THE TANGENT CONOIDS FAMILY WHICH DEPENDS ON

THE RULED SURFACE

E.Özyılmaz

Ege University, Faculty of Science, Department of Mathematics, 35100 Bornova, İzmir

Abstract

In this study, a new congruence [$\mathrm{A}_{* *}$] has been defined by putting a tangent right conoid on each line of a ruled surface $\left(\mathrm{A}_{1}(\mathrm{~s})\right.$) of a line congruence $[\mathrm{A}$]. Then, by considering special case of the congruence $\left[\mathrm{A}_{* *}\right]$ which has been defined in the previous part, the concepts of tangent congruence, drall and the relation among Blaschke vectors of Blaschke trihedrons, having common line A_{0}, has been examined for this special case. At the end of this study, the concept of tangent congruence for some special congruences has been examined.

I. BASIC CONCEPTS

ID- Module theory is very important for the space kinematics. Especially, the Euclidian motions in IR^{3} are represented in ID^{3} by orthogonal 3×3 matrices.

Let ID be a commutative ring with unit element. ($\mathrm{ID}^{3},+$) is a module on the dual number ring. We call it ID-Module. This modul's elements are dual vectors. We denote dual unit vector \mathbf{A} as

$$
\begin{equation*}
\mathbf{A}=\left(\mathbf{a}, \mathbf{a}_{0}\right)=\mathbf{a}+\varepsilon \mathbf{a}_{0} \quad ; \mathbf{a} \cdot \mathbf{a}=\mathbf{1}, \mathbf{a} \cdot \mathbf{a}_{0}=0 \quad, \quad \mathbf{a}, \mathbf{a}_{\mathbf{0}} \in \mathbb{R}^{3} . \tag{1}
\end{equation*}
$$

A ruled surface (A(s)) is given by a unit dual vector depending on one real parameter as

$$
\begin{equation*}
\mathbf{A}(\mathrm{s})=\mathbf{a}(\mathrm{s})+\varepsilon \mathbf{a}_{0}(\mathrm{~s}), \quad \mathbf{A}^{2}(\mathrm{~s})=1 . \tag{2}
\end{equation*}
$$

Let $\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\right)$ be Blaschke trihedron at the striction point of the line \mathbf{A}_{1} on the ruled surface $\left(\mathbf{A}_{1}(\mathbf{s})\right.$). We give Blaschke vector (dual instantaneous rotation vector) of this trihedron as

$$
\begin{equation*}
\mathbf{B}=\mathbf{Q} \mathbf{A}_{1}+\mathrm{P} \mathbf{A}_{3} \tag{3}
\end{equation*}
$$

If we take a ruled surface $\left(\mathbf{A}_{1}(s)\right)$ of the congruence

$$
\begin{equation*}
\mathbf{A}(u, v)=\mathbf{a}(u, v)+\varepsilon \mathbf{a}_{0}(u, v) \tag{4}
\end{equation*}
$$

we may write Blaschke trihedrons of parameter ruled surfaces $\left(\mathbf{A}_{11}(\mathrm{~s})\right)$ and $\left(\mathbf{A}_{21}(\mathrm{~s})\right)$ at the common line \mathbf{A}_{0} as

$$
\begin{equation*}
\left(\mathbf{A}_{0}=\mathbf{A}_{11}, \mathbf{A}_{12}, \mathbf{A}_{13}\right) \quad, \quad\left(\mathbf{A}_{0}=\mathbf{A}_{21}, \mathbf{A}_{22}, \mathbf{A}_{23}\right) \tag{5}
\end{equation*}
$$

Blaschke vectors of these trihedrons are given by

$$
\begin{equation*}
\mathbf{B}_{1}=\mathrm{Q}_{1} \mathbf{A}_{11}+\mathrm{P} \mathbf{A}_{13} \quad, \quad \mathbf{B}_{2}=\mathrm{Q}_{2} \mathbf{A}_{21}+\mathrm{P} \mathbf{A}_{23} \tag{6}
\end{equation*}
$$

, respectively.
If parameter ruled surface are taken as principal ruled surface, we have

$$
\begin{equation*}
\mathbf{A}_{12} \cdot \mathbf{A}_{22}=0 \tag{7}
\end{equation*}
$$

Theorem 1 : The edges of Blaschke trihedrons of the parameter ruled surfaces coincide with each other, under the condition that their directions and orders are not the same, [2].

