
A NUMERICAL SIMULATION OF MELTING OF ICE
HEATED FROM ABOVE

Melting of ice in a cubical enclosure partially heated from above was studied. Half of
the upper surface was maintained at room temperature and the other half at 70°C. The ice
cube was maintained at its melting point at the bottom. The other side surfaces were insulated.
The process was first modeled by ignoring the effect of natural convection in the liquid phase.
The resulting equations of conservation of energy were solved in each phase. The motion of
melting front was governed by an energy balance at the interface. This conduction model was
verified by applying it to a I-D phase change problem for which an analytical solution is
available. Preliminary experiments conducted resulted in a progress of the phase front faster
than that predicted by the conduction model and the interface was smoother due to strong
effects of natural convection in the liquid phase, except for the initial start of melting The
model was then extended to include convective heat transfer in such a way that the liquid
phase was assumed to be a mixed body subjected to natural convection from the top surface
and the liquid-solid interface. The flux at the interface was obtained by finding a heat transfer
coefficient for natural convection with a cold plate facing upward. The predictions of this
convection model agreed well with the experimental results.

Melting/solidification problems belong to a class of heat transfer where there exists a
phase change and its location is not known a priori. Phase change problems are encountered
extensively in nature and in a variet' of technologically important processes. Such processes
include melting of ice, freezing/th,m lI1g of moist soil, crystal growth, latent heat-of-fusion,
thermal energy storage, purification and casting of metals, welding and plastics manufacturing.

Phase change problems have been the subject of intensive research over recent years. A
number of studies dealing with analytical or numerical aspects of particular melting or freezing
heat transfer problems have appeared in the literature [1-9] It has been observed that most
studies are for the case of cooling or heating from vertical walls and many models lack



quantitative comparison with experiments. Moreover, models for phase change problems are
in general based on conduction type of heat transfer, both in solid and liquid However, the
actual physical processes show that convection type of heat transfer may be present in the
liquid and often plays an important role [10-13]. The objective of this study was to simulate
the melting of ice in a rectangular enclosure partially heated from above taking into account
natural convection in the liquid phase by assuming the liquid to be a mixed body subjected to
natural convection from the heated surface above and the phase front below. This is a short
cut method for inclusion of natural convection in the phase change analysis in a simplified
manner which reduces the computational time substantially.

In the following subsections, the governing equations for melting of ice in a cubical
enclosure (0.20xO.20xO.20 m3

) are presented. Ice at an initial temperature of To= -30DC is
subjected to a temperature of Tho< = 70DC at half of the upper boundary (0.10 :0; x :0; 020 m,
z = 0) and 20DC at the other half (0 :0; x < 0 10m, z= 0). The temperature of the solid at the
bottom (z = 0.20 m) is maintained at Tm = ODe. Other side surfaces are insulated

Conservation of energy in the liquid and solid phases can be written as [14]
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where T is temperature, f is time, fXI is liquid thermal diffusivity, a, is solid thermal diffusivity
and s is the interface location in z-direction.

The energy balance at the interface [15] is
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where p is density, L is latent heat of melting, k is thermal conductivity and subscripts I and s
refer to liquid and solid, respectively.

The initial and boundary conditions are as follows

T(x,z,t) = To= -30DC at t = 0 (4)
T(x,z,t) = Thot = 70DC at f? 0, z= 0, 0.10 ~ x ~ 0.20 m (5)
T(x,z,t) = Troom = 20DC at f? 0, z = 0, 0 ~ x < 0 10m (6)
T(x,z,t) = Tm = ODC at f? 0, z= 0.20 m (7)
oT
-=0 at f ? 0, x=O (8)
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Preliminary experiments showed that ice was melting faster than predicted by the
conduction model. The melt front was little inclined but smooth (again, not as predicted by the
conduction model). Upon the establishment of the strong natural convection effects in the
liquid phase in the preliminary experiments, it was decided to use a simplified approach
neglecting the small inclination of the melt front to model the averaged convection effects.
Liquid water was assumed to be a mixed body subjected to natural convection from the top
hot surface and the cold ice surface. Once liquid starts forming at the top, a heat balance can
be written on the liquid as

