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Abstl'act- Mining investments require huge capitals. Since mining has an economical
aspect, a reasonable profit is expected at the end of investment. In other words, a
mining investment is reasonable only if it brings a desirable income. In fact. the
objective of mine investment should be the optimum profit. which means the
maximum profit that can be handled under certain technical conditions and
constraints In this study, dynamic programming procedures have been investigated
whether they can be applied on mining investments having budget constraint A
general and brief review of dynamic programming technique and the theoretical base
of capital budget problem have been presented. Two examples have been employed
for the applications; first is selecting optimal mine investment alternatil'c(s) through a
group of choices and second is selection of optimum C'\L'al,!tll) '.Jchine
alternative(s) providing maximum excavatiol~ capacity By this 11:[1 ppl ' l r
dynamic programming has been examined on both the I\hok I't
system. The objective function and recursion functions hal'e been LIi, ,
on numerical cases. The results have revealed the \'alidit\ ()j till' I'

optimization of mining investments with budget constraint

Mine investment is a complicated task including a number or pdra lh.k I',

system is composed of many sub-systems like exploration, del c!opmcl1l, II atlol,
drilling and blasting, transportation, dumping, stockpiles, ore dressing, Ctl I 'lCh sub-
system may be divided into further sub-systems, too Operations re~carch t hnlque,
are applicable for the optimization of each sub-system and the \\ Iwk systcl1I rhc ai m
is to maximize profit, minimize costs and deflection from action plan Optill1 Zillion ('I'

mine system and its sub-systems can be performed by mathcl1lat ical 11111 Iciing and
operations research appl ications.

Dynamic progr:uTIming technique has a wide application field in the industry due
to its stage by stage problem solving approach [I J Since it is a mathematical
technique, which does not have a standard formulation and rather. an approach having
basic criteria, it can be applicable on much type of optimization problems regardless
of study field [2]. Also, Dynamic programming technique is one of optimization
methods having an application in mining, too. Most of optimization studies are on pit
limits [3,4,5,6,7] or production planning [8,9,10,11,12,13] However, dynamic
programming technique can be used for many optimization items A capital holder



with a certain budget can make the optimal decision through a number of inve,llllllil
alternatives by dynamic approach Such a decision is a global or whole-syskll1
decision However, a decision about machine selection can be thought as a local or
sub-system decision In both cases, related recursion functions and mathematical
model should be formed according to dynamic criteria

In the general form of dynamic programming the problem is divided into stages,
each of which is a step in sequencing [2] Destination from one stage to another
requires a policy decision that means there must be a criterion through the stages At
each stage there should exist some destination possibilities called as states While
moving forward through the stages, knowledge of the current stage conveys all the
information about its previous behavior which provides a chain relation called
Markovian propel1y There is every time a recursive relationship that identifies
optimum policy for stage nand n+ I It is generally in the form of

.1;; (s,,) = max {f;,(sn' x,,)}
x,

where,
,"n
n
N

= current state for stage n

= label for current stage (n=1,2, ...,N)
= number of stages
= decision variable for stage n

XII * = optimum value ofxn
fn(sn,x,J = contribution of stages, n, n+ 1, "', N

The optimum decision at stage sn will be Xn * which can be shown in function
terms as;

Deterministic dynamic programming considers the state at the next stage is
completely determined by the state and policy decision at the current stage (Fig 1),
while in probabilistic case the next state is defined using a probability distribution,

Stage Stage
n n+1

state:~ \.:.y Contribution 'VY
of x



Decision making under limited budget is a capital budgeting type problem [14] The
aim is to reach at the best alternative through a set of choices whi Ie budget IS a
constraint [15].Whitehouse and Wechsler [16] form the model such that, On is the
present worth of project nand Cn is the investment required There are N projects,
n-l.2 .....N. Recursion equations are;

for 1/= 1..... N and 0 ~ x ~ K. where K is the total capital available and x is the budget
available to allocate through projects 1 to n. an is the present worth of dth project,
which is a function of time (year) i(i= 1.... ,1). annual net profit S/ and rate of return I"

,
0" = L>', /(1 +r)'

Recursion equations state that, for budget x, project n should be selected only if
the present worth that it yields together with the present worth that can be provided by
projects I to 1/-1 having budget X-Cn, is greater than the ma"imum present wOI1h that
can be obtained from projects I through 1/-1 \~ith budge! r 15] Above model is
suitable for mine investment problems, too Selection prob l' fa\'nr the use of this
approach. A capital holder can decide on which il1\estmelll(s) ,Ill ()J111111alfOI the
capital in hand. Additionally, in subsystem perspel·'j, e I1\Tst'1 ,'nl "'.,[11,. '1' '''Cluil in<l
selection like equipment, process plant machinel\ ell." Iial I riel! approach IS

convenient.