Definition 1 : Let $d \Phi=\mathrm{d} \varphi+\varepsilon \mathrm{d} \varphi{ }^{*}$ be dual angle between the lines $\mathbf{A}(\mathrm{t})$ and $A(t+d t)$. The relation

$$
\begin{equation*}
\frac{1}{d}=\frac{d \mathbf{a} \cdot d \mathbf{a}^{*}}{d \mathbf{a}^{2}}=\frac{d \varphi}{d \varphi}{ }^{*} \tag{8}
\end{equation*}
$$

is called drall along the line of the ruled surface
On the other hand, the dual angle of pitch is another invariant of the ruied surface $\left(\mathbf{A}_{1}(\mathrm{~s})\right)$ and can be given by the relation:

- $\Lambda_{\mathrm{a}_{1}}=\oint \frac{\left(\mathbf{A}_{1}, \mathbf{A}_{1}{ }^{\prime}, \mathbf{A}_{1}{ }^{\prime \prime}\right)}{\left(\mathbf{A}_{1}{ }^{\prime}\right)^{2}}$

Theorem 2: The dual angle of pitch of the closed ruled surface $\left(\mathbf{A}_{1}(\mathrm{~s})\right)$, corresponds to the dual spherical surface area described by the dual spherical image of the closed ruled surface ($\left.\mathbf{A}_{1}(\mathrm{~s})\right)$, [3].

$$
\begin{equation*}
\Lambda_{a_{1}}=2 \pi-A_{a_{1}} \tag{10}
\end{equation*}
$$

The right conoids are the ruled surfaces whose all lines intersect with the constant line perpendicularly.

Another invariant of ruled surface is

$$
\begin{equation*}
\sum=\frac{Q}{P} \tag{11}
\end{equation*}
$$

which is known as dual spherical curvature of the ruled surface. One of the characterization of the right conoids is

$$
\begin{equation*}
\sum=0 \tag{12}
\end{equation*}
$$

The right conoids at the line $\mathbf{A}_{1}\left(s_{0}\right)$ of the ruled surface $\left(\mathbf{A}_{1}(s)\right)$ is given by the relation:

$$
\begin{equation*}
\mathbf{Z}(\mathrm{s})=\frac{\mathbf{A}_{1}\left(\mathrm{~s}_{0}\right)+\mathrm{s} \mathbf{A}_{1}^{\prime}\left(\mathrm{s}_{0}\right)}{\sqrt{1+P_{o}^{2} s^{2}}} \tag{13}
\end{equation*}
$$

The ruled surface $\left(\mathbf{A}_{1}(\mathrm{~s})\right)$ and the right conoid $(\mathbf{Z}(\mathrm{s}))$ have the first degree coupling at the line $\mathbf{A}_{1}\left(\mathrm{~s}_{\mathrm{o}}\right),[5]$

2. COUPLING OF TWO LINE CONGRUENCE

Let

$$
\begin{equation*}
[\mathrm{A}]: \mathbf{A}=\mathbf{A}(\mathrm{u}, \mathrm{v}) \quad[\mathrm{Y}]: \mathbf{Y}=\mathbf{Y}(\mathrm{u}, \mathrm{v}) \tag{14}
\end{equation*}
$$

be two line congruences having a common regular line $\mathbf{A o}: \mathbf{A}\left(u_{0}, v_{0}\right)=\mathbf{Y}\left(u_{0}, v_{0}\right)=\mathbf{A}_{0}$. If the congruences have

$$
\begin{equation*}
\left(\frac{\partial^{i+j} \mathbf{A}}{\partial u^{i} v^{j}}\right)_{o}=\left(\frac{\partial^{i+j} \mathbf{Y}}{\partial u^{i} v^{j}}\right)_{o} \quad 1 \leq i+j \leq n \tag{15}
\end{equation*}
$$

we say that two congruences have nth degree coupling at least, at the line $\mathbf{A}_{\mathbf{0}}$, [6]

