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Abstract- We describe Peiffer commutators within the Moore complex NG of a
simplicial group G. The calculation of the Peiffer commutators is made by using
GAP program.

Simplicial groups play an important role in homological groups, homotopy
theory, algebraic K-theory and geometry. In each sector they have played a
signification part in developments over quite a lengthy period of time and there is an
extensive literature on their homotopy theory. In homotopy theory itself, they model
all connected homotopy types and allow analysis of features of such homotopy types
by a combination of group theoretic methods and tools from combinatorial homotopy
theory. Simplicial groups have the natural structure of Kan complexes and so are
potentially models for weak infinity categories. The present article intends to study n-
types of simplicial groups.

In an interesting recent work, Mutlu and Porter [7] proved the following
theorem: Let G be a simplicial group with Moore complex NG and for n ~ 0 let Dn
be a subgroup generated by the degenerate elements in dimensions n. Then

where Nn is normal subgroup in Gn generated by an explicitly given set of elements.
Mutlu and Porter also in [8] generalised a result of Brown-Loday in [5] and a give
for n=3 and 4 a decomposition of the group, dnNGn of boundaries of a simplicial
group G as a product of commutator subgroups. Partial results are given for higher
dimension.

The main points of the paper are thus:
(i) to define the Peiffer commutators in higher dimensions,
(ii) to give calculations of Peiffer commutators by computer group packages.

A simplicial group G consists of a family of groups Gn together with face and'
degeneracy maps d; = din :Gn ~Gn_I' 0 s is n, n:f::.0 and
Si = sin: Gn ~ Gn+1 0 S i s n, satisfying the usual simplicial identities given in [6]



and also [3]. Another essential reference from our point of view is Carrasco's thesis,
[4], where many of the basic techniques used here were developed systematically for
the first time and the notion of hypercrossed complex was defined.

The following notation and terminology is derived from [4] and the published
version, [3], of the analogous group theoretic case.

For the ordered set [n] = { 0 < 1 < ... < n}, let ai
n
: [n + 1] ~ [n] be the

increasing surjective map given by

n (.) {./
ai .J = ./-1

if ./si
if ./>i.

Let S(n, n -I) be the set of all monotone increasing surjective maps from [0] to
[0-1]. This can be generated from the various ai

n by composition. The composition
of these generating maps satisfies the ruleajai = ai_]aj with j<i. This implies that
every element a E S(n, n -I) has a unique expression as a = ai ai ... ai with

I 2 I

o s i] S i2 s ... S iJ S n, where the indices ik are the elements of [0] at which
a(i)=a(i+l). We thus can identify S(n,n-/) with the set
{(i[, ... ,i,): Osi, si2 s ... si[ sn-l}. In particular the single element of S(n,n),
defined by the identity map on [oj, corresponds to the empty O-tuple 0 denoted by
0n. Similarly the only element of S(n, 0) is (n-l, n-2, ...0). For all n 2': 0, let

S(n)= US(n,n-/).
O__[ __n

if i]=./" ,ik=./k but ik+]>./k+' (k>O) or
if iJ = ./J' , i] =./, and I < m.

This makes S(n) an ordered set. For instance, the orders of S(2) and
S(3) and S(4) are respectively:

S(2) = { 07< (1) < (0) «1,0) },
S(3) = {03 < (2) < (1) < (2, 1) < (0) < (2,0) < (1 ,0) < (2, I ,0) },
S(4) = { 04 < (3) < (2) < (3 ,2) < (1) < (3 , 1) < (2, 1) < (3 ,2, 1) < (0) < (3 ,0) <
(2 , 0) < (3 , 2, 0) < (1 , 0) < (3 , I ,0) < (2 , 1 , 0) < (3 , 2 , I ,0) }.

If a and fJ are in S(n), we define a n fJ to be the set of indices which belong to
both a and fJ .



The Moore complex NG of a simplicial group G is defined to be the normal
n-I

chain complex (NG,o) with NGn =nKerdi and with differential 0n:NGn ~ NGn_1

i=O

induced from dn by restriction.
The Moore complex has the advantage of being smaller than the simplicial

group itself and being a chain complex is of a better known form for manipulation.
However being non-abelian in general, some new techniques one needs to develope
need developing for its study. Its homology gives the homotopy groups of the
simplicial group and thus in specific cases, e.g. a truncated- free simplicial resolution
of a group, gives valuable higher dimensional information on elements.

The Moore complex, NG, carries a hypercrossed complex structure (see [3]
and [4]) which allows the original G to be rebuilt.

