Mathematical & Computational Applications. Vol. 3. No. 3. pp. 177-184. 1998.
©Association for Scientific Research

A Perturbed Algorithm for Generalized Nonlinear
Quasi-Variational Inclusions

A H. Siddiqi, Rais Ahmad and S. Husain

Department of Mathematics
AM.U., Aligarh-202 002 (INDIA)

Abstract: In this paper, a perturbed iferative method for solving a gener-
alized nonlinear quasi-variational inclusions, is presented and a convergence
result which generalizes some known results in this field, is given.

1. INTRODUCTION

In 1994, Hassouni and Moudafi [4], have introduced a perturbed method
for solving a new class of variational inclusions and presented a convergence
result. In 1996, Samir Adly [2], has studied a perturbed iterative method in
order to approximate a solution for a general class of variational inclusions
and proved the convergence of the iterative algorithm by using some fixed
point theorems.

The aim of this paper is, firstly to present a new iterative algorithm for
solving a generalized nonlinear quasi-variational inclusions. Then we prove
the convergence of this algorithm, by using the definition of multi-valued re-
laxed Lipschitz operators. Our result is more general than the one considered
in [3,4,5,6,8,9,10] which motivated us for the present work.
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2. PRELIMINARIES

Let H be a real Hilbert space with inner product < -,- > and norm || - ||.
Let ¢ : H — RU {400} be a proper convex lower semicontinuous function
and 6¢ be the subdifferential of ¢. Given a multivalued map 1" : H — 2
where 2# denotes the family of nonempty subsets of H, and f,g,m : H — H
be single-valued maps, then we consider the following generalized nonlinear
quasi-variational inclusions problem (GNQVIP):

(GNQVIP): Find z € H, w € T(z) such that g(z) € dom (6¢) + m(z),

and

< g(z)— f(w), y+m(z)—g(z) > 2 4(g9(z)-m(z))—o(y), Vy€ H. (2.1)

Inequality (2.1) is called generalized nonlinear quasi-variational inclusion.

It is clear that the generalized nonlinear quasi-variational inclusion(2.1),
for the appropriate suitable choice of operators T, f, g and m, includes many
kinds of variational inequalities and quasi-variational inequalities of [4,6,8,9,10],
as special cases.

3. ITERATIVE ALGORITHM

To begin with, let us show the equivalence of the generalized nonlinear
quasi-variational inclusion (2.1) to a nonlinear equation.

LEMMA 3.1: Elements ¢ € H and w € T(z) are the solutions of (GN-
QVIP) if and only if z and w satisfy the following relation

g(z) = m(z)+ J¢(9(z) — m(z) — a(g(z) — f(w))). (3.1)

where o > 0 is a constant and J? := (I + ad@)~! is the so-called proximal
mapping on H, I stands for the identity operator on H.

PROOF: From the definition of J? , we have

9(z) = m(z) — a(g(z) — f(w)) € g(z) — m(z) + asd(g(z) — m(=)),



and’ hence
f(w) = g(z) € §o(g(z) — m(z)).

This unplies that g(z) € dom (é6) + m(z) and by the definition of é¢, we
have

¢(y) > ¢(g(z) — m(z))+ < f(w) — g(z), y + m(z) —g(z) >, VyeH.
Thus ¢ and w are solutions of (GNQVIP).

To obtain an approximate solution of (2.1), we can apply a successive
approximation method to the problem of solving

o= i) (3:2)

F(z) = z—g(z) +m(z) + J2(g(z) — alg(z) = f(w)) — m(z)).
Based on (3.1) and (3.2), we suggest the following iterative algorithm.

ALGORITHM 3.1: Given zg € H, compute z,41 by the rule

Tnp1 = xn—g(rn)+m(zn)+JZ(9($n)—a(g(xn)—f(wn))—m(rn))- (3-3)

for each z € IV, where a > 0 is a constant.

To perturb scheme (3.3), first, we add in the righthand side of (3.3), an
error e, to take into account a possible in exact computation of the proximal
point and we consider an other perturbation by replacing in (3.3) ¢ by ¢,
where the sequence {¢,} approximates ¢. Finally, we obtain the perturbed
algorithm which generates from any starting point zo in H a sequence {z,}
by the rule

Tny1 = $n—g($n)+m(1ﬂ)+']:.(9(1n)_a(g(zn)_f(wn))"m(xn))'*'en (3.4)

our algorithm (3.4) is more general than the algorithms considered by Has-
souni and Moudafi [4], Noor [6] and Siddigi and Ansari [8].
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4. CONVERGENCE THEORY

We need the following concepts and result to prove the main result of
this paper.

DEFINITION 4.1: A mapping g : H — H is said to be
(i) Strongly monotone if there exists 7 > 0 such that
<g(z))—g(z2), T1—22> > r||lz1— 22 ||>, V21,22 € H,
(i1) Lipschitz continuous if there exists s > 0 such that
Il 9(z1) —g(z2) | < s |21 —=2, Vzi,72€ H.