Let us take a congruence [A]. If we use the Maclaurin series of (14) at the line

$$
\begin{equation*}
\mathbf{A}_{10}: \mathbf{A}_{10}=\mathbf{A}\left(\mathrm{u}_{0}=0, \mathrm{v}_{\mathrm{o}}=0\right) \tag{16}
\end{equation*}
$$

and take the norm of the first three terms of it, we can define the line congruence as

$$
\begin{align*}
& {[Y]: \quad Y=\frac{A_{10}+u A_{u}+v A_{v}}{\sqrt{B}}} \tag{17}\\
& \mathrm{~B}=1+\mathrm{E} \mathrm{u}^{2}+2 \mathrm{Fu} v+\mathrm{G} \mathrm{v}^{2}
\end{align*}
$$

Definition 2: The congruence [Y] is called "The Tangent Congruence " of the congruence [A], [6].

3. A NEW TRIHEDRON AND CONGRUENCE

Let a line congruence [A] be given by (4) on two real parameters. The line congruence [A*] which contains a ruled surface $\left(\mathbf{A}_{1}(\mathrm{~s})\right)$ on the line congruence [A] can be defined as follows:

$$
\begin{equation*}
\left[\mathbf{A}_{*}\right]=\mathbf{A}_{*}(\lambda, s)=\frac{\mathbf{A}_{1}(\mathrm{~s})+\lambda \mathrm{P}\left(\mathbf{A}_{2}(\mathrm{~s}) \sin \varphi-\mathbf{A}_{3}(\mathrm{~s}) \cos \varphi\right)}{\sqrt{1+\lambda^{2} \mathrm{P}^{2}}} \tag{18}
\end{equation*}
$$

where, $\left\{\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{A}_{\mathbf{3}}\right\}$ is Blaschke trihedron at the striction point of the ruled surface $\left(\mathbf{A}_{\mathbf{1}}(\mathrm{s})\right)$,
P is dual curvature and $\varphi(s)$ is the real angle between the line

$$
\begin{equation*}
\mathbf{N}=\mathbf{A}_{\mathbf{2}} \cos \varphi+\mathbf{A}_{\mathbf{3}} \sin \varphi \tag{19}
\end{equation*}
$$

and second axis \mathbf{A}_{2} of the Blaschke trihedron.
Let the first axis be $\mathbf{A}_{1}\left(\mathrm{~s}_{\mathrm{o}}\right)=\mathbf{A}_{\mathbf{o}}$ at each line $\mathbf{A}_{1}\left(\mathrm{~s}_{\mathrm{o}}\right)$ of the ruled surface $\left(\mathbf{A}_{1}(\mathrm{~s})\right)$ on the line congruence [A], the third axis be N, and the second axis be

$$
\begin{equation*}
\mathbf{G}=\mathbf{N} \mathbf{x} \mathbf{A}_{\mathbf{1}}=\mathbf{A}_{\mathbf{2}} \sin \varphi-\mathbf{A}_{\mathbf{3}} \cos \varphi \tag{20}
\end{equation*}
$$

where \mathbf{G} is accomplished a positive trihedron with the directed lines $\mathbf{A}_{\mathbf{1}}$ and \mathbf{N}. So, we established a new dual trihedron $\left\{\mathbf{A}_{1}, \mathbf{G}, \mathbf{N}\right\}$ at the striction point of the ruled surface $\left(\mathbf{A}_{1}(\mathrm{~s})\right)$ called as dual Darboux trihedron.

The geometric interpretation of dual vector \mathbf{N} is the axis of the right conoid given by the following relation:

$$
\begin{equation*}
\mathbf{Z}_{*}(\lambda)=\frac{\mathbf{A}_{1}\left(\mathrm{~s}_{0}\right)+\lambda \mathrm{P}_{\mathrm{O}}\left(\mathbf{A}_{2}\left(\mathrm{~s}_{\mathrm{O}}\right) \sin \varphi_{0}-\mathbf{A}_{\mathbf{3}}\left(\mathrm{s}_{0}\right) \cos \varphi_{0}\right)}{\sqrt{1+\lambda^{2} \mathrm{P}_{0}^{2}}} \tag{21}
\end{equation*}
$$

