example, Lali et al. [9] investigated the motion of a spherical particle in the solutions of
- CMC (carboxy methylcellulose) in a relatively wide range of Ke,. Their results indicate that
X, >1 in the range of Re, = 1, but X,, < | in the range of Re¢, << | Several other studies
indicate that the X,, may assume values such that X,, >1, or X,, <1, or X,, =1 depending on #
and Re,. However, non of the functions given above satisfies all the three possibilities.
Therefore, a development of an analytical relation giving a general Cy, = f{(n, Ke,) relationship
which may assumes above mentioned three values will be useful in many practical
applications involving flow of non-Newtonian liquids over solid bodies.

Several approximation formulas are proposed in literature to adopt the correlation
coefficient for higher range of Re,, and to take into account the dependence of X, on Ke,,
Some of them are rather complicated, but instead of Eqs (3)-(5). the following equation is
being widely used for the range 107<Re,<10" [8]
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where X, is the drag correlation coefficient from one of the models given abover b g (5)-(5)),
f2(n) and f3(n) are functions of »# such that fo(n) = 10.5 n — 35 and fun) 320 013
However, the validity of this equation has not been established duc to lact o expoerimental
data. A survey of literature data indicated that this equation is also not w nthy zood to
approximate experimental data for a relatively high range of /i¢ .

The aim of this paper is to develop some new Cy, — t{z. /o) relation viding a
better approximation to the experimental data. For this derivation the equat motion has
been solved by integral method using a flow model for non-Newtonian liquids

2. FORMULATION OF THE PROBLEM FOR THE DRAG COEFFICIENT
FOR SPHERICAL SOLID PARTICLES

To determine the drag force (Fp) and its the lift (normal) and drag (tangential)
components acting on a particle, the velocity profiles and pressure drops around the particle
must be known. The components of Fp, for Newtonian liquids may be determined by using
the equation of motion or the Navier-Stokes equations. This equation must be modified to
determine the components of Fp in the flow of non-Newtonian liquids. In the studies of flow
of non-Newtonian liquids around spheres, generally following assumptions were made:

1. The liquid density and consistency index are constant.
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The flow over the sphere is characterized by creeping flow, i.e., Re, << 1.

The liquid has weak non-Newtonian properties and its rheological properties may be
represented by the power law equation as in Ostwald-de Waele model, provided that | -
1] << 1.

The effective body forces is gravitational force (Fg = g, where g is gravity of
acceleration). All the other forces (e.g., adhesion, electrical etc.) and diftusion are
neglected.

The velocity profiles of the non-Newtonian liquid around the sphere, in the first
approximation, is identical with that of a Newtonian liquid.

Basically. the first 4 assumptions are also valid in this paper. However, instead of

assumption 5, it is assumed in this paper that a mathematical description of the stream
function (‘¥) of a non-Newtonian liquid past a sphere may be represented by [12]

n 3n
V., 3(a Ifa . s -
¥Y=—r" l——(—j +—(—W Sin -6 (7)
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where a is the radius of spherical particle, r and 8 are spherical coordinates fron the center of
particle.
Based on Eq.(7), the radial and tangential velocity compone Vi) are

determined as
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where t° 1s additional stress tensor for non-Newtonians, p is static pressure, | is the unit
tensor, 1, is modified second invariant for non-Newtonians. 1. is dependent on the rate
deformation tensor (Ajj) as:

‘:ZA:H‘ (1‘3)

where 1, j, refers to x, y. z in Cartesian coordinates, or refers to r, 6. ¢ in spherical
coordinates. The rate of deformation tensor is defined as

‘ W (2, ﬂ (11b)
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Inserting Eqs. (10) and (11) and the assumption of F =g into Eq.(9) gives

(212)_1i”')5}3 (12)

Since we have assumed [ - 1| << | and Re, << |, the modified second invariant. l; . may be
approximated as:

2V (A}
[ = A + A, + A 287, ~ ——* Fj cos’ 6 (13)
&~ \r

Let us suppose, the origin of the spherical coordinate system, (r, 6, ¢) is the center of the
spherical particle and the polar axes is in the direction fluid flow. In addition, let us detine a

quantity such that P= p + pr g 7. Here P represents the combined effect of static pressure

and gravitational force. By taking into account the conditions of symmetry, (¢/co =0, V, =
0), Eq. (12) may be rewritten in term of t° with its r and 6 components [1]

r-component

P 1o, 1@ Tos + Ty
(rc)+ rslneae(Tfesme) — (14a)

o o’

6 -component

1oP 1 0 18 v, -1/, cotd
! SinB — 14b
(r '8) rSin@ (’G(T% n ) r (145)

Inserting Eq. (13), and Eq. (10) into Eq. (14) and after some mathematical rearrangements the
function P can easily be determined since dP is also stated as

="+ Lo (15)
Tt T :

Substitution of Eq. (15) into this equation and then integration with the boundary conditions that

P=Pat r = r,and P=P.,, atr= o, gives the pressure distribution around the sphere. This
resultant relation for the pressure on the surface of sphere (r = a) is then
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where 1° i1s additional stress tensor for non-Newtonians, p is static pressure, | is the unit
tensor, 1, is modified second invariant for non-Newtonians. 1. is dependent on the rate
deformation tensor (Ajj) as:

I; =2 A%, (11a)

where 1, j, refers to x, y, z in Cartesian coordinates, or refers to r, 6. ¢ in spherical
coordinates. The rate of deformation tensor is defined as
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Inserting Eqs. (10) and (11) and the assumption of F =g into Eq.(9) gives
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Since we have assumed |# - 1| << | and Re, << |, the modified second invariant, 1, . may be
approximated as:
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Let us suppose, the origin of the spherical coordinate system, (r, 8, ¢) is the center of the
spherical particle and the polar axes is in the direction fluid flow. In addition, let us define a

quantity such that P = p + pr g 7. Here P represents the combined effect of static pressure

and gravitational force. By taking into account the conditions of symmetry, (¢/cop = 0, V,, =
0), Eq. (12) may be rewritten in term of t° with its r and 6 components [ 1]
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Inserting Eq. (13), and Eq. (10) into Eq. (14) and after some mathematical rearrangements the
function P can easily be determined since dP is also stated as

p=Lar+ L ap (15)
Ta e :

Substitution of Eq. (15) into this equation and then integration with the boundary conditions that

P=Pat r = r,and P =P, atr=o gives the pressure distribution around the sphere. This
resultant relation for the pressure on the surface of sphere (r = a) is then
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n-1|
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P-P, = —%(%) (V) (nz —5n+5)n cosB|cos 6|’ ' (16)

a

Equation (17) is the basic equation to develop a relationship giving the drag toree exerted by a
non-Newtonian liquid on a spherical particle. The magnitude of the total drag foree is computed

by integrating the following equation after the components of 1, and Tty are @serted into it.
The result is the total force as:

2nn

E = J‘I(r"Cose = I;QSinG)
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..a’SinBdddo . (17)

After some mathematical rearrangements, the resultant force over the surface of sphere is
obtained as

n-1

oo )7 (1] €zt %
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Due to the symmetry conditions. the direction of this force is the same with that of the fluid flow
at far from the surface (infinity). The drag coefficient is defined by means of Eq. (18) as

F 24
Cp= =X, (19a)
l il 2 Re
p, V. ma H
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to experimental data in th
of Re, we propose the following equ. iion
Cph=24 X /R
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where X, is from Eq (19), f(n) = 4n* and g(n) = (n—73)/3
A comparison of the predicted coefficients from this equation with the experimentally
determined coefficient is summarized in Table 1.



Table 1 A comparison of the experimentally determined X,, values with the model
predictions.

10O

Experimental Data

X, values predicted from the models

n Re, Cph Xu Kawase and  Leonovand Moshev [11] Eq (20)
Ulbrecht [8] Isaev [10]
056 135x107 850x10° 0478 1.807 0.617 1.041 0.466
0.56 2.46x10° 5.16x10° 0528 1.807 0.617 1.041 0.520
0.56 6.40x107 220x10°  0.587 1.807 0.617 1.041 0.6006
056 3.57x107 427x10*  0.635 1.807 0617 1.041 0761
0.56 148x107 147x10*° 0907 1.807 0.617 1.041 0.889
0.56 0.024 1.03x10°  1.000 1.815 0.625 1.049 0920
0.74 0.6l 395 1.004 1.609 0.882 1.154 0978
0 696 1 48 173 1.067 1.761 0.921 1.233 1.009
0.82 6.14 5.0 1.433 1.980 1.462 1.658 1.360
089 22.8 2.2 2.090 2.729 2.404 2.528 2.172

Experimental data are from Lali et al. [9]

Table 1 suggest that Eq.(20) provides a better approximation to the experimental data
than the models given in the literature. A plot of Eq. (20) for n = 0.56 and » = 0.84, and the
standard drag curve of Newtonian liquids are represented in Figure 1 for the range of 107 -
Re, < 10"

Co

Standard drag curve

X

107

10°
Re,

10°

Figure 1. Representation of Cp = f(n, Re,) relation from Equation (20) of the present work

and the standard Newtonian drag curve. The experimental data from Lali et al. [9].

The figure indicates that the X, values predicted from Eq. (20) assume all the three possible
values of X, >1,

values of n.

X, =1lor X, <I, depending on Re, Similar plots can be obtained for other
The experimental data from Lali et al. [9] are also presented in the figure to



compare the model predictions with experimental data. The results suggest that although
Eqs.(19) and (20) are derived by assuming {# - | | <<1 and Re, << 1, they can be used safely
inarange of 0.5 < n <1 and 107 < Re, < 10°. In addition, these relationships are simpler than
most of those given in the literature, and give appreciably good results also for Newtonian
liquids within a range of acceptable error.

5. CONCLUSION

The main conclusions of above derivations may be summarized as follows:

I. Choosing a convenient velocity-profile- equation should be first step in the
derivation of a drag coefficient statement for a spherical solid particle moving in non-
Newtonian liquids. The resultant equations should be compared with experimental data and
must be correlated as required. ‘

2. The drag correction coefficient, X, , may assumes values such that X,, =1, or X,, <1,
or X, 1. The above-developed Eq (20) furnishes all these values depending on 7 and K¢,

3. The drag coefficient statement, C;, = f(n, Ke,), are also compatible with standard
drag curve of Newtonian liquids in the range of 1< Re, < 10°. Therefore they may also be
used in practical engineering applications of Newtonian liquids.
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