A capital holder aims at the maximum profIt by the ulpitll

crucial decision on the project(s) through chOIces. Tabl,'
alternatives, in the sorted form, with present worth that can '
and investment amounts in Turkish Lira (Tl )

n hand This requires a
, pll'senl s iI1vestment

't,ed by t he proJect

Project (n) PW ( I09 T~~estll1el1!J TL)~ ~
I 750 bOO ~
2 700 550 -3 500 400
4 350 250
5 150 150

N

maxZ=La"
" 0



fl(>;) = max(O, 750)
fi(x)- 0

x-75020
x-750 0 than,

.fJ(x) " 750
=0

750~x ~/,200 (accepl /)
O~x ~50 (rejeci /)

!J(x)=mQX (o(x), 750- fo(x-600)]
a ~x ~h

a B fi(x)
o 599 0

600 1,200 750

h(x) =max{!J(x), 650+fJ(x-550) /
a ~x ~b Projecls

a b h(x) Accepled
0 549 0 None

550 1,149 750 2
I, ISO 1,200 1,400 1,2

Table 3 Comparisons for n=2
(xlOYTL)

(;(x) =max{f2(x), 500+h(x-400) 1
a ~x ~b Projects

a B f3(X) Accepted
800 949 750 I
950 999 1,200 2,3
1,000 1,200 1,450 1,2

Note~ x below 800xl09 TL can not be taken into consideration because investment in
projects 4 and 5 are 400x I09 TL in totaL



.lx) =max[fj(x) , 350+ 3(x-250)
a 5"x 5"b

B
1,200

a
1,050

Note: x below I ,050x I09 TL can not be taken into consideration because investment in
project 5 is 150x I09 TL

Table 6. Comparison for n=5.
xI09TL)

fs{x)=max[,4(x),150+/4(x-150)
a 5"x 5"h

a B
1,200 1,200

As it is observed, the optimum investment combination is obtained for projects 2,
3 and 4 yielding I ,550x I09 TL In case of testing a large number of alternatives (N),
this technique provides the optimum investment set quickly.

AnotJer optimization field of capital budget approach may be of purchasing problcems
A c3P'ital holder having limited budget, wishes to purchase any machine'park, with
max1mum facilities. As an example, an equipment selection problem could'be given;
an investment fOr excavators will be realized The objective is to purchase the
excavator(s) providing the maximum excavation capacity per hour. There is a Itmited
budget separated for this purpose. In Table 7, numerical data is presented for
alternatives

Machine (n) Capacity ("m'/hf) Investment (x109 TL ),
I 1150 175
2 1055 165
3 1000 140
4 990 125
5 900 110
6 875- 95-

Total capital, K, is 500xl09 TL. The objective is to maximize the excavation cagacity
in terms.of m3/hr, en.



Recursion functions (eqns. 4 to 6) are applied to the problem. Functions for each II

have been presented in Table 8. Table 9 presents the current optimum solutions for
w-I, ...,N Results obtained when f1 N are current bests When II=N, dynamic process
is ended and the overall optimum is obtained

Optimum
Capacity (ml/hr)

I

n Machines Exc. ~
I 1 1150 ~
2 1,2 2205
3 1,2 2205 --1
4 1,2,4 3195 ~
5 1,2,4 3195 ,
6 2,4,5,6 3820 --~

In the example, optimum machine combination is machine 2, 4. ') and () whlc:h
providing 3820 m3/hr of excavation capability. For huge numbers of !\', fast and
reliable solutions can be obtained. This approach can also be applied to milllmizatil I

type problems with budget constraint

Dynamic programming is an operations research technique, \vhich has a wide
application in mining, especially for the optimization of pit limits and production
planning However, the structure of the technique enables different applications, too
The approach used for capital budget type problems can be applied to mine
investments. Any capital holder can make decision on which mine(s) or which
machine(s) should be selected to obtain the optimum investment combinations In this



study, how limited capitals can be evaluated optimally has been researched Two
example studies have been performed for mine investment alternatives and machine
selection choices. It is revealed that capital budget approach of dynamic programming
is applicable and well suits to mining problems.
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