4. THE RIGHT CONOIDS FAMILY (R.C.F)

Let us take $\sin \varphi=1$ and $\cos \varphi=0$ in (18). Thus, we have the R.C.F. which is connecting the ruled surface $\left(\mathbf{A}_{1}(\mathrm{~s})\right)$ as follows:

$$
\begin{equation*}
\mathbf{A}_{* *}(s, \lambda)=\frac{\mathbf{A}_{1}(s)+\lambda \mathbf{A}_{\mathbf{1}}^{\prime}(s)}{\sqrt{1+\lambda^{2} P^{2}}} \quad, \quad \mathbf{A}_{* *}^{\mathbf{2}}=1 \tag{22}
\end{equation*}
$$

Definition 3 : R.C.F. is called right conoid family which is obtained by putting a right conoid to each line of the ruled surface $\left(\mathbf{A}_{\mathbf{1}}(\mathrm{s})\right)$.

If we take the partial derivative from (22) with respect to s and λ

$$
\left.\begin{array}{l}
\left.\mathbf{A}_{* *}=\frac{\mathbf{A}_{\mathbf{1}}\left(-\lambda^{2} \mathrm{P} \mathrm{P}^{\prime}-\mathrm{P}^{2}\left(\lambda^{3} \mathrm{P}^{2}+\lambda\right)\right)+\mathbf{A}_{\mathbf{2}}\left(\mathrm{P}+\mathrm{P}^{3} \lambda^{2}+\mathrm{P}^{\prime} \lambda\right)+\mathbf{A}_{\mathbf{3}}\left(\lambda^{3} \mathrm{P}^{3} \mathrm{Q}+\lambda \mathrm{PQ}\right)}{\left(1+\lambda^{2} \mathrm{P}^{2}\right)^{3 / 2}}\right) \\
\mathbf{A}_{* * \lambda}=\frac{-\lambda \mathrm{P}^{2} \mathbf{A}_{\mathbf{1}}+\mathrm{P} \mathbf{A}_{\mathbf{2}}}{\left(1+\lambda^{2} \mathrm{P}^{2}\right)^{3 / 2}} \tag{23}
\end{array}\right\}
$$

can be written, P and Q are dual curvature and dual torsion which belongs to the ruled surface
($\left.\mathbf{A}_{1}(\mathrm{~s})\right)$. By taking

$$
\begin{equation*}
C=\left(1+\lambda^{2} \mathrm{P}^{2}\right)^{3 / 2} \tag{24}
\end{equation*}
$$

$$
\begin{gather*}
\Lambda_{1}=\frac{-\lambda^{2} \mathrm{PP}^{\prime}-\mathrm{P}^{2}\left(\lambda^{3} \mathrm{P}^{2}+\lambda\right)}{\mathrm{C}^{3 / 2}}, \quad \Lambda_{2}=\frac{\mathrm{P}\left(1+\lambda^{2} \mathrm{P}^{2}\right)+\lambda \mathrm{P}^{\prime}}{\mathrm{C}^{3 / 2}}, \quad \Lambda_{3}=\frac{\lambda \mathrm{PQ}}{\mathrm{C}^{1 / 2}} \tag{25}\\
\Psi_{1}=\frac{-\lambda \mathrm{P}^{2}}{\mathrm{C}^{3 / 2}}, \quad \Psi_{2}=\frac{\mathrm{P}}{\mathrm{C}^{3 / 2}},
\end{gather*}
$$

, we may write equations (23) as

$$
\begin{align*}
& \mathbf{A}_{* *}=\Lambda_{1} \mathbf{A}_{\mathbf{1}}+\Lambda_{2} \mathbf{A}_{2}+\Lambda_{3} \mathbf{A}_{\mathbf{3}} \\
& \mathbf{A}_{* * \lambda}=\Psi_{1} \mathbf{A}_{1}+\Psi_{2} \mathbf{A}_{\mathbf{2}} \tag{26}
\end{align*}
$$