m, Cp, ~: + 6/ - T :)= [hhO,(ThO/- T *)1'i + hroom (Troom - T *)1'i + hmelt (Tm - T*)A ~t (10)

where T, is the liquid bulk temperature, T* = o 5(T,,+6,+T,'), m is mass, C is specific heat
capacity, h is heat transfer coefficient, A is cross-sectional area of the ice cube and subscripts
hot, room and melt refer to top heated surface, top unheated surface and melt front (liquid-
solid interface), respectively. Therefore, T,'+6' can be determined from the above equation. The
heat transfer coefficients are calculated from the following correlation involving Rayleigh
number, Ra, (for hot surface facing down or cold surface facing up) [14]

Nu=0.27Ra1/4 (for3x105<Ra<101O
) (11)

where Nu is Nusselt number.
The energy balance at the interface will then be
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Finite differencing with explicit technique was utilized. A fixed grid structure (II x 11)
was used. At grid points near the melt front, string-intersected approximations to derivatives
were used [16-19]. Central differencing was performed to approximate the spatial derivatives
at all interior grid points. The discretization details for the case of conduction type of heat
transfer, both in solid and liquid, are as follows.

The conservation of energy equation in the liquid can be discretized as
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except at a grid point close to the solid-liquid boundary which requires special attention This
can be accommodated using string-intersected-boundary approximation. The second
derivatives at the grid points near the liquid-solid interface are written using the string-
intersected formulae below [16-19]
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when the melting is in the positive z-direction, and
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when the liquid is in the positive x-direction and the solid in the negative x-direction relative to
the grid point, as is the case in this study. In the above equations, bX and bZ are the distances
between the interface and the closest node to the interface in the liquid in x and z directions,
respectively, and b'x and b'z are similar distances in the solid.

The index (k t) of the closest grid point to the interface in the liquid in z-direction can
be determined from

when the right hand side is to be taken as rounded to the next lower integer. The closest grid
point to the interface in the solid in z-direction is then kt + 1.

Then, one can write

The method of the congruence of triangles was used to determine bx and b'x
The energy balance at the interface can be discretized as

sn+l=sn+[1+(sF+l-SF-lJ2I~~(T* -T.)-~~(T -T*) ] (22)
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T • is the temperature at the grid
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The singularities that would arise when any of &, 8'z, Ox, and 8'x approaches zero are
prevented by assuming that the temperature at the grid point near the interface is at its
boundary value of Tm = O°C whenever &, 8' z, Ox, or 8' x is smaller than a set criterion; for
example 10.5.

In that case, the interface condition is discretized as
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when 8'z s 10.5 m. In these equations, To is the temperature at grid point kt - 1 and
kj -I

TkO +2 is the temperature at the grid point kt + 2.
I

The discretization for the case of numerical modeling involving convection is similarly
done except that heat transfer in the liquid phase is determined by utilizing equations (10-12).

The physical properties used in the solutions are: liquid density, Pi = 993 kg/m3
; liquid

thermal conductivity, k = 0.624 Wlm °C; solid thermal conductivity, k,= 2367 Wlm °C;
liquid thermal diffusivity, CXi = 1.505x 10.7 m2/s; solid thermal diffusivity, a,= 1.3164xO·6 m2/s;
liquid specific heat capacity, Cp\ = 4174 J/kg °C and latent heat of melting, L = 333,790 J/kg.