In the following we define Peiffer commutators of Gn. First of all we
introduce a method to get the construction of a useful family of pairings. We describe
a set pen) consisting of pairs of elements (a,fi) from S(n) with anfi =0
anda -< fi, where a = (iz, ... ,il), fi = Urn"'}I) E S(n). The Peiffer commutators

Fa.p :NGn_oa x NGn_op ~ NGn: (a, fi) E pen) n:2 0

NGn_oax NGn_op ~NGn

t t

p:Gn ~ NGn is defined by the composite projections p(z) = pn-l...PO(Z), where pj{z)
= zsA(zr1 j = 0,1, ..., n-1 and j.1:GnxGn ~ Gn is given by the commutator map.
Thus

Fa, p (X a' Y p ) = p j.1(Sa X Sp )( X a' Y p )

= P[Sa (Xa), Sp (y p)]

We now describe the Peiffer commutators of Gn as generated by elements of the form
Fa,p (xa ,Y p)

where xa E NGn_oa and Y p E NGn_op where ea is the length of the string a. We
illustrate the Peiffer commutator for n = 2 and 3, to show what it looks like



Example: For n = 2, suppose a = (I), f3 = (0) and x,y E Neil = Kerd". It follows
that

which is corresponding to crossed module but we omit it this paper. In this example,
the Peiffer commutator is generated by elements of the form

The imagine of ~O)(l)(x, y) is the Peiffer element determined by x and y, we

will call the Fa,fJ (xa, Y fJ ) In higher dimensions higher dimensional J>eifler

commutators.
For n=3, the paIrIngs are as following

~LO)(2)' ~2.0)(1)' ~O)(2,1)' ~O)(2)' ~1X2)' ~())(I)' For x E Neil' Y E NGe the
corresponding generators of the Peiffer commutators are:



With dimension 4, the situation is still manageable. We firstly n = 4 omit here the key
pairings Fa.p (xa, Y p ).

In this section we have used the Groups, Algorithms and Programming
(GAP) package, which is a computational group package. We refer [2] for details.
We give calculations Fa.p (xa, Y p) for higher values n using GAP. We introduce
formulae for the number of pairs (a, f3 ) .

Di-splay := funetion(LCL);
loealle,ne,C,C2,i,jk,str;
str:= ["sO", "sf", "s3"};
ne := Len~fh(LCL);
forj in [i ..tlc} do

Prinf("[") ;
C := LCL[j}; Cf := C[f}; C2 := C[2};
lc:= length(Cf);
for i in [i ..le-f} do

k := C f [i} + f;
Print(str[kj);
od;

Print(C f [lc}, ",'');
Ie := Length(C2);
for i in [f ..le-i} do

k := C2[i}+ f;
Print(\·tr[kj) ;
od;

Print(C2 [Ie}, "} '');
od;

Print("\n'') ;
end;

Sdpass := funetion(k,L)
local len, pf,p2;
pf := Position(L,k);
# Print("S'D'Pass(k L) pf' " k " " L " "pi " '').

, , ." J , , " " ,

if (pi =false) then
p2 := Position(L,k-i);



;:Print("p2= ", p2, ", '');
(I (p2=false) then

L: = I j;
else

L[p2J:= k;
.ft;

fi;
# Print(" - "L "In'')'" ,
return L;
end;

Projection: = .fimction(k,LCL)
local LeL2,j, C, cl, c2, nC,j, ('i, C2, LI, L2
LeL2 := (~opy(L( ~L);
flC,:= LenJ{th(LCL); r; = numher (~Icommutators
forj in Reversed([I ..ncj) do

C := LCL[j}; # reverse the order for the inverse of a product
('I := C{2j; # the inverse (~/a commutator [u,v)
('2 := ('[I); # is the reversed commutator [v,u)
LI := SDpass(k,Ci);
L2 := Sdpass(k,C2);
if ((L i . . > [ }) and (L2 .' . [ ])) then
Add(LCL2, [Li,L2]);
Print("adding", [Li,L2}, "In'');
fi;
od;
return LCL2;
end;

FJJxy := function(n,I,J)
local LCL,LI,U,i;
Print ( "lnFJJxy in dimension ", n, "with I,J = ", I, ", ", J, "In ''):
LI := Copy(I);
Add(LI, "x'');
V:= Copy(J);
Add(U, 'y'');
# create initial list of 'commutators' of lists
# where a 'commutators' is a two-element list
LCL := [[LI, V] };
Print( "Initial LeL = In");
Display(LC'L);
for i in [0 ... (n-i)] do

Print("ProjectinK in dimeflsiofl ", i, "In'');
LCL := Project;on(i,LCL);

od;
Print("Final L('L = In'');
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