If we open Taylor series of (22) at the line \mathbf{A}_{10} with the relation $s-s_{0}=\alpha, \lambda-\lambda_{0}=\beta$, we have tangent congruence as:
$\mathrm{Y}_{* *}[\alpha, \beta]=\frac{\mathbf{A}_{\mathbf{1 0}}\left[\alpha \Lambda_{10}+\beta \Psi_{10}+\mathrm{C}_{\mathrm{o}}^{-1 / 2}\right]+\mathbf{A}_{20}\left[\alpha \Lambda_{20}+\beta \Psi_{20}+\lambda_{\mathrm{o}} \mathrm{P}_{\mathrm{o}} \mathrm{C}_{\mathbf{o}}^{-1 / 2}\right]+\mathbf{A}_{\mathbf{3 0}}\left(\alpha \Lambda_{30}\right)}{\sqrt{1+\alpha^{2}\left(\Lambda_{10}^{2}+\Lambda_{20}^{2}+\Lambda_{30}^{2}\right)+2 \alpha \beta\left(\Lambda_{10} \Psi_{1}+\Lambda_{20} \Psi_{20}\right)+\beta^{2}\left(\Psi_{10}^{2}+\Psi_{20}^{2}\right)}}$

This tangent congruence is geometric definition and depends on the line $\mathbf{A}_{1}\left(\mathrm{~s}_{0}\right)$, but does not depend on s and λ. Thus, we have the following theorem :

Theorem 3: The congruences [$\mathrm{A}_{* *}$] and [Y**] have the first coupling.
Proof: If we use Taylor series of (22) and take $\mathrm{s}-\mathrm{s}_{\mathrm{o}}=\alpha, \lambda-\lambda_{\mathrm{o}}=\beta$, we can write the following relation:

$$
\begin{equation*}
Y_{* *}[\alpha, \beta]=\frac{A * *\left(s_{0}, \lambda_{0}\right)+\alpha A_{* *}+\beta A * * \lambda_{0}}{\left\|A_{* *}\left(s_{O}, \lambda_{0}\right)+\alpha A_{* *}+\beta A * * \lambda_{s_{O}}\right\|} \tag{28}
\end{equation*}
$$

By using transformation $s-s_{o}=\alpha, \lambda-\lambda_{0}=\beta$ in (28), we easily show that [Y**] and [$\mathrm{A}_{* * *}$] have common line at the parameter ($\mathrm{s}_{0}, \lambda_{\mathrm{o}}$) as follows:

$$
\begin{equation*}
\mathbf{Y} * *\left[s_{O}, \lambda_{O}\right]=\mathbf{A} * *\left[s_{O}, \lambda_{o}\right]=\frac{\mathbf{A}_{1}\left(\xi_{O}\right)+\lambda_{O} \mathbf{A}_{1}^{\prime}\left(s_{O}\right)}{\sqrt{1+\lambda_{O}^{2} P_{O}^{2}}} \tag{29}
\end{equation*}
$$

Then, if we put transformation $\mathrm{s}-\mathrm{s}_{\mathrm{o}}=\alpha, \lambda-\lambda_{\mathrm{o}}=\beta$ in (28) and take derivative according to
s and λ at ($\mathrm{s}_{\mathrm{o}}, \lambda_{\mathrm{o}}$), we can easily see second condition of coupling

$$
\begin{array}{rr}
(\mathbf{Y} * * \mathbf{s})_{S}=s_{O} & =(\mathbf{A} * * \mathbf{s})_{S}=s_{O} \\
\lambda=\lambda_{O} & \lambda=\lambda_{O} \\
(\mathbf{Y} * * \lambda)_{S=s_{O}}=(\mathbf{A} * * \lambda)_{s=s_{O}} \tag{30}\\
\lambda=\lambda_{O} & \lambda=\lambda_{O}
\end{array}
$$