DEFINITION 4.2: Let f: H — H be a map. Then a multivalued map
T : H — 29 is said to be relazed Lipschitz with respect to f if for given k < 0,

< flwy)—f(ws), T1—22 > < k || 21~22 ||>, Ywi € T(z1) and wy € T(z2),
and VY zy,z, € H.
The multivalued map T is called Lipschitz continuous if for m > 1,
| wi—ws || < m || z1—z2 ||, Yw; € T(z1) and w, € T(z,), and Vzq,z, € H.

Lemma 4.1 [1]: Let ¢ be a proper convex lower semicontinuous function.
Then J? = (I + ad¢)™! is nonexpansive, that is

| Je(z) = JE@) I < llz=yll, YzyeH.

Now we prove the following main result of this paper.
THEOREM 4.1: Let g : H — H be strongly monotone and Lipschitz
continuous with corresponding constants » > 0 and s >0 ; f: H — H
be Lipschitz continuous with constant ¢ > 0, and m : H — H be Lipschitz
continuous with constant g > 0. Let T : H — 2F be relaxed Lipschitz with
respect to f and Lipschitz continuous with corresponding constants & < 0
and m > 1. Assume

HIB | J&*(y) —J2(y) || = 0, forall y € H and liT lea ]l = 0,



then the sequences {z,} and {w,}, generated by (3.4) with .z € H and
wg € T(z0), and

la— 1—k+pl —2(p+u) |
1 — 2k + t?m? — p?
V= k+p(1=2Ap+ W) —4(p + #)(1 = (p+ #))(1 = 2k + ?m? — p?)

1 — 2k + t?m? — p? ’
(4.1)

where 1 —k > p(2(p+ 1) — 1)+ /4(p + p)(1 — (p + ))(1 — 2k + t2m? — p?),
for p = /(1 — 2r + s?), converges strongly to z and w, respectively, the so-
lution of (2.1).

PROOF: Using (3.2), we can write

T =

= g(z) + m(z) + JE(9(2)) — a(g(z) — f(w)) =m(z))  (42)

Denoting h(z) = g() — alg(z) - f(w)) - m(z)
and h(.’l)n) = g(xn) - a(g(mn) - f(wn)) - m<zn) )

then we have
| znt1 — 2 I<]] 2o — 2 = (9(2n) — 9(2)) || + | m(z2) — m(z) ||

I T2 (A(za)) = J2(A(2)) || + 1l ea |l (4.3)
On the other hand, by introducing the term J2~(h(z)), we get

| J&"(h(2n)) = JE2(R(2) | < || h(za) = h(2) | + Il J&"(h(z)) — J2(h(2)) |

Since J? is rionexpansive.

Hence,

| J&r(h(za)) = JE(h(2)) IS (1 = o) || 2n — 2 — (g(za) — (=) | +
Il (1 = a)(zn — ) + a(f(wn) = f(w)) || + || m(2a) = m(z) || +
I J&n(h(=)) = JE(h(2)) | (4.4)
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From (4.3) and (4.4), we get

I Zntr = 2 1< (2= @) || 2a = 2 = (9(zn) = 9(2)) | 42 || m(zn) = m(z) || +

I (1= a)(zn —2) + a(f(wa) = f(w)) | + || I3~ (h(z)~
Jo(h() | + [l en | (4.5)

By Lipschitz continuity and strong monotonocity of g, we obtain

[ 2n =2 =(g(za) —g(@) I’ < Q=2 +8*) [[za—z | (46)

Since T is Lipschitz continuous and relaxed Lipschitz with respect to f, and
f is Lipschitz continuous, we have

Il (1= e)(zn —2) + a(f(wa) = flwa)) I’= (1 = @) [ 2o — 2 ||* +

2¢(1 —a) < f(wa) = f(w), To —z > +a® || f(wn) — f(w) |P<
(1-—a)l||zn—z|?+2a(l —Q)k || 2. — = I +t*m? || 2, — z ||°
(1 =a)*+2a(l —a)k+*t?'m?) ||z, — 2 ||? (4.7)

Again, since m is Lipschitz continuous, we have
| m(zn) =m(z) | < pllzn—z| (4.8)
By combining (4.5) to (4.8), we finally obtain
I 2as1 =2 || < [(2=a)p+2p+{(1-a)*+2e(l-a)k+a’t?m’} /7] | 2o~z ||,
where p = (1 — 2r + s2)'/2. Therefore
lonrs =2 I < 01l 2n—2 |l + | JE(h() = JE(A@) || + Il en I,

where § = (2 — @)p+ 2 + {(1 — @)? + 2(1 — a)k + «?*t?m?}/2. 1t follows
from (4.1) that 6§ < 1.

By setting €, = || J®~(k(z)) — J¢(h(z)) || + || ex ||, we can write

[ Zntr =2z | < O]l 2n — 2| +en



Hence

l2nsi—2 < ™ lzo—z |+ ¢ enrao

j=1

By the assumption of Theorem, lim, e, = 0. Hence the sequence {z,}
strongly converges to z (e.g.; see, Ortega and Rheinboldt [7]). Now the Lip-
schitz continuity of 7" implies that the sequence {w,} strongly converges to
w. This completes the proof of the Theorem.
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