Water in a copper container (0.2xO.2xO.2 m3
) was frozen to -30°C with several

thermocouples imbedded within. The ice was placed on an icelwater bath. Half of the top
surface of the ice was contacted with a copper box with hot water at 70°C circulating from a
reservoir. The other half was covered by a thin copper plate. The other side surfaces were
insulated. The thermocouple readings and the location of the ice front were recorded during
the experiment. There were 10 thermocouples from top to bottom in the ice box arranged
using a solid wire. The melt thickness was measured by inserting a cylindrical ruler in the
melting box through a few openings at the top

Advance of the melting front obtained from the conduction model is shown in
Figure 1. The time required for the ice in the box to melt completely was determined to be
about 97 hours (when natural convection in the liquid was ignored). Temperature profiles in
two dimensions of the phase change system at two specified times predicted by the conduction
model are shown in Figures 2 and 3. The lower curves in both figures are for the case when
the solid thickness is at its initial value. The top curves of the figures, on the other hand, are
for the case when no solid is left in the system.
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Figure] . Melt thickness profile obtained from the conduction
model (L1x = L1z= 0.02 m, L1t= 1 s).

10

\? 0-
~

-10

-20

-30

0.00

---~

~ ..../ I
t; 1 h .

Figure 2 Temperature profiles at x 0 04 m obtained from the conduction model
(L1x - M = 0.02 m, L1t= I s)



Figure 3. Temperature profiles at x = 0 16 m obtained from the
conduction model (fix = fiz = 0.02 m, fit = 1 s).

The grid and time step sensitivities of the model were also checked, as shown in
Figure 4 The results of the model were almost identical for spatial to time step size ratios
(fix/fit or f;z/fit) of 0.02, 004 and 0.2 for the grid structure used (1Ixll) The stability
and/or accuracy of the model predictions suffered significantly when higher or lower spatial to
step size ratios were used The results were not significantly different when a grid structure of
21x21 was devised instead of 11xII.

The 2-D conduction model was also tested by applying it to I-D melting of a solid
which is at the melting temperature and subjected to a higher temperature at a boundary, for
which an analytical solution is available if the solid phase stays at the melting temperature
throughout and convection type of heat transfer in the liquid phase is ignored [15].

Figures 5 and 6 compare the results of the numerical model with those obtained by the
analytical solution Good agreement with the analytical solution verifies the numerical model
for the case of conduction type of heat transfer.

Figure 7 compares the advance of melting front obtained from the numerical solution
involving convection heat transfer with that obtained experimentally for a waterlice system.
Since ice lifts after a celiain time, limited experimental values are reported. The results of the
simplified numerical model considering natural convection in the liquid showed good
agreement with the preliminary experimental work.
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Figure 4. Melt thickness vs time plot at x=O obtained from the
conduction model for several time step size values
(while the spatial step sizes were fixed at 0.02 m).

Analytical Solution

-- Numerical Solution

Figure 5. Melt thickness vs time plot obtained from the conduction
model and the analytical solution for melting of ice
subjected to 70°C at one boundary while the solid phase
was maintained at the melting temperature.
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Figure 6. Temperature profiles at time = 500 s obtained from the
conduction model and the analytical solution for melting of
ice subjected to 70°C at one boundary while the solid phase
was maintained at the melting temperature.

Figure 7 Melt thickness vs time plot obtained experimentally and
from the numerical model including convection.



Melting of ice in a rectangular enclosure heated from above was modeled, first, by
ignoring the effect of natural convection in the liquid phase. This numerical study for the case
of conduction type of heat transfer was verified by application to a 1-0 system for which an
analytical solution is available. The experimental investigation showed that the melting process
was affected significantly by natural convection in the liquid phase. Upon this observation, the
model was extended to include convective heat transfer in the liquid phase by assuming the
liquid to be a mixed body subjected to natural convection from the heating surface above and
the ice surface below. The model, modified to take into account natural convection in the
liquid phase in a simplified manner, agreed well with the experimental work. Future work is
planned to develop a more rigorous and general model considering the temperature
dependency of water density and using all components of the equations of motion and
continuity, and also verifY the model by sophisticated experimentation
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