Theorem 4: Let $\left\{\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{A}_{\mathbf{3}}\right\},\left\{\mathbf{A}_{11}, \mathbf{A}_{12}, \mathbf{A}_{13}\right\}$ and $\left\{\mathbf{A}_{\mathbf{2 1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{A}_{\mathbf{2 3}}\right\}$ be Blaschke trihedrons of any ruled surface $(A(t))$ and parameter ruled surfaces $\left(A_{11}\right)$ and $\left(A_{21}\right)$ of the congruence $\left(A_{* *}(\mathrm{~s}, \lambda)\right)$. There exist following relations among the dual curvatures $\mathrm{P}_{1}, \mathrm{P}_{11}$ and P_{21} of these ruled surface:

$$
\begin{equation*}
\mathrm{P}_{1}^{2}=\left(\frac{\mathrm{d} \mathbf{A} * *}{\mathrm{dt}}\right)^{2}=\mathrm{P}_{11}^{2} \mathrm{~s}^{\prime 2}+\mathrm{P}_{21}^{2} \lambda^{\prime 2}+2\left(\Lambda_{1} \Psi_{1}+\Lambda_{2} \Psi_{2}\right) \mathrm{s}^{\prime} \lambda^{\prime} \tag{31}
\end{equation*}
$$

Proof: If we consider definition of dual curvature and take partial derivative according to s and λ from the congruence $\left[A_{* *}\right]$, we may easily see (31).

Theorem 5: Let $(A(t)),\left(A_{11}\right)$ and $\left(A_{21}\right)$ be a ruled surface and parameter ruled surfaces of the congruence [A**]. These ruled surface have common line as \mathbf{A}_{1}. There is following relation among the Blaschke vectors $\mathbf{B}, \mathbf{B}_{1}$ and \mathbf{B}_{2} at the common line \mathbf{A}_{1} of these ruled surface

$$
\begin{equation*}
\mathbf{B}=\mathrm{P}\left[\cos \Phi \frac{\mathbf{B}_{\mathbf{1}}}{\mathrm{P}_{1}}+\sin \Phi\left(\frac{\mathbf{B}_{\mathbf{2}}-\mathrm{Q}_{2} \mathbf{A}_{\mathbf{2}}}{\mathrm{P}_{2}}\right)\right]+\mathrm{Q} \mathbf{A}_{1} \tag{32}
\end{equation*}
$$

Proof: According to (7) and theorem 1, we can write , [3]

$$
\begin{align*}
& \mathbf{A}_{12} \cdot \mathbf{A}_{22}=0 \tag{33}\\
& \mathbf{A}_{\mathbf{3}}=\cos \Phi \mathbf{A}_{\mathbf{1 3}}+\sin \Phi \mathbf{A}_{\mathbf{2 3}} \tag{34}
\end{align*}
$$

On the other hand, we may write Blaschke vectors of the ruled surfaces $(\mathrm{A}(\mathrm{t})),\left(\mathrm{A}_{11}\right)$ and $\left(\mathrm{A}_{21}\right)$ as follows

$$
\mathbf{B}=\mathrm{Q} \mathbf{A}_{1}+\mathrm{P} \mathbf{A}_{3}, \quad \mathbf{B}_{1}=\mathrm{P}_{1} \mathbf{A}_{13}, \quad \mathbf{B}_{2}=\mathrm{Q}_{2} \mathbf{A}_{21}+\mathrm{P}_{2} \mathbf{A}_{23}
$$

where, Q_{1} is equal to zero, because, the ruled surface $\left(A_{11}\right)$ is a right conoid. Then, if we take $\mathbf{A}_{3}, \mathbf{A}_{13}$ and \mathbf{A}_{23} from (35) and insert into (34), we have (32).

Result 1: There exists following relation among the dralls of the ruled surfaces $(\mathrm{A}(\mathrm{t})$), $\left(A_{11}\right)$ and $\left(A_{21}\right)$ of the congruence $\left[A_{* *}\right]$.

$$
\begin{equation*}
\frac{1}{d}=\frac{p_{11}^{2}}{p_{1}^{2}} s^{\prime} \frac{1}{d_{1}}+\frac{p_{21}^{2}}{p_{1}^{2}} \lambda^{\prime} \frac{1}{d_{2}}+\frac{2\left(\lambda_{1} \varphi_{1}^{*}+\lambda_{1}^{*} \varphi_{1}+\lambda_{2} \varphi_{2}^{*}+\lambda_{2}^{*} \varphi_{2}\right) s^{\prime} \lambda^{\prime}}{p_{1}^{2}} \tag{36}
\end{equation*}
$$

Proof: Seperating (31) into the real and dual parts, we may write

$$
\begin{gather*}
\mathrm{p}_{1}^{2}=\mathrm{p}_{11}^{2} \mathrm{~s}^{\prime 2}+\mathrm{p}_{21}^{2} \lambda^{\prime \prime 2}+2\left(\lambda_{1} \varphi_{1}+\lambda_{2} \varphi_{2}\right) \mathrm{s}^{\prime} \lambda^{\prime \prime} \tag{37}\\
\mathrm{p}_{1} \mathrm{p}_{0}=\mathrm{p}_{10} \mathrm{p}_{11} \mathrm{~s}^{\prime}+\mathrm{p}_{20} \mathrm{p}_{21} \lambda^{\prime}+2\left(\lambda_{1} \varphi_{1}^{*}+\lambda_{1}^{*} \varphi_{1}+\lambda_{2} \varphi_{2}^{*}+\lambda_{2}^{*} \varphi_{2}\right) \mathrm{s}^{\prime} \lambda^{\prime} \tag{38}
\end{gather*}
$$

Then, dividing both side of the equality (38) by $p_{1}^{2} p_{11}^{2} p_{21}^{2}$, (36) is obtained.

5. THE TANGENT CONGRUENCE CONCEPT ON THE SPECIAL CONGRUENCE

Definition 4: If all the lines of a line congruence orthogonally intersect a constant line then the congruence is called a recticongruence

Let \mathbf{A} and \mathbf{B} be unit dual vectors. The equation and the axes of recticongruence, which is passing through constant two lines \mathbf{A} and \mathbf{B}, can be given as the following, respectively.

$$
\begin{align*}
& \mathbf{K}=\frac{\mathbf{A} \sin (\Theta-\Phi)+\mathbf{B} \sin \Phi}{\sin \Theta}, \quad \mathbf{A} \mathbf{B}=\cos \Theta, \quad \mathbf{K} \mathbf{A}=\cos \Phi \tag{39}\\
& \mathbf{U}=\frac{\mathbf{A} \times \mathbf{B}}{\mathbf{A} \times \mathbf{B}} \tag{40}
\end{align*}
$$

where Θ is a constant angle between \mathbf{A} and \mathbf{B}, [7].
If we take derivative according to φ and $\bar{\varphi}$ at the line \mathbf{K}_{o} of the congruence [K],

$$
\begin{equation*}
\mathbf{K}_{\varphi}=\frac{-\mathbf{A} \cos (\Theta-\Phi)+\mathbf{B} \cos \Phi}{\sin \Theta} \quad \text { ve } \quad \mathbf{K}_{\bar{\varphi}}=\varepsilon \mathbf{K}_{\varphi} \tag{41}
\end{equation*}
$$

is obtained.

Thus, we may write tangent congruence of the recticongruence as

$$
\begin{equation*}
\mathbf{Y}[\lambda, \mu]=\frac{\mathbf{A}[\sin (\Theta-\Phi)-(\lambda+\varepsilon \mu) \cos (\Theta-\Phi)]+\mathbf{B}[\sin \Phi+(\lambda+\varepsilon \mu) \cos \Phi]}{\mid \mathbf{A}[\sin (\Theta-\Phi)-(\lambda+\varepsilon \mu) \cos (\Theta-\Phi)]+\mathbf{B}[\sin \Phi+(\lambda+\varepsilon \mu) \cos \Phi]} \tag{42}
\end{equation*}
$$

Theorem 6: The recticongruence which is passing through constant unit dual vector
\mathbf{A} and \mathbf{B}, and its tangent congruence has the same axis.

Proof: It is clear to see that the dual unit vector \mathbf{U} is ortogonal to each lines of tangent congruence [Y]. We know that from (39), U is axes of the congruence [K]. These show us that $[\mathrm{Y}]$ and $[\mathrm{K}]$ has the same axis.

Result 2: The dual angle of pitch is zero for any ruled surface $(A(t))$ of the recticongruence and its tangent congruence.

Proof: The dual angle of pitch is given by [3] as

$$
\begin{equation*}
\Lambda_{a_{1}}=\oint \frac{\left(\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{1}}^{\prime}, \mathbf{A}_{\mathbf{1}}^{\prime \prime}\right)}{\left(\mathbf{A}_{1}^{\prime}\right)^{2}} \tag{43}
\end{equation*}
$$

Any ruled surface of recticongruence and its tangent congruence are right conoids. We know that, the dual torsion

$$
\begin{equation*}
\mathrm{Q}=\frac{\left(\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{1}}{ }^{\prime}, \mathbf{A}_{\mathbf{1}}{ }^{\prime \prime}\right)}{\left(\mathbf{A}_{\mathbf{1}}^{\prime}\right)^{2}} \tag{44}
\end{equation*}
$$

is zero for right conoids. Thus, (43) is equal to zero.
Result 3: The dual spherical area of the spherical indicatrix of right conoids is

$$
\begin{equation*}
A=2 \pi \tag{45}
\end{equation*}
$$

Proof: Using equation (11),(12) and result 2, we just get (45).
Theorem 7: The tangent congruence of isotrop congruence is also isotrop.
Proof: Let $(\mathrm{A}(\mathrm{u}, \mathrm{v}))$ be a congruence. The dual arc element of this congruence is

$$
\begin{equation*}
\mathrm{dS}^{2}=E d u^{2}+2 \mathrm{Fdu} d v+G d v^{2} \tag{46}
\end{equation*}
$$

where,

$$
\begin{equation*}
\mathrm{E}=A_{u}^{2}=e+\varepsilon e_{o}, \quad F=A_{u} A_{v}=f+\varepsilon f_{o}, \quad G=A_{v}^{2}=g+\varepsilon g_{o} \tag{47}
\end{equation*}
$$

From definition of isotrop congruence, if $(\mathrm{A}(\mathrm{u}, \mathrm{v}))$ is isotrop, we may write, [6].

$$
\begin{equation*}
\frac{e_{o}}{e}=\frac{f_{0}}{f}=\frac{g_{o}}{g} \tag{48}
\end{equation*}
$$

On the other hand, we know that relation (48) is also isotrop condition for tangent
congruence, [6]. This completed the proof.

Theorem 8: Let $(\mathrm{A}(\mathrm{u}, \mathrm{v}))$ be a isotrop congruence and [Y] be a tangent congruence of it. The ruled surface which is satisfies the relation $\mu=c \lambda+c_{1}$ of [Y] are developable isotrop tangent right conoids.

Proof: We know that, all ruled surfaces of isotrop congruence are developable and the relation $\mu=\mathrm{c} \lambda+\mathrm{c}_{1}$ determines tangent right conoid of [Y], [6]. Moreover, we proved that $[\mathrm{Y}]$ is isotrop by theorem 7 . Thus, the proof is completed

REFERENCES

[1] BLASCHKE,W. Diferensiyel Geometri., İst.Üni. Yay, No: 443, İstanbul, 1930.
[2] ÇALISKKAN, A. On The Studying of A Line Congruence by Choosing Parameter Ruled Surface as Principal Ruled Surface, Journal of Faculty of Science of Ege Uni., Vol. 10, S.23-33, 1987.
[3] GÜRSOY,O. The Integral Invariants of A Closed Ruled Surface, Journal of Geo. Vol.39, 1990.
[4] KULA, M. Relation Entre Les Vitesses Instantaneos Des Triedres Relatifs A Une Surface Reglee Et Leurs Consequences,E.Ü.Fen Fak. Seri A,Vol VIII,1984-85
[5] AVŞAR, R. ; Bir Regle Yüzeye Bir Doğuranında Oskülatör Bazı Regle Yüzeyler, E.Ü.Fen Fak.Dergisi ,1980.
[6] ÇALIŞKAN, A. Doğru Kongrüanslarında doğurana Bağlı Teğet Kongrüans, E.Ü.Fen Fak. Dergisi,Seri A, C.II S.4, 1978.
[7] KULA, M. ; İki Doğru İle Belirlenen Regle Yüzey, E.Ü.Fen Fak. Der.C.4.S.1,2,3,4, 1980.

